JPH03261072A - Hydrogen storage alloy electrode of non-sintered type - Google Patents

Hydrogen storage alloy electrode of non-sintered type

Info

Publication number
JPH03261072A
JPH03261072A JP2056699A JP5669990A JPH03261072A JP H03261072 A JPH03261072 A JP H03261072A JP 2056699 A JP2056699 A JP 2056699A JP 5669990 A JP5669990 A JP 5669990A JP H03261072 A JPH03261072 A JP H03261072A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
punched metal
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2056699A
Other languages
Japanese (ja)
Inventor
Hirotaka Hayashida
浩孝 林田
Kazuhiro Takeno
和太 武野
Yuji Sato
優治 佐藤
Hiroyuki Takahashi
浩之 高橋
Ichiro Saruwatari
一郎 猿渡
Hiroyuki Hasebe
裕之 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP2056699A priority Critical patent/JPH03261072A/en
Priority to US07/584,107 priority patent/US5053292A/en
Priority to EP90310214A priority patent/EP0419221B1/en
Priority to DE69014185T priority patent/DE69014185T2/en
Publication of JPH03261072A publication Critical patent/JPH03261072A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a non-sintered hydrogen storage alloy electrode which is high in utilization factor and capable of heightening battery capacity, by using as punched metal a material whose opening ratio is specified. CONSTITUTION:A hydrogen storage alloy electrode of non-sintered type is provided with a current collector consisting of a hydrogen storage alloy and a punched metal. A punched metal of opening ratio 45 to 70% is used. Thereby the electrode has a good void ratio related to osmosis of an electrolyte even with the hydrogen storage alloy contained in the electrode in high density and so as non-sintered type hydrogen storage alloy electrode is obtained which is high in utilization factor and capable of heightening of battery capacity is obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は非焼結式水素吸蔵合金電極に関し、特にニッケ
ル酸化物・水素吸蔵合金二次電池の負極として好適な非
焼結式水素吸蔵合金電極に係る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a non-sintered hydrogen storage alloy electrode, and particularly to a non-sintered hydrogen storage alloy electrode suitable as a negative electrode for a nickel oxide/hydrogen storage alloy secondary battery. Concerning a condensed hydrogen storage alloy electrode.

(従来の技術) 近年、多量の水素を可逆的に吸蔵・放出できる水素吸蔵
合金は、高エネルギー密度を有するアルカリニ次電池の
負極材料として注目されている。
(Prior Art) In recent years, hydrogen storage alloys that can reversibly store and release large amounts of hydrogen have attracted attention as negative electrode materials for alkaline secondary batteries having high energy density.

かかる水素吸蔵合金をアルカリニ次電池の負極に使用し
た場合、充電時には該水素吸蔵合金が水の電気分解によ
って負極表面に発生する水素を吸蔵し、放電時には該水
素吸蔵合金が吸蔵している水素を放出し、その水素か電
解液中の水酸旦と反応して水に戻るという充放電反応が
進行する。また、正極にはニッケル・カドミウム二次電
池に使用されているコバルト酸化物を含むペースト式ニ
ッケル酸化物電極を用いることができるため、ニッケル
◆カドミウム二次電池の構成などをそのまま採用してニ
ッケル酸化物・水素吸蔵合金二次電池を組立てることが
できる。
When such a hydrogen storage alloy is used as the negative electrode of an alkaline secondary battery, during charging, the hydrogen storage alloy stores hydrogen generated on the surface of the negative electrode by electrolysis of water, and during discharge, the hydrogen storage alloy stores the hydrogen stored in the hydrogen storage alloy. A charging/discharging reaction progresses in which hydrogen is released, and the hydrogen reacts with hydroxyl in the electrolyte to return to water. In addition, a paste-type nickel oxide electrode containing cobalt oxide, which is used in nickel-cadmium secondary batteries, can be used for the positive electrode, so it is possible to use a nickel oxide You can assemble hydrogen-absorbing alloy secondary batteries.

前記ニッケル酸化物・水素吸蔵合金二次電池の負極であ
る水素吸蔵合金電極としては、■水素吸蔵合金を焼結し
て製造した焼結式のものや、■発泡金属、焼結繊維等の
三次元金属多孔体を集電体とし、その多孔体中に水素吸
蔵合金粉末を高分子結着剤と共に充填して製造したもの
が知られている。
The hydrogen storage alloy electrode, which is the negative electrode of the nickel oxide/hydrogen storage alloy secondary battery, can be used as follows: ■ A sintered type made by sintering a hydrogen storage alloy, or ■ A tertiary electrode made of foamed metal, sintered fiber, etc. It is known that a metal porous body is used as a current collector and is manufactured by filling the porous body with hydrogen storage alloy powder together with a polymer binder.

しかしながら、前者の水素吸蔵合金電極はその製造工程
が繁雑で製造コストも高いという問題かある。後者の水
素吸蔵合金電極は、三次元金属多孔体が機械的強度に劣
るため製造工程における加圧成形時に破壊されることが
あり、しかもその三次元金属多孔体自体が高価であるた
め製造コストが高いという問題がある。
However, the former hydrogen storage alloy electrode has problems in that the manufacturing process is complicated and the manufacturing cost is high. The latter hydrogen-absorbing alloy electrode has a three-dimensional porous metal body that has poor mechanical strength, so it may be destroyed during pressure forming in the manufacturing process, and the three-dimensional porous metal body itself is expensive, so the manufacturing cost is high. The problem is that it is expensive.

そこで、前記問題を解消すべく、水素吸蔵合金粉末と高
分子結着剤とを混合することによってペースト化し、こ
れをパンチドメタルからなる集電体に塗布・乾燥した後
、加圧成形して得られる非焼結式水素吸蔵合金電極が提
案されている。かかる非焼結式水素吸蔵合金電極はその
製造工程が簡単であり、しかも三次元金属多孔体のよう
な高価な材料を使用しないため低コストで製造できると
いう利点を有する。
Therefore, in order to solve the above problem, a paste was created by mixing hydrogen-absorbing alloy powder and a polymer binder, and this was applied to a current collector made of punched metal, dried, and then pressure-molded. A non-sintered hydrogen storage alloy electrode has been proposed. Such a non-sintered hydrogen storage alloy electrode has the advantage that its manufacturing process is simple and that it can be manufactured at low cost because it does not use expensive materials such as three-dimensional porous metal bodies.

しかしながら、前記非焼結式水素吸蔵合金電極は、三次
元金属多孔体を集電体とした電極よりも利用率が低く、
電池の高容量化に十分に対応することができず、更に製
造工程における加圧成形時に集電体であるパンチドメタ
ルが破断したり、乾燥したペーストがパンチドメタルか
ら剥離するという問題もあった。
However, the non-sintered hydrogen storage alloy electrode has a lower utilization rate than an electrode using a three-dimensional metal porous body as a current collector.
In addition to being unable to adequately respond to higher capacity batteries, there were also problems such as the punched metal that was the current collector breaking during pressure molding in the manufacturing process, and the dried paste peeling off from the punched metal. Ta.

(発明が解決しようとする課題) 本発明は、従来の課題を解決するためになされたもので
、利用率が高(、かつ電池の高容量化に十分に対応可能
な非焼結式水素吸蔵合金電極を提供しようとするもので
ある。
(Problems to be Solved by the Invention) The present invention was made in order to solve the conventional problems. The present invention aims to provide an alloy electrode.

[発明の構成] (課題を解決するための手段) 本発明は、水素吸蔵合金、及びパンチドメタルからなる
集電体を具備する非焼結式水素吸蔵合金電極において、
前記パンチドメタルとして開孔率が45〜70%のもの
を用いたことを特徴とする非焼結式水素吸蔵合金電極で
ある。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a non-sintered hydrogen storage alloy electrode comprising a current collector made of a hydrogen storage alloy and a punched metal.
The non-sintered hydrogen storage alloy electrode is characterized in that the punched metal has a porosity of 45 to 70%.

前記パンチドメタルの開孔率を限定した理由は、その開
孔率を45%未満にすると電極の空隙率が小さくなって
電解液と接触することができる水素吸蔵合金の割合が減
少するため電極の利用率が低下すると共に、電極製造工
程における加圧成形時に乾燥したペーストがパンチドメ
タルから剥離する恐れが生ずる。一方、前記開孔率が7
0%を越えるとパンチドメタルの強度が低下して製造工
程における加圧成形時にパンチドメタルが破断されて電
極を製造することができなくなる。
The reason for limiting the porosity of the punched metal is that if the porosity is less than 45%, the porosity of the electrode will decrease and the proportion of the hydrogen storage alloy that can come into contact with the electrolyte will decrease. The utilization rate of the punched metal decreases, and there is a risk that the dried paste may peel off from the punched metal during pressure molding in the electrode manufacturing process. On the other hand, the pore area ratio is 7
If it exceeds 0%, the strength of the punched metal decreases and the punched metal breaks during pressure molding in the manufacturing process, making it impossible to manufacture an electrode.

前記パンチドメタルの厚さは0.05〜O,15mmで
あるのが望ましい。その理由は、その厚さを0.05m
m未満にするとパンチドメタルの強度が低下して電極製
造工程における加圧成形時にパンチドメタルが破断され
て電極を製造することができなくなる恐れがある。一方
、その厚さが0.1511mを越えても導電性の向上に
殆ど寄与しないばかりか、電極中に占めるパンチドメタ
ルの体積が大きくなって水素吸蔵合金の割合が減少し、
電極の利用率が低下する恐れがある。
The thickness of the punched metal is preferably 0.05 to 15 mm. The reason is that the thickness is 0.05m.
If it is less than m, the strength of the punched metal decreases, and there is a risk that the punched metal will break during pressure forming in the electrode manufacturing process, making it impossible to manufacture the electrode. On the other hand, if the thickness exceeds 0.1511 m, not only will it hardly contribute to the improvement of conductivity, but the volume of the punched metal in the electrode will increase and the proportion of the hydrogen storage alloy will decrease.
There is a risk that the utilization rate of the electrode will decrease.

前記水素吸蔵合金としては、特に限定されるものではな
く、電解液中で電気化学的に発生させた水素を吸蔵でき
、かつ放電時にその吸蔵した水素を容易に放出できるも
のであればよく、例えばLaNl9合金、MmNi6合
金(Mm;ミツシュメタル)、LraNi5合金(Lm
;ランタンリッチミツシュメタル)、及びこれら合金の
Niの一部を八ρ、Mn、 pe。
The hydrogen storage alloy is not particularly limited as long as it can store hydrogen electrochemically generated in the electrolyte and easily release the stored hydrogen during discharge, for example. LaNl9 alloy, MmNi6 alloy (Mm; Mitshu Metal), LraNi5 alloy (Lm
; lanthanum-rich metal), and some of the Ni in these alloys is 8ρ, Mn, pe.

Cr5Cus C0% Zn5Zrs  V、T1等の
元素で置換した多元系合金が挙げられ、更にMg2Ni
系合金、TlNi系合金、TlFe系合金などが挙げら
れる。
Examples include multi-element alloys substituted with elements such as Cr5Cus C0% Zn5Zrs V, T1, and further Mg2Ni
Examples include TlNi-based alloys, TlNi-based alloys, and TlFe-based alloys.

前記水素吸蔵合金は、通常、粉末状のものを高分子結着
剤や導電材と共に混合してペースト化し、これを集電体
であるパンチドメタルに塗布・乾燥することによって電
極中に含有される。前記高分子結着剤としては、ポリア
クリル酸ナトリウム、ポリアクリル酸アンモニウム等の
ポリアクリル酸塩、ディスバージョンタイプのポリテト
ラフルオロエチレン(PTFE)等のフッ素樹脂結着剤
、カルボキシメチルセルロース(CMC)などを挙げる
ことかできる。前記導電材としては、カーボンブラック
、黒鉛粉末、金属粉末などを挙げることができる。
The hydrogen storage alloy is usually contained in the electrode by mixing powdered material with a polymeric binder and a conductive material to form a paste, applying this to a punched metal that is a current collector, and drying it. Ru. Examples of the polymer binder include polyacrylates such as sodium polyacrylate and ammonium polyacrylate, fluororesin binders such as diversion type polytetrafluoroethylene (PTFE), carboxymethylcellulose (CMC), and the like. I can list the following. Examples of the conductive material include carbon black, graphite powder, and metal powder.

(作用) 本発明によれば、水素吸蔵合金を保持し、集電体として
機能するパンチドメタルとして開孔率が45〜70%の
ものを用いることによって、前記水素吸蔵合金を高密度
で含有させても電解液の浸透に関与する良好な空隙率を
有するため、利用率が高く、電池の高容量化に対応可能
な非焼結式水素吸蔵合金電極を得ることができる。また
、前記パンチドメタルは十分な強度を有し、かつペース
トとの付着性も良好であるため、電極製造工程における
加圧成形時にパンチドメタルが破断りたり、乾燥したペ
ーストがパンチドメタルから剥離するのを防止できる。
(Function) According to the present invention, by using a punched metal having a porosity of 45 to 70% that holds the hydrogen storage alloy and functions as a current collector, the hydrogen storage alloy is contained at a high density. Since it has a good porosity that is involved in permeation of the electrolyte even if it is mixed, it is possible to obtain a non-sintered hydrogen storage alloy electrode that has a high utilization rate and is compatible with higher capacity batteries. In addition, the punched metal has sufficient strength and has good adhesion with the paste, so the punched metal may break during pressure molding in the electrode manufacturing process, or the dried paste may be removed from the punched metal. It can prevent peeling.

その結果、簡単かつ量産的に電極を製造することができ
る。
As a result, electrodes can be easily and mass-produced.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

まず、LmN t、、2 C00,2Aρ。、3Mno
、3合金のインゴットを機械的に粉砕した後に200メ
ツシユの篩を通過した水素吸蔵合金粉末を用意し、前記
水素吸蔵合金粉末100重量部に、高分子結着剤として
ポリアクリル酸ナトリウム 0.5重量部、CMCO,
125重量部、及びディスバージョンタイプのポリテト
ラフルオロエチレン1.5重量部、並びに導電材として
カーボンブラック 1.0重量部を水と共に配合して混
合することによりペーストを調製した。次いで、孔径が
2.0m1F、厚さが0.1mm。
First, LmN t,,2 C00,2Aρ. , 3Mno
, 3 alloy ingot was mechanically crushed and then passed through a 200 mesh sieve. Hydrogen storage alloy powder was prepared, and 0.5 parts by weight of sodium polyacrylate was added to 100 parts by weight of the hydrogen storage alloy powder as a polymer binder. Parts by weight, CMCO,
A paste was prepared by blending and mixing 125 parts by weight, 1.5 parts by weight of diversion type polytetrafluoroethylene, and 1.0 parts by weight of carbon black as a conductive material with water. Next, the hole diameter was 2.0 m1F and the thickness was 0.1 mm.

開孔率(%)が35.40,45,50,55.Bo、
65,70.75であるパンチドメタルを用意し、これ
らのパンチドメタルに前記ペーストを塗布・乾燥した後
、ロールプレスで圧延することにより9種の非焼結式水
素吸蔵合金電極を作製した。なお、これらの電極は全て
厚さ及び水素吸蔵合金密度を同じとした。
The open area ratio (%) is 35.40, 45, 50, 55. Bo,
65, 70.75 were prepared, the paste was applied to these punched metals, dried, and then rolled in a roll press to produce nine types of non-sintered hydrogen storage alloy electrodes. . Note that all of these electrodes had the same thickness and hydrogen storage alloy density.

前記各電極作製工程での圧延時におけるペースト剥離の
有無とパンチドメタルの破断の有無とを調べた。その結
果を下記第1表に示す。
The presence or absence of paste peeling during rolling in each of the electrode manufacturing steps and the presence or absence of breakage of the punched metal were investigated. The results are shown in Table 1 below.

第    1    表 第1表から明らかなようにパンチドメタルの開孔率が3
5%である電極は圧延時に乾燥したペーストがパンチド
メタルから剥離し、一方、パンチドメタルの開孔率が7
5%である電極は圧延時に該パンチドメタルが破断する
ことがわかった。これに対し、本発明の電極(パンチド
メタルの開孔率が45〜70%)は乾燥したペーストの
剥離やパンチドメタルの破断もなく、良好に製造できる
ことがわかった。
Table 1 As is clear from Table 1, the porosity of punched metal is 3.
For electrodes with a diameter of 5%, the dried paste peels off from the punched metal during rolling, while the porosity of the punched metal is 7%.
It was found that the punched metal broke during rolling when the electrode was 5%. On the other hand, it was found that the electrode of the present invention (the porosity of the punched metal is 45 to 70%) can be manufactured satisfactorily without peeling of the dried paste or breakage of the punched metal.

また、パンチドメタルの開孔率(%)が40.4550
.55.Bo、65.70である非焼結式水素吸蔵合金
電極をそれぞれ10mmX 10mmに裁断し、これを
負極に使用して第1図に示す試験セルをそれぞれ組立て
た。
In addition, the porosity (%) of punched metal is 40.4550
.. 55. Non-sintered hydrogen storage alloy electrodes having a Bo of 65.70 were cut into 10 mm x 10 mm pieces, and used as negative electrodes to assemble the test cells shown in FIG. 1, respectively.

即ち、負極1はセパレータ2によりU字型に包まれ、こ
れらを挟むように焼結式Ni極である正極3が配置され
、アクリル製のホルダ4により密着固定されている。C
d/Cd (OH) 2の参照電極5は、前記負極1及
び正極3と共に容器6内の電解液7に浸漬されている。
That is, the negative electrode 1 is wrapped in a U-shape by a separator 2, and the positive electrode 3, which is a sintered Ni electrode, is arranged to sandwich the separator 2, and is closely fixed by a holder 4 made of acrylic. C
A reference electrode 5 of d/Cd (OH) 2 is immersed in an electrolytic solution 7 in a container 6 together with the negative electrode 1 and positive electrode 3 .

前記参照電極5から導出されたリード8、前記負極1か
ら導出された負極端子9、及び前記正極3から導出され
た正極端子10は、それぞれ容器6の外部に取出されて
いる。
A lead 8 led out from the reference electrode 5, a negative electrode terminal 9 led out from the negative electrode 1, and a positive electrode terminal 10 led out from the positive electrode 3 are each taken out to the outside of the container 6.

上述した構造の試験セルを水素吸蔵合金1g当りO,1
7Ahの電流密度で充電し、同じ電流密度で0.8Vに
なるまで放電する充放電を繰り返して、充電電気量に対
する放電電気量の割合(利用率)0 を測定した。その結果を第2図に示す。第2図は、それ
ぞれの試験セルに組込んだ非焼結式水素吸蔵合金電極に
おけるパンチドメタルの開孔率とその電極の利用率との
関係を示す特性図である。
A test cell having the structure described above was used at a temperature of O, 1 per gram of hydrogen storage alloy.
Charging and discharging were repeated by charging at a current density of 7 Ah and discharging at the same current density until the voltage reached 0.8 V, and the ratio (utilization rate) of the amount of discharged electricity to the amount of charged electricity was measured. The results are shown in FIG. FIG. 2 is a characteristic diagram showing the relationship between the porosity of the punched metal and the utilization rate of the electrode in the non-sintered hydrogen storage alloy electrode incorporated in each test cell.

第2図から明らかなように本発明の電極(パンチドメタ
ルの開孔率が45〜70%)は利用率がほぼ100%で
あるのに対し、パンチドメタルの開孔率が40%である
電極は90%程度になることがわかる。
As is clear from Figure 2, the electrode of the present invention (punched metal with a 45-70% porosity) has a utilization rate of almost 100%, whereas the punched metal has a 40% porosity. It can be seen that some electrodes have a rate of about 90%.

この原因は、パンチドメタルの開孔率が45%未満であ
ると電極の空隙が少なくなり電解液と接触する水素吸蔵
合金の割合が減少するからである。
The reason for this is that if the porosity of the punched metal is less than 45%, the voids in the electrode will decrease and the proportion of the hydrogen storage alloy in contact with the electrolyte will decrease.

[発明の効果コ 以上詳述した如く、本発明によれば電極の利用率が高く
、電池の高容量化に十分に対応することができると共に
、製造工程における加圧成形時にパンチドメタルが破断
したり、乾燥したペーストがパンチドメタルから剥離す
るのを防止でき、量産化が可能な非焼結式水素吸蔵合金
電極を提供することができる。
[Effects of the Invention] As detailed above, according to the present invention, the utilization rate of the electrode is high and the capacity of the battery can be increased sufficiently. It is possible to provide a non-sintered hydrogen storage alloy electrode that can prevent the dried paste from peeling off from the punched metal and can be mass-produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に用いた試験セルを示す断面図、第2図
は実施例におけるパンチドメタルの開孔率に対する電極
の利用率の変化を示す特性図である。 1・・・負極、2・・・セパレータ、3・・・正極、6
・・・容器、7・・・電解液。
FIG. 1 is a cross-sectional view showing a test cell used in the example, and FIG. 2 is a characteristic diagram showing changes in the utilization rate of the electrode with respect to the porosity of the punched metal in the example. 1... Negative electrode, 2... Separator, 3... Positive electrode, 6
... Container, 7... Electrolyte.

Claims (1)

【特許請求の範囲】[Claims] 水素吸蔵合金、及びパンチドメタルからなる集電体を具
備する非焼結式水素吸蔵合金電極において、前記パンチ
ドメタルとして開孔率が45〜70%のものを用いたこ
とを特徴とする非焼結式水素吸蔵合金電極。
A non-sintered hydrogen storage alloy electrode comprising a current collector made of a hydrogen storage alloy and a punched metal, characterized in that the punched metal has a porosity of 45 to 70%. Sintered hydrogen storage alloy electrode.
JP2056699A 1989-09-18 1990-03-09 Hydrogen storage alloy electrode of non-sintered type Pending JPH03261072A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2056699A JPH03261072A (en) 1990-03-09 1990-03-09 Hydrogen storage alloy electrode of non-sintered type
US07/584,107 US5053292A (en) 1989-09-18 1990-09-18 Nickel-metal hydride secondary cell
EP90310214A EP0419221B1 (en) 1989-09-18 1990-09-18 Nickel-metal hydride secondary cell
DE69014185T DE69014185T2 (en) 1989-09-18 1990-09-18 Secondary nickel metal hydride cell.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2056699A JPH03261072A (en) 1990-03-09 1990-03-09 Hydrogen storage alloy electrode of non-sintered type

Publications (1)

Publication Number Publication Date
JPH03261072A true JPH03261072A (en) 1991-11-20

Family

ID=13034716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2056699A Pending JPH03261072A (en) 1989-09-18 1990-03-09 Hydrogen storage alloy electrode of non-sintered type

Country Status (1)

Country Link
JP (1) JPH03261072A (en)

Similar Documents

Publication Publication Date Title
TW508860B (en) Paste-like thin electrode for battery, its manufacturing method, and battery
US5695530A (en) Method for making high charging efficiency and fast oxygen recombination rechargeable hydride batteries
EP0581275B1 (en) A pasted type nickel electrode for an alkaline storage battery and an alkaline storage battery
US6503659B1 (en) Layered metal hydride electrode providing reduced cell pressure
US3672998A (en) Extended area zinc anode having low density for use in a high rate alkaline galvanic cell
US5434022A (en) Electrodes and electrochemical storage cells utilizing tin-modified active materials
US5496665A (en) Hydrogen-occlusion-alloy electrode
KR100276634B1 (en) Alkali battery metal hydride electrode and its manufacturing method
JPH03261072A (en) Hydrogen storage alloy electrode of non-sintered type
JP4183292B2 (en) Secondary battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2981538B2 (en) Electrodes for alkaline batteries
JP3115574B2 (en) Battery
JP3464717B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JPH11111280A (en) Hydride secondary battery
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JPS60119079A (en) Hydrogen absorption electrode
JPS63239771A (en) Paste-type hydrogen occluded electrode
JP2981537B2 (en) Negative electrode for alkaline batteries
JP3316687B2 (en) Nickel-metal hydride storage battery
JP3306058B2 (en) Hydrogen storage alloy electrode and nickel metal hydride secondary battery
JP2983135B2 (en) Alkaline secondary battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH06215764A (en) Manufacture of hydrogen absorbing electrode and metal oxide-hydrogen storage battery with hydrogen absorbing electrode