JPH03260012A - Production of ultrahigh tensile strength steel excellent in stress corrosion cracking resistance and having high toughness - Google Patents

Production of ultrahigh tensile strength steel excellent in stress corrosion cracking resistance and having high toughness

Info

Publication number
JPH03260012A
JPH03260012A JP6072390A JP6072390A JPH03260012A JP H03260012 A JPH03260012 A JP H03260012A JP 6072390 A JP6072390 A JP 6072390A JP 6072390 A JP6072390 A JP 6072390A JP H03260012 A JPH03260012 A JP H03260012A
Authority
JP
Japan
Prior art keywords
steel
point
temperature
toughness
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6072390A
Other languages
Japanese (ja)
Inventor
Yoshihiro Okamura
岡村 義弘
Ryota Yamaba
山場 良太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6072390A priority Critical patent/JPH03260012A/en
Publication of JPH03260012A publication Critical patent/JPH03260012A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain an ultrahigh tensile strength steel excellent in stress corrosion cracking resistance and toughness at low temp. by subjecting a slab of a steel having a composition in which respective contents of C, Si, Mn, Ni, Mo, Cr, V, etc., are specified to hot rolling and to quench-and-temper treatment under respectively prescribed conditions. CONSTITUTION:A steel having a composition consisting of, by weight, 0.03-0.1% C, 0.02-0.5% Si, 0.4-1.5% Mn, 11-13% Ni, 0.8-2.5% Mo, 0.2-1% Cr, 0.02-0.15% V, 0.01-0.08% Al, and the balance Fe is refined. A slab of this steel is heated to 1000-1250 deg.C and hot-rolled from <=1000 deg.C at >=50% cumulative reduction of area, and rolling is finished at >=Ar3 and water quenching is started in the above state and stopped at <=150 deg.C. Subsequently, after this hardening, the steel is further reheated at a temp. between (the Ac3 point + 20 deg.C) and (the Ac3 point + 120 deg.C) and then hardened. Then, tempering treatment is carried out at a temp. not higher than the Ac1 point.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭素量が低L)にも拘わらず高強度を有し、靭
性と海水あるいは塩水などの応力腐食環境中における耐
応力腐食割れ性に優れた降伏応力125kg f /−
以上の高靭性超高張力鋼の製造法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention has high strength despite the low carbon content (L), and has high toughness and stress corrosion cracking resistance in stress corrosion environments such as seawater or salt water. Excellent yield stress of 125kg f/-
The present invention relates to a method for manufacturing the above-mentioned high-toughness ultra-high tensile strength steel.

(従来の技術) 近年、エネルギー需要が年々増加し、その安定供給確保
のため、海底資源開発や海底地殻地質調査など海洋開発
に対する関心が高まり、この海底開発につながる海洋構
造物及び海底調査作業船の建造あるいは海底石油生産基
地などの建造構想が活発化している。
(Conventional technology) In recent years, the demand for energy has been increasing year by year, and in order to ensure a stable supply of energy, there has been increasing interest in ocean development such as undersea resource development and undersea crustal geological surveys. There is increasing activity in the construction of offshore oil production bases and offshore oil production bases.

これらに使用される材料には、構造上非常に高い強度に
おいて高靭性で、かつ海水などの使用環境条件において
も、耐応力腐食割れ性を具備することが望まれている。
It is desired that the materials used in these devices have extremely high structural strength and toughness, and also have stress corrosion cracking resistance even under usage environmental conditions such as seawater.

このような安全で信頼性のある高強度で高靭性材料の要
求に応えるため、Ni含有低合金鋼の開発及びその品質
改善が行なわれている。例えば、特公昭83−4973
9号公報のように、f (12〜16%)=lOC+N
i +Cr +1/2 Moとなる成分で、且つ広い冷
却速度範囲において良好な焼入れ組織が得られるNi 
 −Cr −Mo系の高強度高靭性鋼、あるいは特公昭
63−49738号公報のように、超高強度レベルで靭
性を確保するためにC,Sl 、Mn 。
In order to meet the demand for such safe, reliable, high-strength, and high-toughness materials, Ni-containing low alloy steels have been developed and their quality improved. For example, Tokuko Sho 83-4973
As in Publication No. 9, f (12-16%)=lOC+N
Ni is a component that becomes i + Cr + 1/2 Mo and provides a good hardened structure in a wide cooling rate range.
-Cr-Mo-based high-strength, high-toughness steel, or C, Sl, and Mn to ensure toughness at an ultra-high strength level, as in Japanese Patent Publication No. 63-49738.

P、Sの含有量を低くし、かつマルテンサイトマトリッ
クス中でTi、Alの析出強化を起こさせるNi−Cr
系の超高張力鋼、更に米国開発の1ONi  −8Co
系鋼の超高張力鋼などがある。
Ni-Cr that lowers the content of P and S and causes precipitation strengthening of Ti and Al in the martensite matrix
ultra-high tensile strength steel, and 1ONi-8Co developed in the United States.
There are ultra-high tensile strength steels, etc.

前者のNi  −Cr −Mo鋼及びNj −Cr鋼は
いずれも高強度化及び靭性向上には効果的である。
The former Ni-Cr-Mo steel and Nj-Cr steel are both effective in increasing strength and toughness.

後者の1(lNf−8Co系鋼は降伏応力130kg 
f /−の高強度が得られるが、低温靭性が十分高いと
は言えず、又、Coを8%も含むため非常にコストが高
いのが難点である。
The latter 1 (lNf-8Co steel has a yield stress of 130 kg
A high strength of f/- can be obtained, but the low temperature toughness is not sufficiently high, and since it contains 8% Co, it is very expensive.

又、これらいずれの鋼も塩水と接触する環境、例えば海
洋構造物などにおいての海水中での応力腐食を考慮に入
れた検討がなされていない。
Furthermore, no studies have been conducted on any of these steels that take into account stress corrosion in seawater in environments where they come into contact with saltwater, such as in marine structures.

(発明が解決しようとする課題) 高張力鋼の応力腐食割れに関しては、線型破壊力学モー
ドの理論が取り入れられ、材料内に先天的に存在する亀
裂あるいは欠陥が腐食環境に対して、どのような破壊挙
動を取るかを亀裂先端のKM(応力拡大係数)を用いて
定量化する手法が用いられ、実用的成果をあげている。
(Problem to be Solved by the Invention) Regarding stress corrosion cracking in high-strength steel, the theory of linear fracture mechanics mode has been adopted, and the theory of how cracks or defects congenitally existing in the material react to the corrosive environment A method of quantifying the fracture behavior using the KM (stress intensity factor) at the crack tip has been used, and has achieved practical results.

即ち、応力腐食割れ試験としては、使用環境条件におい
て予亀裂付の試験片を用い、ノツチ先端に苛酷な状態を
作ることにより遅れ破壊を生しに<<シて、この環境下
で種々のに値のレベルでの定荷重試験を行なうことによ
り、ある一定のに値以下では破壊を生じない限界KIS
CC値を求めることによって、耐応力腐食割れ性が評価
されている。
In other words, in the stress corrosion cracking test, a pre-cracked test piece is used under the usage environment conditions, and a severe condition is created at the notch tip to cause delayed fracture. By conducting a constant load test at a certain value level, the limit KIS that does not cause destruction below a certain value can be determined.
Stress corrosion cracking resistance is evaluated by determining the CC value.

しかるに、前述の製造法により得られた鋼については、
かかる評価に耐えつる製造上の配慮がなされておらず、
使用上十分に安全であるとは云えない。
However, regarding the steel obtained by the above-mentioned manufacturing method,
No consideration has been taken in manufacturing to withstand such evaluation.
It cannot be said that it is sufficiently safe for use.

(課題を解決するための手段) 本発明者らは、海水中あるいは塩水中における耐応力腐
食割れ性を具備し、超高強度で高靭性を有するNi含有
低合金鋼を開発することを目的に、鋼及びその製造法に
ついて種々検討した結果、超高強度鋼の耐応力腐食割れ
性には鋼中の炭素量が著しく影響し、炭素量を低減する
ことがを効であること、更にこの低炭素Nl含有低合金
鋼を通常に圧延し、焼入れ焼戻し処理した場合は、目的
の強度が得られず、且つ限界KIscc’も低いこと、
又制御圧延を行なって直接焼入れ・焼戻しを行なった場
合も、同様に目的の強度及び限界K15CC値が低く、
実用に耐えないことを明らかにした。
(Means for Solving the Problem) The present inventors aimed to develop a Ni-containing low alloy steel that has stress corrosion cracking resistance in seawater or salt water, has ultra-high strength, and has high toughness. As a result of various studies on steel and its manufacturing methods, we found that the stress corrosion cracking resistance of ultra-high strength steel is significantly affected by the amount of carbon in the steel, and that reducing the amount of carbon is effective. When carbon-Nl-containing low alloy steel is normally rolled and quenched and tempered, the desired strength cannot be obtained and the limit KIscc' is low;
Also, when controlled rolling is performed and direct quenching/tempering is performed, the target strength and limit K15CC value are similarly low.
It became clear that it was not practical.

そこで更に炭化物の挙動に着目して制御圧延直接焼入れ
後、種々のオーステナイト化温度に再加熱し、焼入れ・
焼戻し処理を行なうプロセスにつき詳細に検討した結果
、特定の再加熱焼入れ温度域で強度が著しく上昇し、高
靭性で且つ限界KIscc値も十分に高い鋼材か製造で
きることを知見した。
Therefore, we focused on the behavior of carbides, and after controlled rolling and direct quenching, we reheated to various austenitizing temperatures, and then quenched and
As a result of a detailed study of the tempering process, it was found that in a specific reheating and quenching temperature range, the strength significantly increases, and it is possible to produce a steel material with high toughness and a sufficiently high limit KIscc value.

本発明はこのような知見に基づいて構成したもノテ、ソ
ノ要旨+;! C; 0.03〜O,10%、si。
The present invention was constructed based on such knowledge. C; 0.03-O, 10%, si.

0.020〜0.50%、Mn;0.4〜1.5%、N
i;11.0−13.0%、M o ; 0 、8−2
 、5%、Cr;0.2−1.0%、V;(+、(12
〜0.15%、Al  ;0.01〜0.08%を含有
し、残部が鉄及び不可避的不純物からなる鋼片、あるイ
ハ、更1: Cu:o、2〜1.5%、N b;0.0
05〜0.05%、T i ; 0.005〜0.03
9o、 Co;0.5〜2.096の強度改善元素群、
又は介在物形態制御作用のCa:0.0005〜0.0
05%の一種又は二種以上を有する鋼片を1000〜1
250℃に加熱し、1000℃以下から仕上げ板厚に対
し50%以上の累積圧下率で熱間圧延を行ない、Ar3
点以上で圧延を終了させ、そのまま水冷を開始して15
0℃以下の温度で停止する焼入れ処理を行ない、その後
更にA c s点+20℃からA c a点+120℃
の間に再加熱した後、焼入れし、続いてA C1点以下
の温度で焼戻し処理することを特徴とする降伏応力12
5kg f /−以上の耐応力腐食割れ性の優れた高靭
性超高張力鋼の製造法である。
0.020-0.50%, Mn; 0.4-1.5%, N
i; 11.0-13.0%, Mo; 0, 8-2
, 5%, Cr; 0.2-1.0%, V; (+, (12
A steel billet containing ~0.15%, Al; 0.01~0.08%, and the balance consisting of iron and inevitable impurities, further 1: Cu:o, 2~1.5%, N b;0.0
05-0.05%, Ti; 0.005-0.03
9o, Co; strength improving element group of 0.5 to 2.096,
Or Ca for inclusion shape control effect: 0.0005 to 0.0
1000 to 1 steel billet having one or more of 0.05%
Heating to 250°C, hot rolling from 1000°C or lower at a cumulative reduction rate of 50% or more with respect to the finished plate thickness, Ar3
Finish rolling at the point or higher and start water cooling as it is for 15 minutes.
A quenching process is performed that stops at a temperature of 0°C or lower, and then the temperature is further increased from A c s point +20°C to A c a point +120°C.
Yield stress 12 characterized by being reheated during the process, quenching, and then tempering at a temperature below the A C1 point.
This is a method for producing high-toughness ultra-high tensile strength steel with excellent stress corrosion cracking resistance of 5 kg f/- or more.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

まず、本発明の鋼成分の限定理由を述べる。First, the reasons for limiting the steel components of the present invention will be described.

C;Cは焼入性を向上させ強度を容易に上昇させるのに
有効な元素である。反面、本発明の目的である超高強度
鋼の耐応力腐食割れ性の向上に対しても影響を与える元
素である。
C: C is an effective element for improving hardenability and easily increasing strength. On the other hand, it is an element that also influences the improvement of stress corrosion cracking resistance of ultra-high strength steel, which is the objective of the present invention.

第1図は、11%N I−1,0〜1.5%Mo系にC
を0.03〜0.13%変化させ溶製した鋼片を、11
50℃加熱−圧延開始960℃(累積圧下率60%、仕
上げ板厚40mm)  −水冷(水冷停止100℃以下
)−再加熱750〜775℃焼入れ−500〜520℃
焼戻し処理した鋼について、限界KIscc値に及ばず
C量の影響について調査した結果を示す。
Figure 1 shows 11%N I-1,0~1.5%Mo system with C
A steel billet produced by changing 0.03-0.13% of
Heating at 50°C - Rolling start 960°C (cumulative reduction rate 60%, finished plate thickness 40mm) - Water cooling (water cooling stop 100°C or less) - Reheating 750-775°C Quenching - 500-520°C
The results of an investigation on the influence of the amount of C on tempered steel below the limit KIscc value are shown.

限界5scc値はC量が低いほど向上していることが分
かる。すなわち、Cが0.10%を超えると著しくKI
SCC値を低下して耐応力腐食割れ性を低下させる。又
、Cか0,03%未満であると強度が得られない。した
がって、C含有量を0.03〜0.1090とした。
It can be seen that the lower the C content, the better the limit 5scc value becomes. In other words, when C exceeds 0.10%, the KI
It lowers the SCC value and reduces stress corrosion cracking resistance. Further, if C is less than 0.03%, strength cannot be obtained. Therefore, the C content was set to 0.03 to 0.1090.

Si;Siは強度向上に有効である。また、製鋼上不可
避な元素であり、0.02%は鋼中に含まれることにな
るが、0.50%超になると、Ni含有鋼の場合、焼戻
し脆性が大きくなり、低温靭性が低下する。したがって
、Sj含有量を0.02〜0.50%とした。
Si; Si is effective in improving strength. In addition, it is an unavoidable element in steelmaking, and 0.02% is contained in steel, but if it exceeds 0.50%, tempering brittleness increases in Ni-containing steel, and low-temperature toughness decreases. . Therefore, the Sj content was set to 0.02 to 0.50%.

Mn;Mnは焼入性を向上させ、強度・靭性確保に有効
であるが、Mlが高いと81と同様に焼戻し脆性が大き
くなるので、1 、596以下にする必要がある。又、
0.4%未満では強度及び靭性が低下する。したがって
、Mnの含有量をo、4〜1.5%とした。
Mn: Mn improves hardenability and is effective in ensuring strength and toughness, but if Ml is high, temper brittleness increases as in 81, so it needs to be 1,596 or less. or,
If it is less than 0.4%, strength and toughness will decrease. Therefore, the Mn content was set to 4 to 1.5%.

Nj;Niは積層欠陥エネルギーを上げ、交叉上りを増
し、応力緩和を生じやすくし、衝撃吸収エネルギーを増
し低温靭性の向上に有効である。
Nj: Ni increases stacking fault energy, increases cross-over, facilitates stress relaxation, increases impact absorption energy, and is effective in improving low-temperature toughness.

更にNiは本発明に含まれるMoとの共存で最も効果を
発揮するが、再加熱焼入れ処理時のA c s点+20
℃からA c a点+120℃の間の温度に加熱された
場合、新たに生成される塊状のオーステナイト粒を抑制
し、旧γ粒内のマルテンサイトラスから多数の針状γ粒
が生成され、これらが合体したγ粒(以下マルテンサイ
ト型逆変態γ粒と云う)は極めて高転位密度を有し、強
度向上に著しく影響を及ぼす。11.0%未満ではこの
効果が小さく、又、13%を超えて添加してもそれ以上
の効果が認められない。したがって、N1の含有量を1
1.0〜13.0%とした。
Furthermore, Ni is most effective when coexisting with Mo included in the present invention, but the A c s point +20 during reheating and quenching treatment.
When heated to a temperature between ℃ and A c a point + 120℃, newly generated massive austenite grains are suppressed, and many acicular γ grains are generated from martensite laths in prior γ grains, and these γ grains (hereinafter referred to as martensitic reverse transformed γ grains) have an extremely high dislocation density and have a significant effect on strength improvement. If it is less than 11.0%, this effect will be small, and if it is added in excess of 13%, no further effect will be observed. Therefore, the content of N1 is reduced to 1
The content was set at 1.0 to 13.0%.

Mo;MoはNlと同様に本発明の重要な元素でもある
。すなわち、再加熱焼入れ処理の、A c a点+20
℃からAc3点+120℃の間に加熱された時、加熱過
程で析出するM□炭化物が高温まで微細析出のまま保持
され、それがマルテンサイト型逆変態γ粒の形成を保持
するために必要である。
Mo; Mo is also an important element in the present invention like Nl. That is, A c a point +20 of reheating and quenching treatment
When heated between ℃ and Ac3 point + 120℃, the M□ carbide that precipitates during the heating process remains as a fine precipitate up to high temperature, which is necessary to maintain the formation of martensitic reverse transformed γ grains. be.

又、焼戻しによる析出強化ε焼戻し脆性の抑制にも有効
な元素である。しかし、0.89o未満では高温までマ
ルテンサイト型逆変態γ粒の形成の効果が小さく、目標
とする強度が得られず、又、2.5%を超えると強度向
上効果が認められず、かえって、粗大なM6C析出物が
増加し、靭性を低下させる。したがって、Mo含有量を
0゜8〜2.5%とした。
It is also an effective element for suppressing precipitation strengthening ε tempering brittleness due to tempering. However, if it is less than 0.89o, the effect of forming martensitic reverse-transformed γ grains is small up to high temperatures, and the target strength cannot be obtained, and if it exceeds 2.5%, no strength improvement effect is observed, and on the contrary, , coarse M6C precipitates increase and reduce toughness. Therefore, the Mo content was set to 0°8 to 2.5%.

Cr;Crは焼入性を向上させ、強度確保に有効であり
、少なくとも0.2%必要である。又、1.0%を超え
ると強度上昇が飽和し、靭性が低下する。したがって、
Cr含有量を0.2〜1.0%とした。
Cr: Cr improves hardenability and is effective in ensuring strength, and is required at least 0.2%. Moreover, if it exceeds 1.0%, the increase in strength will be saturated and the toughness will decrease. therefore,
The Cr content was set to 0.2 to 1.0%.

v;Vは焼戻し処理の時、炭窒化物を生成して強度確保
のために必要である。0.02%未満では目標の強度が
得られず、又、0.15%を超えると靭性が低下する。
v; V is necessary to generate carbonitrides and ensure strength during tempering. If it is less than 0.02%, the target strength cannot be obtained, and if it exceeds 0.15%, the toughness will decrease.

Ap、Allは鋼片加熱時及び熱処理時の高温域テ窒化
物を形成し、オーステナイト粒の細粒化に有効である。
Ap and All form nitrides in the high temperature range during heating and heat treatment of the steel billet, and are effective in refining austenite grains.

しかし、0.01%未満ではその効果が小さく、又、0
.08%を超えるとアルミナ系介在物が増加し、靭性を
阻害する。したがって、Aj)含有量を0,01〜0.
08%とした。
However, if it is less than 0.01%, the effect is small;
.. If it exceeds 0.8%, alumina-based inclusions will increase and the toughness will be impaired. Therefore, the Aj) content should be adjusted from 0.01 to 0.01.
It was set at 08%.

本発明では上記基本成分の他に(Cu、Nb。In the present invention, in addition to the above basic components (Cu, Nb).

TI、Co)及びCaの一種または二種以上添加する。One or more of TI, Co) and Ca are added.

Cu、V、Nb、Ti 、Co成分は鋼の強度を向上さ
せるという均等的作用をもつもので、所望の効果を確保
するためにはそれぞれ含有下限量をCu;0.2%、N
b;0.005%、Ti;0.005%、Co;0.0
5%とする必要がある。しかし、それぞれCo;1.5
%、Nb;0.05%、T i;o、oa%、Co;2
.0%を超えて含有させると低温靭性が低下し、又、耐
応力腐食割れ感受性を高めたりするため、上記の通り限
定する。
Cu, V, Nb, Ti, and Co components have an equal effect of improving the strength of steel, and in order to ensure the desired effect, the lower limit content of Cu; 0.2%, N
b; 0.005%, Ti; 0.005%, Co; 0.0
It needs to be 5%. However, each Co; 1.5
%, Nb; 0.05%, Ti; o, oa%, Co; 2
.. If the content exceeds 0%, low-temperature toughness decreases and stress corrosion cracking susceptibility increases, so it is limited as described above.

Ca;Caは非金属介在物の球状化に極めて有効であり
、低温靭性の向上や靭性の異方性を小さくする効果があ
る。それには0.0005%必要であるが、0.005
%を超えると介在物増加により靭性を低下させる。した
かって、その含有量を0.0005〜0.05%とした
Ca; Ca is extremely effective in spheroidizing nonmetallic inclusions, and has the effect of improving low-temperature toughness and reducing toughness anisotropy. It requires 0.0005%, but 0.005
%, the toughness decreases due to an increase in inclusions. Therefore, the content was set to 0.0005 to 0.05%.

上記の成分の他に不可避的不純物としてP、SN等を本
発明の特性である靭性及び耐応力腐食割れ性を低下させ
る有害な元素であるから、その量は少ない方がよい。好
ましくはP 、 0.005%以下、S、O,Oロ39
6以下、N ; 0.0080%以下に調整する。
In addition to the above-mentioned components, unavoidable impurities such as P and SN are harmful elements that reduce the toughness and stress corrosion cracking resistance, which are the characteristics of the present invention, so the smaller the amount, the better. Preferably P, 0.005% or less, S, O, O39
Adjust to 6 or less, N: 0.0080% or less.

次に本発明のもう一つの骨子である製造法について述べ
る。
Next, the manufacturing method, which is another gist of the present invention, will be described.

即ち、上記のような鋼成分組成であっても、目的の強度
、靭性及び耐応力腐食割れ性を得るには、製造法が適切
でなければならない。このため、鋼片の加熱温度、圧延
、冷却及び再加熱焼入・焼戻し条件を限定した理由につ
いて説明する。
That is, even if the steel composition is as described above, the manufacturing method must be appropriate in order to obtain the desired strength, toughness, and stress corrosion cracking resistance. For this reason, the reason why the heating temperature, rolling, cooling, reheating quenching and tempering conditions of the steel billet were limited will be explained.

まず、上記の鋼成分組成の鋼片を1ooo〜1250℃
に加熱する。この加熱においては、加熱オーステナイト
粒の細粒化と、再加熱焼入れ処理における微細Mo炭化
物の高温保持によるマルテンサイト型逆変態γ粒の形成
のため、及び焼戻し処理時にMo、Cr 、V、Nb等
の微細炭窒化物の析出による強化を利用するために、鋼
片の状態で存在するMo 、Cr 、V、Nb等の炭化
物を十分に固溶化させる必要がある。
First, a steel piece having the above steel composition was heated to 100 to 1250°C.
Heat to. In this heating, the heated austenite grains are refined, martensitic type reverse transformed γ grains are formed by maintaining the fine Mo carbide at high temperature in the reheating and quenching process, and Mo, Cr, V, Nb, etc. are added during the tempering process. In order to utilize the strengthening caused by the precipitation of fine carbonitrides, it is necessary to sufficiently dissolve carbides such as Mo, Cr, V, and Nb that are present in the steel slab.

この時1000℃未満の低い温度では、この固溶化作用
が十分でなく、M6C等の未溶解析出物の存在は、焼戻
しの際の十分な析出硬化が期待できないと共に靭性低下
の原因ともなる。
At this time, at a low temperature of less than 1000° C., this solid solution action is not sufficient, and the presence of undissolved precipitates such as M6C cannot expect sufficient precipitation hardening during tempering and also causes a decrease in toughness.

一方、1250℃を超える温度では、Mo、Cr。On the other hand, at temperatures exceeding 1250°C, Mo and Cr.

V、Nb等の炭窒化物は十分固溶するものの、本発明の
N1含有鋼においては、鋼片の表面に酸化物が増加し、
最終的に圧延後の表面疵を生じる。
Although carbonitrides such as V and Nb are sufficiently dissolved in solid solution, in the N1-containing steel of the present invention, oxides increase on the surface of the steel piece,
Eventually, surface flaws occur after rolling.

又、加熱オーステナイト粒が粗大化し、その後の圧延に
おいてオーステナイト粒が細粒化しにくく、靭性低下の
原因ともなる。したがって、これらの問題を考慮して鋼
片の加熱温度を1000〜1250’Cとした。
Moreover, the heated austenite grains become coarse, making it difficult to refine the austenite grains during subsequent rolling, which also causes a decrease in toughness. Therefore, in consideration of these problems, the heating temperature of the steel slab was set at 1000 to 1250'C.

次にこのように加熱した鋼片を、l000℃以下から仕
上げ板厚に対し50%以上の累積圧下率で熱間圧延を行
ない、A r a点以上の温度で圧延を終了させ、その
まま水冷を開始して150℃以下の温度で停止する焼入
れ処理を行なう。
Next, the steel billet heated in this way is hot rolled at a cumulative reduction rate of 50% or more relative to the finished plate thickness from 1,000°C or below, and the rolling is completed at a temperature above the A ra point, and then water cooling is performed as it is. A quenching process is performed that starts and stops at a temperature of 150°C or less.

圧延後水冷処理された組織は十分に細粒化とマルテンサ
イト組織にする必要がある。これは、次の再加熱焼入れ
処理時に形成されるマルテンサイト型逆変態γ粒は、熱
間圧延で形成されたオーステナイト粒を継承するため、
圧延により十分にオーステナイト粒を細粒化させる必要
があるからである。
The structure subjected to water cooling treatment after rolling needs to be sufficiently refined into a martensitic structure. This is because the martensitic reverse-transformed γ grains formed during the next reheating and quenching process inherit the austenite grains formed during hot rolling.
This is because it is necessary to sufficiently refine the austenite grains by rolling.

圧延開始が1000℃以上及び仕上げ板厚に対し50%
以下の累積圧下率では、細粒化効果が小さく靭性低下の
原因ともなる。したがって、圧延開始を1000℃以下
及び50%以上の累積圧下率で圧延を行なう必要がある
。好ましい累積圧下率上限は85%である。
Rolling start temperature is 1000℃ or higher and 50% of finished plate thickness
At the following cumulative reduction ratios, the grain refining effect is small and may cause a decrease in toughness. Therefore, it is necessary to start rolling at 1000° C. or lower and at a cumulative reduction rate of 50% or higher. A preferable upper limit of the cumulative reduction rate is 85%.

又、圧延後の水冷開始温度は、鋼のそれぞれ持つA r
 3点以上の温度からとする必要がある。これは組織を
十分にマルテンサイト組織とし、その後の再加熱過程で
オーステナイト粒内のマルテンサイトラスから、針状の
オーステナイトを生成させ、マルテンサイト型逆変態γ
粒の形成のための前組織を作るためでもある。したがっ
て、熱間圧延の仕上温度はA r 3点より高い温度で
終了する必要がある。
In addition, the water cooling start temperature after rolling is determined by the A r
It is necessary to measure the temperature from three or more points. This makes the structure sufficiently martensitic, and in the subsequent reheating process, acicular austenite is generated from the martensite laths within the austenite grains, resulting in martensitic reverse transformation γ
This is also to create a pre-texture for grain formation. Therefore, the finishing temperature of hot rolling needs to be finished at a temperature higher than the A r 3 point.

しかし、本発明の対象鋼のA r 3点は低く、この温
度域での圧延は変形抵抗が大きく圧延か困難となる。好
ましくは700℃以上である。
However, the A r 3 point of the target steel of the present invention is low, and rolling in this temperature range is difficult due to large deformation resistance. Preferably it is 700°C or higher.

又、圧延後の水冷停止温度を150℃以下と規定したの
は、150℃を超えた温度で水冷を停止すると、本発明
の対象鋼の場合またマルテンサイト変態が終了してない
場合があり、強度・靭性に大きく影響する場合があるた
めである。
In addition, the reason why the water cooling stop temperature after rolling is specified to be 150°C or less is because if water cooling is stopped at a temperature exceeding 150°C, martensitic transformation may not be completed in the case of the steel subject to the present invention. This is because strength and toughness may be significantly affected.

次に、熱間圧延後水冷された鋼は、A c a点+20
℃からA c a点+120℃の温度範囲の適正な温度
に再加熱され焼入れ処理される。焼入れ温度の上昇に伴
うγ粒の形成過程の概念を第2図に示す。
Next, the steel that has been water-cooled after hot rolling has an A c a point +20
It is reheated and quenched to an appropriate temperature in the temperature range from °C to A c a point +120 °C. Figure 2 shows the concept of the formation process of γ grains as the quenching temperature increases.

前組織のマルテンサイトを加熱して行く過程で、主とし
て旧オーステナイト粒界を中心として塊状の拡散型変態
γ粒が生成すると共に、粒内は逆変態によってマルテン
サイトラスから針状オーステナイトが生威し、昇温と共
に各々の面積を増加し、A C3点で全体がオーステナ
イトとなる。
In the process of heating the martensite in the previous structure, massive diffuse-type transformed γ grains are generated mainly at the prior austenite grain boundaries, and acicular austenite grows from the martensite laths due to reverse transformation inside the grains. As the temperature rises, the area of each increases, and at point A, the whole becomes austenite.

更にAc  点+20℃からA c s点+120℃の
温度範囲において、針状オーステナイトが合体されたマ
ルテンサイト型逆変態γ粒は、高転位密度を持つため拡
散型変態γ粒に比べより硬い。
Furthermore, in the temperature range from the A c point +20°C to the A c s point +120°C, the martensitic reverse-transformed γ grains in which acicular austenite is combined have a high dislocation density and are therefore harder than the diffusion-type transformed γ grains.

更にA c a点+120℃超の高温になると、M。Furthermore, when the temperature exceeds A c point a + 120°C, M.

炭化物の固溶と凝集粗大化に伴い、より硬いマルテンサ
イト型逆変態γ粒が、拡散型変態γ粒に侵食され全面拡
散型変態γ粒となる。したがって、(/9の如< A 
c a点+120℃を超えた再加熱温度では強度が低下
し、更に粒界炭化物の粗大化により耐応力腐食割れ性も
低下する。
With the solid solution of carbide and coarsening of agglomeration, the harder martensitic reverse-transformed γ grains are eroded by the diffusion-type transformed γ grains and become fully diffused transformed γ grains. Therefore, (as in /9 < A
If the reheating temperature exceeds the a point +120°C, the strength will decrease, and the stress corrosion cracking resistance will also decrease due to the coarsening of grain boundary carbides.

又、(イ)の如< A c s点+20℃より下の温度
では、一部フエライト組織が混合される場合があり、強
度が低下する。
Further, at temperatures below the A c s point + 20° C. as in (a), some ferrite structure may be mixed, resulting in a decrease in strength.

これに対しく0)の如< A c 3点+20℃からA
 c a点+120℃の温度範囲では、旧オーステナイ
ト粒界は拡散型変態γ粒、粒内は高転位密度を持つマル
テンサイト型逆変態γ粒が生じ、更にMoを主体にした
微細炭化物の存在により強度・靭性及び耐応力腐食割れ
感受性が著しく改善される。
On the other hand, as shown in 0) < A c from 3 points + 20°C
c In the temperature range of point a + 120℃, diffusion-type transformed γ grains occur at the prior austenite grain boundaries, martensitic reverse-transformed γ grains with high dislocation density occur inside the grains, and furthermore, due to the presence of fine carbides mainly composed of Mo, Strength, toughness and stress corrosion cracking susceptibility are significantly improved.

第3図はこのような再加熱による強化現象を第1表に示
す本発明鋼B(11%Ni−1,0%Mo系)と比較鋼
K(11%N i  O,35% Mo系)について熱
間圧延水冷後回加熱焼入れ温度を変化し焼入れし、焼戻
し処理後の強度について示したものである。
Figure 3 shows the strengthening phenomenon caused by reheating as shown in Table 1 for inventive steel B (11% Ni-1.0% Mo system) and comparison steel K (11% NiO, 35% Mo system). This figure shows the strength after hot rolling and water cooling followed by heating and quenching at varying temperatures and tempering.

本発明鋼Bの場合に本発明法の再加熱焼入れ温度範囲(
Ac  点+20℃からA c a点+120℃)で高
強度化現象が現われることがわかる。
In the case of inventive steel B, the reheating and quenching temperature range of the inventive method (
It can be seen that a phenomenon of increased strength appears from the A point +20°C to the A ca point +120°C).

又、第4図には、この再加熱過程における限界KIsc
c値の変化を本発明鋼B(11%Ni −1,0%Mo
系、1150℃加熱−950℃圧延開始・60%圧下・
水冷−再加熱焼入れ−500℃焼戻し処理)について調
査した結果を示す。
In addition, FIG. 4 shows the limit KIsc in this reheating process.
The change in c value was calculated based on the present invention steel B (11%Ni-1,0%Mo
System, heating at 1150℃ - rolling start at 950℃・60% reduction・
The results of an investigation regarding water cooling, reheating and quenching, and tempering at 500°C are shown below.

本発明法の再加熱焼入れ温度範囲において限界KISC
C値が向上していることが分かる。
Limit KISC in the reheating and quenching temperature range of the method of the present invention
It can be seen that the C value has improved.

次に、再加熱焼入れ処理された鋼は、その後Ac  意
思下の温度で焼戻し処理する。A C1点を超えた温度
では不安定オーステナイトの生成により靭性が低下する
。したがって、Mo、Cr。
The reheated and quenched steel is then tempered at a temperature below Ac. At temperatures exceeding the A C1 point, toughness decreases due to the formation of unstable austenite. Therefore, Mo, Cr.

V、Nb等の炭化物形成元素を十分に析出強化させ、強
度及び靭性を得るため焼戻し温度をA C1点以下と限
定した。
In order to sufficiently strengthen precipitation of carbide-forming elements such as V and Nb and obtain strength and toughness, the tempering temperature was limited to below the AC1 point.

このような製造工程で得られた鋼は低炭素にもかかわら
ず高強度、高靭性が得られ、且つ耐応力腐食割れ性も改
善される。
Steel obtained through such a manufacturing process has high strength and toughness despite its low carbon content, and also has improved stress corrosion cracking resistance.

(実 施 例) 第1表に示す組成を有する鋼を溶製して得た鋼片を、第
2表に示す本発明法と比較法の各々の製造条件に基づい
て板厚25〜50關鋼板に製造した。
(Example) A steel slab obtained by melting steel having the composition shown in Table 1 was produced with a thickness of 25 to 50 mm based on the manufacturing conditions of the present invention method and the comparative method shown in Table 2. Manufactured from steel plate.

これらについて母材の機械的性質とKIscc値(耐応
力腐食割れに対する限界破壊靭性値)を調査した。
The mechanical properties of the base metal and the KIscc value (critical fracture toughness value against stress corrosion cracking) were investigated for these.

これら第1表の化学組成を有する鋼と、第2表で示す製
造条件とによって得られた機械的性質及び3.5%の人
工海水中でのASTM E 399に示される試験片を
使ったKIsec試験結果を第3表に示す。
Mechanical properties obtained using steel having the chemical composition shown in Table 1 and manufacturing conditions shown in Table 2, and KIsec using test pieces shown in ASTM E 399 in 3.5% artificial seawater. The test results are shown in Table 3.

本発明例(本発明鋼と本発明法との組合わせた1−A〜
9−■)においては、母材の強度、靭性及びKISCC
値は十分高い値である。
Examples of the present invention (1-A - Combination of the steel of the present invention and the method of the present invention)
In 9-■), the strength, toughness and KISCC of the base material
The value is sufficiently high.

これに対し、比較例10−JではC量が高く、又、圧延
開始温度も高く、更に累積圧下率が低いため粗粒となり
靭性及びKISCC値が低下している。例11−にはM
o量が低いためマルテンサイト型逆変態γ粒が形成され
ず強度が不十分である。例12Lは再加熱焼入れ温度が
高くマルテンサイト型逆変態γ粒が形成されず強度不足
であり、且つC量及びMo量が高く、N1量も低いため
靭性及びKIscc値が低下している。例13−MはN
1量が低いため強度不足である。発明鋼Fを用いた例1
4(比較法)では再加熱焼入れ温度が高いため強度及び
KISCC値が低下している。又、発明鋼Fを用いた例
15(比較法)では再加熱焼入れ処理が施されておらず
強度不足で、且つKIscc値も低下している。発明鋼
Eを用いた例16では圧延終了後の水冷停止温度が高い
ため完全なマルテンサイト組織が得られず強度が低下し
ている。発明鋼Fを用いた例17では圧延後水冷なしく
空冷)及び再加熱焼入れ温度が高いため強度不足である
On the other hand, in Comparative Example 10-J, the amount of C was high, the rolling start temperature was also high, and the cumulative reduction rate was low, resulting in coarse grains and a decrease in toughness and KISCC value. Example 11 - M
Since the amount of o is low, martensitic reverse transformed γ grains are not formed and the strength is insufficient. In Example 12L, the reheating and quenching temperature was high and martensitic reverse-transformed γ grains were not formed, resulting in insufficient strength. In addition, the C content and Mo content were high, and the N1 content was low, resulting in a decrease in toughness and KIscc value. Example 13-M is N
Since the amount of 1 is low, the strength is insufficient. Example 1 using invention steel F
In No. 4 (comparative method), the strength and KISCC value are reduced because the reheating and quenching temperature is high. Further, in Example 15 (comparative method) using invention steel F, no reheating and quenching treatment was performed, resulting in insufficient strength and a decrease in KIscc value. In Example 16 using invention steel E, the water cooling stop temperature after rolling was high, so a complete martensitic structure could not be obtained and the strength was reduced. In Example 17 using invention steel F, the strength was insufficient due to the high reheating and quenching temperature (air cooling rather than water cooling after rolling) and high reheating quenching temperature.

/ / (発明の効果) 本発明の成分範囲及び製造法により、耐応力腐食割れ性
及び低温靭性の優れた降伏応力125)cgf/−以上
の超高張力鋼の製造が可能となった。
/ / (Effects of the Invention) The composition range and production method of the present invention have made it possible to produce ultra-high tensile steel with a yield stress of 125) cgf/- or more, which has excellent stress corrosion cracking resistance and low-temperature toughness.

その結果使用される環境条件において十分な安全性が確
保されるものとなった。
As a result, sufficient safety can be ensured under the environmental conditions in which it will be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は11%Ni−1,0〜1.0%Mo系の本発明
法によって製造した母材の限界KISCC値に及ぼすC
量について示す図表、第2図は再加熱焼入れ温度の上昇
に伴うγ粒の形成過程を示す模式図、第3図は再加熱に
よる強化現象を本発明鋼(11%N1−1%MO系)と
比較鋼(11%Ni−0,35%Mo系)を比較して示
す図表、第4図は本発明鋼B(11%Ni−1%Mo系
)について限界KISCC値に及ぼす再加熱焼入れ温度
の影響について示す図表である。 代 理 人
Figure 1 shows the effect of C on the limit KISCC value of the 11%Ni-1.0~1.0%Mo base material manufactured by the method of the present invention.
Fig. 2 is a schematic diagram showing the formation process of γ grains as the reheating and quenching temperature increases, and Fig. 3 shows the strengthening phenomenon caused by reheating of the steel of the present invention (11%N1-1%MO system). Figure 4 shows the effect of reheating and quenching temperature on the limit KISCC value for the invention steel B (11% Ni-1% Mo system). This is a chart showing the influence of agent

Claims (1)

【特許請求の範囲】 1、重量%で C;0.03〜0.10% Si;0.02〜0.50% Mn;0.4〜1.5% Ni;11.0〜13.0% Mo;0.8〜2.5% Cr;0.2〜1.0% V;0.02〜0.15% Al;0.01〜0.08% 残部が鉄及び不可避的不純物からなる鋼片を、1000
〜1250℃の間に加熱し、1000℃以下から仕上げ
板厚に対し50%以上の累積圧下率で熱間圧延を行ない
、Ar_3点以上の温度で圧延を終了させ、そのまま水
冷を開始して150℃以下の温度で停止する焼入れ処理
を行ない、その後更にAc_3点+20℃からAc_3
点+120℃の間に再加熱した後、焼入れし、続いてA
c_1点以下の温度で焼戻し処理することを特徴とする
耐応力腐食割れ性の優れた高靭性超高張力鋼の製造法。 2、重量%で Cu;0.2〜1.5% Nb;0.005〜0.05% Ti;0.005〜0.03% Co;0.5〜2.0% からなる強度改善元素群、又は介在物形態制御作用のあ
る Ca;0.0005〜0.005% の一種又は二種以上を含有する請求項1記載の耐応力腐
食割れ性の優れた高靭性超高張力鋼の製造法。
[Claims] 1. C in weight%; 0.03-0.10% Si; 0.02-0.50% Mn; 0.4-1.5% Ni; 11.0-13.0 % Mo; 0.8-2.5% Cr; 0.2-1.0% V; 0.02-0.15% Al; 0.01-0.08% The remainder consists of iron and inevitable impurities 1000 pieces of steel
Heating between ~1250℃, hot rolling from below 1000℃ at a cumulative reduction rate of 50% or more with respect to the finished plate thickness, finishing the rolling at a temperature of Ar_3 or higher, and starting water cooling to 150℃. A quenching process is performed that stops at a temperature below ℃, and then further heat treatment is performed from Ac_3 point +20℃ to Ac_3
After reheating between point +120°C, quenching followed by A
A method for producing high-toughness ultra-high tensile strength steel with excellent stress corrosion cracking resistance, characterized by tempering at a temperature of c_1 point or lower. 2. Strength improving element consisting of Cu; 0.2-1.5% Nb; 0.005-0.05% Ti; 0.005-0.03% Co; 0.5-2.0% by weight. Production of the high toughness ultra high tensile strength steel with excellent stress corrosion cracking resistance according to claim 1, which contains one or more types of Ca; 0.0005 to 0.005%, which has the effect of controlling the form of inclusions. Law.
JP6072390A 1990-03-12 1990-03-12 Production of ultrahigh tensile strength steel excellent in stress corrosion cracking resistance and having high toughness Pending JPH03260012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6072390A JPH03260012A (en) 1990-03-12 1990-03-12 Production of ultrahigh tensile strength steel excellent in stress corrosion cracking resistance and having high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6072390A JPH03260012A (en) 1990-03-12 1990-03-12 Production of ultrahigh tensile strength steel excellent in stress corrosion cracking resistance and having high toughness

Publications (1)

Publication Number Publication Date
JPH03260012A true JPH03260012A (en) 1991-11-20

Family

ID=13150485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6072390A Pending JPH03260012A (en) 1990-03-12 1990-03-12 Production of ultrahigh tensile strength steel excellent in stress corrosion cracking resistance and having high toughness

Country Status (1)

Country Link
JP (1) JPH03260012A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0651059A1 (en) * 1993-10-27 1995-05-03 Nippon Steel Corporation process for producing extra high tensile steel having excellent stress corrosion cracking resistance
KR20200057041A (en) * 2017-10-26 2020-05-25 닛폰세이테츠 가부시키가이샤 Low-temperature nickel-containing steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0651059A1 (en) * 1993-10-27 1995-05-03 Nippon Steel Corporation process for producing extra high tensile steel having excellent stress corrosion cracking resistance
KR20200057041A (en) * 2017-10-26 2020-05-25 닛폰세이테츠 가부시키가이샤 Low-temperature nickel-containing steel

Similar Documents

Publication Publication Date Title
EP0796352B1 (en) Ultra-high strength steels and method thereof
US4946516A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
WO1999002747A1 (en) Ultra high strength, secondary hardening steels with superior toughness and weldability
EP0320003B1 (en) Method of producing steel having a low yield ratio
JPS61270355A (en) High strength steel excelling in resistance to delayed fracture
JP4983082B2 (en) High-strength steel and manufacturing method thereof
US4826543A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
JP6152375B2 (en) Steel for pressure vessels excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance, manufacturing method thereof, and deep drawing product manufacturing method
JP2537118B2 (en) Method of manufacturing stress corrosion corrosion resistant ultra high strength steel
JPH09137253A (en) High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production
JP5381828B2 (en) Refractory steel material excellent in high-temperature strength of base metal and high-temperature ductility of weld heat-affected zone and its manufacturing method
JPH03260012A (en) Production of ultrahigh tensile strength steel excellent in stress corrosion cracking resistance and having high toughness
JP2020509158A (en) Spring wire and steel wire excellent in corrosion fatigue resistance, and their manufacturing methods
JPS61127813A (en) Production of high arrest refined steel containing ni
US5827379A (en) Process for producing extra high tensile steel having excellent stress corrosion cracking resistance
Nikitin et al. Economically alloyed high-strength steel for use in mine equipment
JPS6137333B2 (en)
JPS6156268A (en) High toughness and high tensile steel and its manufacture
KR100951248B1 (en) High tensile-strength steels with 1100MPa grade for deep drawing and method for manufacturing low-temperature and high-pressure vessel using the same
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
EP0651059B1 (en) process for producing extra high tensile steel having excellent stress corrosion cracking resistance
JPS6046318A (en) Preparation of steel excellent in sulfide cracking resistance
JPH0967620A (en) Production of heat treated type high tensile strength steel plate excellent in brittle crack arrest property
JPH05112825A (en) Manufacture of 780n/mm2 class steel sheet extremely low in yield ratio
JPH1112642A (en) Manufacture of steel product for line pipe, excellent in sulfide corrosion cracking resistance