JP2011190506A - Fire-resistant steel material superior in high-temperature strength of base metal and high-temperature ductility of weld heat-affected zone, and method for manufacturing the same - Google Patents

Fire-resistant steel material superior in high-temperature strength of base metal and high-temperature ductility of weld heat-affected zone, and method for manufacturing the same Download PDF

Info

Publication number
JP2011190506A
JP2011190506A JP2010057983A JP2010057983A JP2011190506A JP 2011190506 A JP2011190506 A JP 2011190506A JP 2010057983 A JP2010057983 A JP 2010057983A JP 2010057983 A JP2010057983 A JP 2010057983A JP 2011190506 A JP2011190506 A JP 2011190506A
Authority
JP
Japan
Prior art keywords
less
steel material
temperature
affected zone
haz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010057983A
Other languages
Japanese (ja)
Other versions
JP5381828B2 (en
Inventor
Masatake Mizoguchi
昌毅 溝口
Hiroshi Hasegawa
泰士 長谷川
Taku Yoshida
卓 吉田
Ryuji Uemori
龍治 植森
Yoshiyuki Watabe
義之 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010057983A priority Critical patent/JP5381828B2/en
Publication of JP2011190506A publication Critical patent/JP2011190506A/en
Application granted granted Critical
Publication of JP5381828B2 publication Critical patent/JP5381828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fire-resistant steel material which shows high yield strength in each base metal part at 600&deg;C, also has high ductility in a weld heat-affected zone, and is superior in the toughness of the base metal part and the weld heat-affected zone. <P>SOLUTION: The fire-resistant steel material includes 0.005-0.050% C, 0.01-0.50% Si, 0.50-2.00% Mn, 0.50-2.00% Cr, 0.001-0.030% Ti, 0.005-0.10% Al, 0.001-0.006% N, less than 0.01% Mo, less than 0.03% V, 0.0003% or less B, less than 0.02% P, less than 0.01% S, less than 0.01% O and the balance Fe with unavoidable impurities; and has a steel material structure in which one or more of a bainite structure, a martensite structure or a ferrite structure formed of grains with circle equivalent grain sizes of 20 &mu;m or less when measured with a EBSP method occupy 80% or more by an area rate, and the balance is a ferrite or MA structure with unavoidable phases. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、母材の高温強度及び溶接熱影響部の高温延性に優れた耐火鋼材とその製造方法に関する。   The present invention relates to a refractory steel material excellent in high-temperature strength of a base material and high-temperature ductility of a weld heat-affected zone, and a method for producing the same.

一般に、鋼材は火災等により高温に曝される事で強度が低下する。建築物等の鋼構造物においては、火災に曝された時、鋼構造物が一定時間必要とする強度を発揮し倒壊を防ぐ事で、居住する人員の脱出時間を確保する性能が求められる。その為、従来、火災時の鋼材の温度上昇を抑制する目的で、鋼材を耐火被覆で覆う手法が用いられてきた。
一方、近年では、高温でも強度が低下しにくい特性、いわゆる耐火性能を持たせた鋼材が開発され、環境問題や美観の観点から、耐火被覆を使用せずに耐火鋼を用いて鋼構造物を構成する例が登場している。
ここで要求される耐火性能に関しては「新耐火設計法」に基づいて国土交通省により定められており、国土交通省告示333号にその特性が記されている。
In general, the strength of steel materials decreases when exposed to high temperatures due to fire or the like. In steel structures such as buildings, when exposed to fire, the steel structure is required to have the performance to secure the escape time of the resident personnel by exhibiting the strength required for a certain period of time and preventing collapse. Therefore, conventionally, a method of covering a steel material with a fireproof coating has been used for the purpose of suppressing the temperature rise of the steel material at the time of a fire.
On the other hand, in recent years, steel materials with characteristics that do not easily decrease strength even at high temperatures, so-called fire resistance performance, have been developed. From the viewpoint of environmental problems and aesthetics, steel structures can be constructed using fire resistance steel without using fire resistance coating. An example of composition has appeared.
The fire resistance required here is determined by the Ministry of Land, Infrastructure, Transport and Tourism based on the “New Fire Resistance Design Act”, and the characteristics are described in the Ministry of Land, Infrastructure, Transport and Tourism Notification No. 333.

この耐火性能を備える鋼材について近年盛んに研究開発が行われ、例えば特許文献1〜22に示す様な発明が開示されている。
中でも特に合金元素としてMoを積極的に利用した成分系の発明が多く開示されており、特許文献1、2、3、4、5、6、7、8、9、10、11、13、14、15、16及び22ではMo添加を前提とする成分系が規定されている。
これらMoの添加を前提とした成分系は、火災時の加熱により鋼材中のMoの析出を促し、析出強化による高温強度上昇を狙ったものであり、鋼材の耐火性能を確保する目的において多くの研究者により採用されてきた手法である。
また、鋼材を加速冷却を用いて製造する場合においては、Moの添加により焼入れ性が向上し、母材の室温引張り強度を上昇させる効果もある。
In recent years, research and development has been actively conducted on steel materials having fire resistance, and for example, inventions as shown in Patent Documents 1 to 22 are disclosed.
In particular, many component-based inventions that actively use Mo as an alloy element have been disclosed. Patent Documents 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14 , 15, 16 and 22 define a component system premised on the addition of Mo.
These component systems premised on the addition of Mo are intended to promote precipitation of Mo in steel by heating during a fire and to increase the high-temperature strength by precipitation strengthening, and for the purpose of ensuring the fire resistance performance of steel. This method has been adopted by researchers.
Moreover, when manufacturing steel materials using accelerated cooling, hardenability improves by addition of Mo and there exists an effect which raises the room temperature tensile strength of a base material.

一方、近年の各種金属元素の需給逼迫の中で、特にMoの価格上昇が著しい事もあり、必ずしもMoに頼らない合金設計をとる技術の開示もある。特許文献12及び18には合金元素としてCuの析出を利用する発明が開示されている。   On the other hand, in recent years, the supply and demand of various metal elements has been severe, and in particular, the price of Mo has risen remarkably, and there is also a disclosure of a technique for designing an alloy that does not necessarily depend on Mo. Patent Documents 12 and 18 disclose inventions that utilize Cu precipitation as an alloy element.

この他、鋼材の高温強度を確保する為には、以上の様な合金元素の析出を利用する手法の他、鋼材組織を結晶粒の微細なフェライト組織もしくは転位密度の高いベイナイト組織とする手法も有効であり、特許文献17には、ベイナイト組織を得る為にB添加を前提とする発明が開示されている。また、特許文献3、4、7、9、10、12、14、16、19及び20にはベイナイト組織を得る為に加速冷却を用いる技術が開示されている。   In addition, in order to ensure the high temperature strength of the steel material, in addition to the above-described method using precipitation of alloy elements, there is also a method in which the steel material structure is a fine ferrite structure of crystal grains or a bainite structure having a high dislocation density. Patent Document 17 discloses an invention premised on the addition of B in order to obtain a bainite structure. Patent Documents 3, 4, 7, 9, 10, 12, 14, 16, 19, and 20 disclose a technique that uses accelerated cooling to obtain a bainite structure.

特開平8−134584号公報JP-A-8-134484 特開平10−046284号公報Japanese Patent Laid-Open No. 10-046284 特開平10−068018号公報Japanese Patent Laid-Open No. 10-068018 特開平10−096024号公報Japanese Patent Laid-Open No. 10-096024 特開平10−121194号公報JP-A-10-121194 特開平10−204529号公報Japanese Patent Laid-Open No. 10-204529 特開平11−050198号公報Japanese Patent Laid-Open No. 11-050198 特開平11−131175号公報JP-A-11-131175 特開2000−192142号公報JP 2000-192142 A 特開2000−248317号公報JP 2000-248317 A 特開2001−294984号公報JP 2001-294984 A 特開2002−115022号公報Japanese Patent Laid-Open No. 2002-11502 特開2004−084068号公報JP 2004-084068 A 特開2005−272949号公報JP 2005-272949 A 特開2006−249467号公報JP 2006-249467 A 特開2007−051321号公報JP 2007-051321 A 特開2007−191746号公報JP 2007-191746 A 特開2007−191747号公報JP 2007-191747 A 特開2007−211278号公報JP 2007-2111278 A 特開2007−277679号公報JP 2007-277679 A 特開2007−277680号公報JP 2007-277680 A 特開2007−291483号公報JP 2007-291383 A

従来の耐火鋼材の開発においては、耐火鋼材を用いた溶接継手が火災により高温に加熱された際の変形能を確保するという点の追及が不充分であった。
溶接構造物が火災に曝された時、母材及び溶接熱影響部(以下、HAZと記載)の高温降伏強度や高温引張り強度がいずれも充分に確保されている場合においても、HAZに関しては高温での延性(変形能)が著しく低下する場合が存在する。
In the development of conventional refractory steel materials, it has been insufficient to pursue the point of ensuring the deformability when a welded joint using refractory steel materials is heated to a high temperature by a fire.
When the welded structure is exposed to fire, even if the high-temperature yield strength and high-temperature tensile strength of the base metal and the weld heat-affected zone (hereinafter referred to as HAZ) are sufficiently secured, There are cases in which the ductility (deformability) at is significantly reduced.

HAZの高温での延性が低い鋼材を用いて溶接構造物を構成すると、HAZが火災により加熱された時にHAZの変形能が不足し、その結果、溶接構造物がHAZから破断して崩壊する可能性がある事が、本発明者らの研究の結果明らかとなった。
従って、HAZの高温での延性が確保されている鋼材を開発しなければ、耐火鋼材を利用する溶接構造物の設計が困難となる。
If a welded structure is constructed using steel material with low ductility at high temperature of HAZ, when HAZ is heated by a fire, the deformability of HAZ is insufficient, and as a result, the welded structure can break from HAZ and collapse. As a result of the present inventors' research, it has been clarified that there is a characteristic.
Therefore, it is difficult to design a welded structure using a refractory steel material unless a steel material in which the ductility of HAZ at a high temperature is ensured is developed.

このHAZが高温に曝された時の延性の低下現象(以下、HAZの再熱脆化と記載)は、HAZに特有のベイナイト組織における旧γ粒界に沿った鋼材の破断が原因である事が、本発明者らの研究の結果明らかとなっている。   The phenomenon that ductility decreases when HAZ is exposed to high temperatures (hereinafter referred to as HAZ reheat embrittlement) is caused by the fracture of the steel material along the old γ grain boundary in the bainitic structure unique to HAZ. However, the results of studies by the present inventors have become clear.

HAZの再熱脆化現象に関しては、従来より一部の高強度鋼や耐熱鋼の分野で知られており、旧γ粒界における炭化物や窒化物の析出、または不純物の偏析に原因を求める研究報告が多いが、各種鋼材で統一的に現象を説明可能とする解釈は存在していない。
その為、本発明者らはまず、本耐火鋼開発において、HAZの再熱脆化に及ぼす各種合金元素の影響を、実験と解析により詳細に検討した。
The HAZ reheat embrittlement phenomenon has been known in the field of some high-strength steels and heat-resistant steels, and research has been conducted to determine the cause of precipitation of carbides and nitrides, or segregation of impurities at the former γ grain boundaries. Although there are many reports, there is no interpretation that can explain the phenomenon uniformly with various steel materials.
Therefore, the present inventors first examined in detail the effects of various alloy elements on the reheat embrittlement of HAZ through experiments and analyzes in the development of this refractory steel.

特許文献1、2、3、4、5、6、7、8、9、10、11、13、14、15、16及び22ではMo添加を前提とする成分系を規定している。これは、高温に曝された時のMo炭化物の析出を高温における降伏強度上昇の手段として利用しているものであるが、本発明者らは実験により、該成分系ではいずれもHAZのベイナイト組織の旧γ粒界にMo炭化物が多量に析出し、HAZの再熱脆化が顕著になる事を確認した。
また、近年のMoの価格上昇に伴い、これら文献に記載の成分系では合金コストが著しく高くなり、耐火鋼材の市況価格に見合わないという問題も同時に存在する。
Patent Documents 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, and 22 define a component system premised on the addition of Mo. This is because the precipitation of Mo carbides when exposed to high temperatures is used as a means for increasing the yield strength at high temperatures. It was confirmed that a large amount of Mo carbide was precipitated at the old γ grain boundary, and reheat embrittlement of HAZ became remarkable.
In addition, with the recent increase in the price of Mo, the alloy costs are extremely high in the component systems described in these documents, and at the same time, there is a problem that it does not meet the market price of refractory steel materials.

特許文献15、16、17及び22ではB添加を前提とする成分系を採用しているが、これらの成分系では、HAZのベイナイト組織の旧γ粒界にB窒化物が多量に生成し、HAZの再熱脆化が著しくなる事を本発明者らは実験により確認した。   Patent Documents 15, 16, 17 and 22 employ a component system premised on the addition of B, but in these component systems, a large amount of B nitride is generated at the former γ grain boundary of the HAZ bainite structure, The present inventors have confirmed through experiments that the reheat embrittlement of HAZ becomes significant.

特許文献7、11及び13ではC添加量を0.05%以上に規定している為、これらの成分系では、HAZのベイナイト組織の旧γ粒界に各種合金元素の炭化物が多量に生成し、HAZの再熱脆化が著しくなる事を本発明者らは実験により確認した。   In Patent Documents 7, 11 and 13, since the C addition amount is specified to be 0.05% or more, in these component systems, a large amount of carbides of various alloy elements are generated at the former γ grain boundaries of the HAZ bainite structure. The present inventors have confirmed by experiments that the reheat embrittlement of HAZ becomes remarkable.

特許文献12及び18では、それぞれCu添加量を0.6%以上、0.5%以上に規定しており、これらの成分系では、HAZのベイナイト組織の旧γ粒界にCu析出物の生成が起こる事や微細なオーステナイト組織の生成が起こる事で、HAZの再熱脆化が著しくなる事を、本発明者らは実験により確認した。   In Patent Documents 12 and 18, the Cu addition amount is specified to be 0.6% or more and 0.5% or more, respectively, and in these component systems, Cu precipitates are formed at the old γ grain boundaries of the HAZ bainite structure. The present inventors have confirmed through experiments that the reheating embrittlement of the HAZ becomes remarkable due to the occurrence of the formation of fine austenite structure.

特許文献19、20、21では、Nb添加量を0.05%以上、0.50%以下と高い水準に規定しており、これらの成分系では、HAZの再熱脆化を助長するC、Mn、V、MoまたはCu等の元素との組合せによっては、安定的にHAZの再熱脆化を抑制出来ない事を本発明者らは実験により確認した。
以上の様に、従来の耐火鋼開発においてはHAZの再熱脆化に関する追及が不充分であった。
In Patent Documents 19, 20, and 21, the Nb addition amount is defined as a high level of 0.05% or more and 0.50% or less. In these component systems, C that promotes reheat embrittlement of HAZ, The present inventors have confirmed through experiments that the combination of elements such as Mn, V, Mo, or Cu cannot stably suppress reheat embrittlement of HAZ.
As described above, in the conventional refractory steel development, the pursuit of HAZ reheat embrittlement was insufficient.

更に、耐火鋼には、火災により高温に加熱された時に高い降伏強度を発揮する性能も求められる。一般に、高温における鋼材の強度は、鋼材中に存在する転位による転位強化、結晶粒微細化による強化、及び、転位運動の障害となる析出物によって発現すると考えられている。その為、高い高温降伏強度を確保する為には、充分に余裕のある量の転位を持つ事、もしくは、転位の運動の障害となる析出物や結晶粒界を多数含む事、が効果的である。   Furthermore, the refractory steel is also required to exhibit a high yield strength when heated to a high temperature by a fire. In general, it is considered that the strength of a steel material at a high temperature is expressed by dislocation strengthening due to dislocations existing in the steel material, strengthening by crystal grain refinement, and precipitates that hinder dislocation motion. Therefore, in order to ensure high high-temperature yield strength, it is effective to have a sufficient amount of dislocations, or to include many precipitates and grain boundaries that hinder the movement of dislocations. is there.

特許文献13、17、21、22では、熱間圧延後に加速冷却を用いずに放冷する製造方法が開示されている。この様な製造方法では、高温降伏強度を確保する為に必要な鋼材中の転位の量や析出物の量を確保する為に、焼入れ性を向上させる合金元素や析出強化をもたらす合金元素の多量の添加が必要になるが、特にこれらの特許文献で添加が規定されているMo、Nb、またはB等の合金元素の使用は、高温降伏強度の向上には有効であるが、HAZの再熱脆化を助長する結果を招く事は、既に述べた通りである。   Patent Documents 13, 17, 21, and 22 disclose a manufacturing method in which cooling is performed without using accelerated cooling after hot rolling. In such a manufacturing method, in order to ensure the amount of dislocations and precipitates in the steel material necessary to ensure high-temperature yield strength, a large amount of alloy elements that improve hardenability and alloy elements that cause precipitation strengthening. Although the use of alloying elements such as Mo, Nb, or B, which are specified in these patent documents, is effective for improving the high-temperature yield strength, the HAZ is reheated. As described above, the result of promoting embrittlement is brought about.

また、耐火性能を持つ鋼材の市場価格は、耐火性能を持たない汎用鋼に比べて充分に高い水準には無い。従って、耐火性能を持つ鋼材を製造するに当たっては合金コスト低減の為に各種合金の添加は可能な限り抑制する事が望ましい。   In addition, the market price of steel materials having fire resistance is not sufficiently high compared to general-purpose steel not having fire resistance. Therefore, when manufacturing a steel material having fire resistance, it is desirable to suppress the addition of various alloys as much as possible in order to reduce the alloy cost.

これらの様な合金元素の添加に頼らずに高温降伏強度を確保する方法として、鋼材製造過程で加速冷却を用いる事により、転位密度の高いベイナイト組織を得る技術が、特許文献3、4、7、9、10、12、14、16、19及び20に開示されている。
しかし、加速冷却を用いてベイナイト組織を得る方法では、合金成分系の設計によっては、高温降伏強度のみならず室温引張り強度も著しく上昇するという問題がある。
As a method for ensuring high-temperature yield strength without depending on the addition of such alloy elements, a technique for obtaining a bainite structure having a high dislocation density by using accelerated cooling in the steel material manufacturing process is disclosed in Patent Documents 3, 4, and 7. 9, 10, 12, 14, 16, 19 and 20.
However, the method of obtaining a bainite structure using accelerated cooling has a problem that not only the high-temperature yield strength but also the room temperature tensile strength is remarkably increased depending on the design of the alloy component system.

多くの場合、耐火鋼材には、室温における引張り強度が一定の下限値及び上限値の範囲に収まる事、及び、高温における降伏強度が一定値以上である事、を特徴とする機械的特性が要求される。
従って、高温降伏強度を追及する際に、加速冷却を使ってやみくもに転位密度の高い鋼材組織を得ようとすると、室温引張り強度が鋼材に要求される上限値を逸脱するか、または逸脱しないまでも上限値に近くなり、実機製造上の材質変動に対する裕度が無くなる、という問題が生じる。
In many cases, refractory steel materials require mechanical properties characterized by the fact that the tensile strength at room temperature falls within a certain range of lower and upper limits, and that the yield strength at high temperatures is above a certain value. Is done.
Therefore, when pursuing high-temperature yield strength, if you try to obtain a steel structure with a high dislocation density by using accelerated cooling, until the room temperature tensile strength deviates from or exceeds the upper limit required for the steel. Becomes close to the upper limit value, and there is a problem that the tolerance for material fluctuation in manufacturing the actual machine is lost.

特許文献3、4、7、9、10、14及び16ではMoの添加を前提とする成分系において、加えて特許文献16ではB添加を前提とする成分系において加速冷却を用いる製造方法が開示されているが、これらの成分系ではMoまたはBの焼入れ性が顕著に現れて室温引張り強度の上昇を招く為、上に述べた実機製造上の材質変動に対する裕度が無くなる事となる。   Patent Documents 3, 4, 7, 9, 10, 14 and 16 disclose a manufacturing method using accelerated cooling in a component system premised on addition of Mo, and Patent Document 16 discloses a component system premised on addition of B. However, in these component systems, the hardenability of Mo or B appears prominently and the room temperature tensile strength is increased, so that the tolerance for the material variation in manufacturing the actual machine described above is lost.

特許文献12では、Cuを0.6%以上添加し且つNiをCu量の半分以上添加する成分系において、また、特許文献19及び20ではNbを0.05%以上添加する成分系において、それぞれ加速冷却を用いる製造方法が開示されているが、これらの成分系においても焼入れ性が必要以上に上昇し、上に述べた実機製造上の材質変動に対する裕度が無くなる事となる。   In Patent Document 12, in a component system in which Cu is added by 0.6% or more and Ni is added by more than half of the Cu amount, and in Patent Documents 19 and 20, in a component system in which Nb is added by 0.05% or more, Although a manufacturing method using accelerated cooling is disclosed, the hardenability is increased more than necessary even in these component systems, and the tolerance for the material fluctuation in manufacturing the actual machine described above is lost.

尚、近年、建築物は土地の有効活用を目的として大規模化・高層化し、そこで使用される鋼材も大型化する傾向があり、生産性向上の観点から鋼材を接合する際の溶接時の入熱は高くなる傾向がある。
その為、溶接入熱が高い場合でも充分な耐震性を獲得する為に、溶接部の靱性も充分に高く取る必要がある。本発明はこうした課題にも同時に対応し、5kJ/mm以上の入熱が加わった場合の溶接HAZの靱性も獲得すべく、合金元素添加量を最適化する事を前提としている。
更に、建築等の用途に使う鋼材として充分な母材靭性を確保する事も重要である為、本発明では母材靭性の獲得も前提としている。
In recent years, buildings have become larger and higher-rise for the purpose of effective use of land, and the steel materials used there have also tended to increase in size. Heat tends to be high.
Therefore, in order to obtain sufficient earthquake resistance even when the welding heat input is high, the toughness of the welded portion must be sufficiently high. The present invention addresses such a problem at the same time, and presupposes that the alloy element addition amount is optimized to obtain the toughness of the welded HAZ when heat input of 5 kJ / mm or more is applied.
Furthermore, since it is also important to secure a sufficient base material toughness as a steel material used for construction or the like, the present invention also presupposes the acquisition of the base material toughness.

本発明は、上記の事情の鑑みてなされたものであって、高層ビル、駐車場等の鋼構造物に用いられる耐火鋼材に関して、火災に曝された場合に600℃において母材部が高い降伏強度を有し、同時に該鋼材の溶接熱影響部が火災に曝された場合に600℃において高い延性を有し、更に、母材部及び溶接熱影響部の靭性に優れる耐火鋼材及びその製造方法を提供する事を目的とする。   The present invention has been made in view of the above circumstances, and relates to refractory steel materials used for steel structures such as high-rise buildings and parking lots, and the yield of the base material portion is high at 600 ° C. when exposed to fire. Refractory steel material having strength and at the same time having high ductility at 600 ° C. when the weld heat affected zone of the steel material is exposed to a fire, and further excellent toughness of the base metal portion and the weld heat affected zone, and a method for producing the same The purpose is to provide.

本発明の最も重要な課題は、室温引張り強度450〜650MPaの鋼材において、600℃における降伏強度が217MPa以上であり、且つ、HAZが火災時の想定温度600℃に再熱される際に充分な変形能を持つという特徴を備える耐火鋼材を提供する事である。
既に述べた様に、高温降伏強度を獲得する為には、炭化物・窒化物等の析出物を利用する事、結晶粒の微細なフェライト組織を利用する事、または、転位密度の高いベイナイト組織を利用する事が有効であるが、各種析出元素の添加はHAZの再熱脆化を助長する傾向が有り、焼入性向上元素の無差別な添加は室温引張り強度を必要な水準範囲に収められなくするという問題がある。
The most important problem of the present invention is that a steel material having a room temperature tensile strength of 450 to 650 MPa has a yield strength at 600 ° C. of 217 MPa or more and sufficient deformation when the HAZ is reheated to an assumed temperature of 600 ° C. at the time of fire. It is to provide a refractory steel material having the characteristics of having ability.
As already mentioned, in order to obtain high-temperature yield strength, the use of precipitates such as carbides and nitrides, the use of a fine ferrite structure of crystal grains, or the use of a bainite structure with a high dislocation density. Although it is effective to use, the addition of various precipitated elements tends to promote reheat embrittlement of HAZ, and the indiscriminate addition of hardenability improving elements keeps the room temperature tensile strength within the required level range. There is a problem of losing.

本発明者らは、加速冷却を用いるプロセスにて耐火鋼材を製造するにあたり、各種合金元素が高温降伏強度、室温引張り強度及びHAZの再熱脆化に与える影響を実験と解析を通じて詳細に検討し、これらを全て目標とする範囲に収める為の金属学的な知見を見出し、適切な成分系とプロセスを開発するに至った。
ここでいう本発明の目標とは、600℃における降伏強度が217MPa以上、室温引張り強さが450MPa以上、650MPa以下、溶接熱影響部を600℃以上に加熱した上で行う引張試験の破断絞り値が25%以上である事、である。
The inventors have studied in detail the effects of various alloying elements on high-temperature yield strength, room-temperature tensile strength, and HAZ reheat embrittlement through experiments and analyzes in the production of refractory steel by a process using accelerated cooling. We have found metallurgical knowledge to keep all of these within the target range, and have developed appropriate component systems and processes.
The target of the present invention here is that the yield strength at 600 ° C. is 217 MPa or higher, the room temperature tensile strength is 450 MPa or higher and 650 MPa or lower, and the weld heat-affected zone is heated to 600 ° C. or higher. Is 25% or more.

本発明者らは、まず加速冷却を用いて結晶粒の微細なフェライト組織、ベイナイト組織、またはマルテンサイト組織を得る上で、室温引張り強度を抑制した状態で高温降伏強度を確保する為の合金成分系と製造プロセスの検討を行った。   The present inventors first obtained an alloy component for securing high-temperature yield strength in a state where room temperature tensile strength is suppressed in obtaining a fine ferrite structure, bainite structure, or martensite structure of crystal grains using accelerated cooling. The system and manufacturing process were examined.

結晶粒の微細なフェライト組織、ベイナイト組織、またはマルテンサイト組織において室温引張り強度を下げる為には、まずC量を減らす事が最も重要であると分かった。これは、鋼材中の固溶C量や微細析出するセメンタイト量を減らす事が可能となる為と判明している。
また、Crを積極的に添加する事で、鋼材中の固溶CとCrが結合する事で焼入れ性を低減する効果がある事と、Cr炭化物の析出により高温降伏強度の上昇に寄与する事を新たに知見した。
In order to lower the room temperature tensile strength in the fine ferrite structure, bainite structure, or martensite structure of the crystal grains, it has been found that it is most important to reduce the C content first. This has been found to be possible because it is possible to reduce the amount of solid solution C in the steel material and the amount of cementite finely precipitated.
In addition, the positive addition of Cr has the effect of reducing the hardenability by combining the solid solution C and Cr in the steel material, and contributes to the increase in high-temperature yield strength by precipitation of Cr carbide. Newly discovered.

加えて、本発明者らは、HAZの再熱脆化に及ぼす各種合金元素の影響を実験を通じて明らかにした。その結果、炭化物または窒化物を形成する元素は、Mo、B、Nb、V等殆どがHAZの旧γ粒界に析出し再熱脆化を助長する事を見出した。
また、Mn、W、Cu等、自身は炭化物または窒化物を形成せず焼入れ性の向上に寄与する元素も、HAZの旧γ粒界に微細なオーステナイト組織を生成させ、粒界滑りを促進させる事でHAZの再熱脆化を助長する事を知見した。
In addition, the present inventors clarified the influence of various alloy elements on the reheat embrittlement of HAZ through experiments. As a result, it has been found that most of the elements forming carbide or nitride, such as Mo, B, Nb, and V, precipitate at the former γ grain boundaries of HAZ and promote reheat embrittlement.
In addition, elements such as Mn, W, Cu, etc. that themselves do not form carbides or nitrides and contribute to improvement of hardenability also generate fine austenite structures at the former γ grain boundaries of HAZ and promote grain boundary sliding. It was found that this promotes reheat embrittlement of HAZ.

一方、CrとTiにHAZの再熱脆化を改善する効果がある事も明らかにしている。
Crに関しては、Cr炭化物を形成する事で他元素の炭化物析出を抑制する効果がある事、及び、Cr炭化物のサイズが数〜数十nmのクラスター程度に留まる為、HAZの再熱脆化に寄与しにくい事が原因と判明した。
Tiに関しては、Tiの炭化物及び窒化物が粒界・粒内に関わらず析出する為、結果としてHAZの旧γ粒界に析出する他元素の炭化物・窒化物の総量を低減する効果が現れる為であると判明した。
On the other hand, it is also clarified that Cr and Ti have an effect of improving the reheat embrittlement of HAZ.
Regarding Cr, it has the effect of suppressing carbide precipitation of other elements by forming Cr carbide, and the size of Cr carbide stays in the cluster of several to several tens of nanometers. It turned out that it was difficult to contribute.
Regarding Ti, since Ti carbides and nitrides are precipitated regardless of grain boundaries and within grains, the effect of reducing the total amount of carbides and nitrides of other elements precipitated at the former γ grain boundaries of HAZ appears. Turned out to be.

本発明では以上の様な知見を基にHAZの再熱脆化を抑制する為の合金成分系について実験と解析を基に検討を行ったものである。本発明の特徴は、低C成分系においてCr、Tiを積極的に利用する事にあり、室温引張り強度の過度な上昇やHAZの再熱脆化を助長するMo、Nb、Bについては不純物レベルの含有量に留めるものである。
本発明の成分系を、1000℃以下、800℃以上における圧下比を50%以上として800℃以上で熱間圧延を終了し、その後直ちに600℃以下の温度範囲まで2℃/秒以上の冷速で加速冷却する事により、室温引張り強度が450MPa以上、650MPa以下、600℃における母材降伏強度が217MPa以上、及びHAZ部の600℃引張試験における破断絞り値が30%以上という特性を得る事が出来る。
In the present invention, based on the above knowledge, an alloy component system for suppressing reheat embrittlement of HAZ has been examined based on experiments and analysis. The feature of the present invention is that Cr and Ti are actively used in a low C component system. Impurity levels of Mo, Nb, and B that promote excessive increase in room temperature tensile strength and HAZ reheat embrittlement. The content is limited.
When the component system of the present invention has a reduction ratio at 1000 ° C. or lower and 800 ° C. or higher of 50% or higher, the hot rolling is finished at 800 ° C. or higher, and immediately thereafter, a cold speed of 2 ° C./second or higher to a temperature range of 600 ° C. Accelerated cooling at room temperature can provide the properties that the room temperature tensile strength is 450 MPa or more, 650 MPa or less, the base material yield strength at 600 ° C is 217 MPa or more, and the fracture drawing value in the 600 ° C tensile test of the HAZ part is 30% or more. I can do it.

また、加速冷却の後、400℃以上、650℃以下の温度で焼戻す事により、高温降伏強度を下げる事無く室温引張り強度のみを下げて、更に母材の靱性を向上させる事も可能である。
尚、本発明の合金成分範囲で各種合金元素を適宜選択する事で、入熱5kJ/mm以上の大入熱溶接の際のHAZの靱性を確保する事も可能である。
In addition, by tempering at a temperature of 400 ° C. or higher and 650 ° C. or lower after accelerated cooling, it is possible to lower only the room temperature tensile strength without lowering the high-temperature yield strength and further improve the toughness of the base material. .
In addition, it is also possible to ensure the toughness of the HAZ at the time of high heat input welding with a heat input of 5 kJ / mm or more by appropriately selecting various alloy elements within the alloy component range of the present invention.

以上の知見に基づき成された本発明の要旨は以下の通りである。
(1) 化学組成が質量%で、
C:0.005%以上、0.050%以下、
Si:0.01%以上、0.50%以下、
Mn:0.50%以上、2.00%以下、
Cr:0.50%以上、2.00%以下、
Ti:0.001%以上、0.030%以下、
Al:0.005%以上、0.10%以下、
N:0.001%以上、0.006%以下、
を含有し、
Mo:0.01%未満、
V:0.03%未満、
B:0.0003%以下、
P:0.02%未満、
S:0.01%未満、
O:0.01%未満
に制限した、残部Feおよび不可避的不純物からなる鋼材であって、該鋼材組織の面積率で80%以上が、ベイナイト組織、マルテンサイト組織、またはEBSP(Electron Back Scattering Pattern)法により測定した円相当粒径が20μm以下のフェライト組織のいずれか1種以上で構成されており、残部が円相当径が20μm超のフェライトもしくはMA(マルテンサイト−オーステナイト混合物)組織及び不可避的相であり、室温引張強さが450MPa以上、650MPa以下であり、本鋼材の母材の600℃降伏応力が217MPa以上であり、本鋼材の溶接熱影響部の600℃高温引張の破断絞り値が25%以上であることを特徴とする、母材の高温強度及び溶接熱影響部の高温延性に優れた耐火鋼材。
The gist of the present invention based on the above findings is as follows.
(1) The chemical composition is mass%,
C: 0.005% or more, 0.050% or less,
Si: 0.01% or more, 0.50% or less,
Mn: 0.50% or more, 2.00% or less,
Cr: 0.50% or more, 2.00% or less,
Ti: 0.001% or more, 0.030% or less,
Al: 0.005% or more, 0.10% or less,
N: 0.001% or more, 0.006% or less,
Containing
Mo: less than 0.01%,
V: less than 0.03%,
B: 0.0003% or less,
P: less than 0.02%,
S: less than 0.01%,
O: Steel material consisting of the remaining Fe and inevitable impurities limited to less than 0.01%, and 80% or more by area ratio of the steel material structure is bainite structure, martensite structure, or EBSP (Electron Back Scattering Pattern) ) A ferrite or MA (martensite-austenite mixture) structure with an equivalent circle diameter of more than 20 μm and an inevitable structure with an equivalent circle diameter measured by the method of 20 μm or less. The tensile strength at room temperature is 450 MPa or more and 650 MPa or less, the 600 ° C. yield stress of the base material of this steel material is 217 MPa or more, and the fracture drawing value of the 600 ° C. high temperature tensile of the weld heat affected zone of this steel material is The high-temperature strength of the base metal and the high heat-affected zone of the base metal, characterized by being 25% or more Refractory steel with excellent hot-rollability.

(2) (1)に加えて、質量%で、
Nb:0.001%以上、0.10%以下、
Ni:0.01%以上、1.00%以下、
Cu:0.01%以上、0.10%以下、
W:0.01%以上、0.50%以下、
の内1種または2種以上を含有する事を特徴とする、(1)に記載の母材の高温強度及び溶接熱影響部の高温延性に優れた耐火鋼材。
(2) In addition to (1),
Nb: 0.001% or more, 0.10% or less,
Ni: 0.01% or more, 1.00% or less,
Cu: 0.01% or more, 0.10% or less,
W: 0.01% or more, 0.50% or less,
The refractory steel material excellent in the high temperature strength of the base material and the high temperature ductility of the weld heat affected zone according to (1), characterized by containing one or more of the above.

(3) (1)または(2)に加えて、質量%で、
Zr:0.001%以上、0.050%以下、
Mg:0.0005%以上、0.0050%以下、
Ca:0.0005%以上、0.0050%以下、
Y:0.001%以上、0.050%以下、
La:0.001%以上、0.050%以下、
Ce:0.001%以上、0.050%以下、
の内の1種または2種以上を含有する事を特徴とする、(1)または(2)に記載の母材の高温強度及び溶接熱影響部の高温延性に優れた耐火鋼材。
(3) In addition to (1) or (2), in mass%,
Zr: 0.001% or more, 0.050% or less,
Mg: 0.0005% or more, 0.0050% or less,
Ca: 0.0005% or more, 0.0050% or less,
Y: 0.001% or more, 0.050% or less,
La: 0.001% or more, 0.050% or less,
Ce: 0.001% or more, 0.050% or less,
The refractory steel material excellent in the high temperature strength of the base material and the high temperature ductility of the weld heat affected zone according to (1) or (2), characterized by containing one or more of the above.

(4) (1)〜(3)に記載の鋼成分を有する鋼片を、1000℃以上、1300℃以下に加熱した後、熱間加工または熱間圧延を施すにあたり、800℃以上1000℃以下において50%以上の圧延または加工を行い、800℃以上で熱間圧延または加工を終了し、その後Ar3点以上の温度域から600℃以下の温度範囲まで2℃/秒以上の冷速で加速冷却する事を特徴とする、母材の高温強度及び溶接熱影響部の高温延性に優れた耐火鋼材の製造方法。 (4) After heating the steel slab having the steel component described in (1) to (3) to 1000 ° C. or higher and 1300 ° C. or lower, and performing hot working or hot rolling, 800 ° C. or higher and 1000 ° C. or lower. At 50 ° C. or higher, hot rolling or processing is finished at 800 ° C. or higher, and then accelerated cooling at a cooling rate of 2 ° C./second or higher from a temperature range of Ar 3 or higher to a temperature range of 600 ° C. or lower. A method for producing a refractory steel material excellent in high-temperature strength of a base material and high-temperature ductility of a weld heat-affected zone.

(5) (4)に記載の製造方法を適用した後、鋼材を400℃以上650℃未満の温度範囲で5分以上、360分以内の焼戻し熱処理を行う事を特徴とする、母材の高温強度及び溶接熱影響部の高温延性に優れた耐火鋼材の製造方法。 (5) After applying the production method according to (4), the steel material is subjected to a tempering heat treatment in a temperature range of 400 ° C. or more and less than 650 ° C. for 5 minutes or more and 360 minutes or less, and the high temperature of the base material A method for producing a refractory steel material excellent in strength and high temperature ductility of a weld heat affected zone.

本発明によれば、耐火性能を持つ室温引張り強度450〜650MPaの鋼材を、合金元素の少ない経済的成分系にて安定的に得る事が可能となる。また、本発明の鋼材は、溶接継手の熱影響部が火災に曝された時にも変形能が充分に確保出来る為、耐火鋼材を用いた建築物の安全性確保への寄与が非常に大きい。   According to the present invention, it is possible to stably obtain a steel material having a fire resistance performance and a room temperature tensile strength of 450 to 650 MPa in an economical component system having a small number of alloy elements. Moreover, since the steel material of this invention can fully ensure a deformability, even when the heat affected zone of a welded joint is exposed to a fire, the contribution to the safety ensuring of the building using a refractory steel material is very large.

以下に、本発明における化学成分組成の限定理由について述べる。
Cは、焼入性向上に有効な元素であり0.005%以上の添加を行うが、0.05%を超えて添加すると、大入熱溶接の際のHAZにおいてマルテンサイト−オーステナイト混合組織(以下、MA組織と記載)の生成を助長しHAZの靭性を著しく劣化させる場合がある事、火災時にHAZの粒界に析出する炭化物の量を増大させHAZの再熱脆化を招く事、及び、室温引張り強度の過剰な上昇を招く事、の為に、その添加範囲を0.005%以上、0.05%以下とする。
The reason for limiting the chemical component composition in the present invention will be described below.
C is an element effective for improving hardenability, and is added in an amount of 0.005% or more. However, if added over 0.05%, a martensite-austenite mixed structure (in HAZ during large heat input welding) (Hereinafter referred to as MA structure), which may significantly deteriorate the toughness of HAZ, increase the amount of carbides precipitated at the grain boundaries of HAZ during a fire, and cause reheating embrittlement of HAZ, and In order to cause an excessive increase in the tensile strength at room temperature, the addition range is set to 0.005% or more and 0.05% or less.

Siは、脱酸元素として0.01%の添加を行うが、0.50%を超えて添加すると、大入熱溶接の際のHAZにおいてMA組織の生成を助長し靱性を低下させる場合がある為、その添加範囲を0.01%以上、0.50%以下とする。   Si is added in an amount of 0.01% as a deoxidizing element, but if added in excess of 0.50%, the formation of MA structure may be promoted in the HAZ during high heat input welding and the toughness may be reduced. Therefore, the addition range is set to 0.01% or more and 0.50% or less.

Mnは、焼入性向上に有効であり、本発明が目的とする450MPa以上の室温引張り強度を確保する為に0.50%以上を添加を必要とするが、2.0%を超えて添加すると、HAZの再熱脆化を助長する事、及び、室温引張り強度の過度な上昇を招く事から、添加量の上限を2.0%に制限する。   Mn is effective in improving hardenability, and it is necessary to add 0.50% or more in order to ensure the room temperature tensile strength of 450 MPa or more, which is the object of the present invention, but it exceeds 2.0%. Then, since the reheat embrittlement of HAZ is promoted and the room temperature tensile strength is excessively increased, the upper limit of the addition amount is limited to 2.0%.

Crは、室温引張り強度を上昇させずに高温降伏強度を向上する効果があり、且つHAZの再熱脆化を抑制する効果が有る為、0.5%以上の添加を行う。しかし2.0%を超えて添加すると、鋼材特性上の弊害は特に無いものの、製鋼上の課題、特に不純物除去時間の延長によって溶鋼温度が精錬中に低下してしまい鋳造性を悪化させる為に、添加上限を2.0%に制限する。尚、本発明では、C、MnまたはCu等のHAZの再熱脆化を助長する元素を多く添加する場合程、対抗としてCr量を増やす事が好ましい。   Cr has the effect of improving the high-temperature yield strength without increasing the room-temperature tensile strength, and has the effect of suppressing reheat embrittlement of HAZ, so 0.5% or more is added. However, if added over 2.0%, there is no particular adverse effect on the steel material properties, but the steelmaking problem, in particular the extension of the impurity removal time, lowers the molten steel temperature during refining, and deteriorates the castability. The upper limit of addition is limited to 2.0%. In addition, in this invention, it is preferable to increase Cr amount as a countermeasure, so that many elements which promote reheat embrittlement of HAZ, such as C, Mn, or Cu, are added.

Tiは、HAZの再熱脆化を著しく抑制する為に、0.001%以上の添加を行う。しかし、0.030%を超えて添加すると母材の靭性が著しく低下する為、上限を0.030%に制限する。   Ti is added in an amount of 0.001% or more in order to remarkably suppress reheat embrittlement of HAZ. However, if added over 0.030%, the toughness of the base material is significantly reduced, so the upper limit is limited to 0.030%.

Alは、脱酸元素として0.005%の添加を行うが、0.10%を超えて添加すると、大入熱溶接の際のHAZにおいてMA組織の生成を助長し靱性を低下させる場合がある為、その添加範囲を0.005%以上、0.10%以下とする。   Al is added in an amount of 0.005% as a deoxidizing element, but if added over 0.10%, the formation of MA structure may be promoted in the HAZ during high heat input welding and the toughness may be reduced. Therefore, the addition range is made 0.005% or more and 0.10% or less.

Nは、各種合金元素と窒化物を形成し高温降伏強度の向上に寄与する為、0.001%以上を添加する。しかし、多量の添加を行うと火災時にHAZの粒界に析出する窒化物が粗大化し再熱脆化が顕著になる為、上限を0.006%に制限する。   N forms 0.001% or more in order to form nitrides with various alloy elements and contribute to the improvement of high-temperature yield strength. However, if a large amount is added, the nitride that precipitates at the grain boundaries of the HAZ during a fire becomes coarse and reheat embrittlement becomes prominent, so the upper limit is limited to 0.006%.

Moは、焼入性の向上と炭化物析出により室温引張り強度及び高温降伏強度の増大に寄与する。しかし、火災時にMoは炭化物またはLaves相としてHAZの粒界において粗大析出し再熱脆化を著しく顕著にする為、本発明においてMoの添加は好ましくない。従って、工業生産上の都合による少量の混入は止むを得ないとしても積極的な添加は控えるべきであり、工業生産上の裕度から含有量を0.01%未満とする。   Mo contributes to an increase in room temperature tensile strength and high temperature yield strength by improving hardenability and carbide precipitation. However, Mo is not preferable in the present invention because Mo precipitates coarsely at the grain boundaries of HAZ as a carbide or Laves phase during fire, and reheat embrittlement becomes remarkably remarkable. Therefore, even if a small amount of contamination due to industrial production is unavoidable, aggressive addition should be refrained, and the content is made less than 0.01% due to the industrial production margin.

Vは、本発明系の成分系の範囲ではAr3点を上昇させる場合があり、その場合、水冷開始温度がAr3点を下回る事で粗大なフェライト粒が生成し高温降伏強度の低下を招く実験例の存在が確認されている。その為、本発明では製造安定性の観点からVを積極的に添加する事は控え、工業生産上の都合による止むを得ない混入レベルとして、含有量を0.03%未満に制限する。   V may increase the Ar3 point in the range of the component system of the present invention. In that case, when the water cooling start temperature is lower than the Ar3 point, coarse ferrite grains are generated and the high temperature yield strength is lowered. The existence of is confirmed. Therefore, in the present invention, V is not actively added from the viewpoint of production stability, and the content is limited to less than 0.03% as an inevitable mixing level due to industrial production.

Bは、焼入性の向上と窒化物析出により室温引張り強度及び高温降伏強度の増大に寄与する。しかし、Bの窒化物は火災時にHAZの粒界において粗大析出し易く再熱脆化を著しく顕著にする為、本発明においてBの添加は好ましくない。従って、工業生産上の都合による少量の混入は止むを得ないとしても積極的な添加は控えるべきであり、工業生産上の裕度から添加量の上限は0.0003%とする。   B contributes to an increase in room temperature tensile strength and high-temperature yield strength by improving hardenability and nitride precipitation. However, the addition of B is not preferable in the present invention because the nitride of B tends to coarsely precipitate at the grain boundaries of the HAZ during a fire and reheat embrittlement becomes remarkably remarkable. Therefore, even if a small amount of contamination due to industrial production is unavoidable, aggressive addition should be refrained, and the upper limit of the addition amount is set to 0.0003% from the margin of industrial production.

Pは、不純物として母材の靭性を著しく低下させ、且つ火災時のHAZの再熱脆化も顕著にする為、添加量を0.020%未満に制限する。
Sは、不純物として母材の靭性を著しく低下させ、且つ火災時のHAZの再熱脆化も顕著にする為、添加量を0.010%未満に制限する。
Oは、不純物として母材の靭性を著しく低下させ、且つ火災時のHAZの再熱脆化も顕著にする為、添加量を0.010%未満に制限する。
P, as an impurity, remarkably lowers the toughness of the base material and also makes the HAZ reheat embrittlement significant in the event of a fire, so limits the amount added to less than 0.020%.
S, as an impurity, remarkably lowers the toughness of the base material and also makes reheating embrittlement of the HAZ during a fire remarkable, so the addition amount is limited to less than 0.010%.
O as an impurity remarkably lowers the toughness of the base metal and also makes reheating embrittlement of the HAZ during a fire remarkable, so the addition amount is limited to less than 0.010%.

Nbは、鋼材の焼入性を増し室温引張り強度の向上に寄与すると共に、炭化物または窒化物として析出し高温降伏強度の向上にも寄与する。この効果を得る為には0.001%以上の添加が必要である。しかし、過度な添加はHAZの再熱脆化を顕著にする。従って、添加する場合は、その範囲を0.001%以上、0.10%以下に制限する。   Nb increases the hardenability of the steel material and contributes to the improvement of the room temperature tensile strength, and also precipitates as a carbide or nitride and contributes to the improvement of the high temperature yield strength. In order to obtain this effect, addition of 0.001% or more is necessary. However, excessive addition makes the reheating embrittlement of HAZ noticeable. Therefore, when adding, the range is limited to 0.001% or more and 0.10% or less.

Niは、焼入れ性の向上による室温引張り強度及び高温降伏強度の上昇に有効である。この効果を得る為には0.01%以上の添加が必要であるが、1.00%以上を添加すると、大入熱溶接の際のHAZの靭性を著しく低下させる場合があるので、添加する場合は、その範囲を0.01%以上、1.00%以下に制限する。   Ni is effective for increasing the room temperature tensile strength and the high temperature yield strength by improving the hardenability. In order to obtain this effect, addition of 0.01% or more is necessary. However, addition of 1.00% or more may significantly reduce the toughness of HAZ during high heat input welding. In such a case, the range is limited to 0.01% or more and 1.00% or less.

Cuは、焼入れ性向上による室温引張り強度の上昇や析出による高温降伏強度の上昇に有効である。この効果を得る為には0.01%以上の添加が必要であるが、0.10%を超えて添加するとHAZの再熱脆化を顕著にする。従って、添加する場合はその範囲を0.01%以上、0.10%以下に制限する。   Cu is effective in increasing the room temperature tensile strength by improving hardenability and increasing the high temperature yield strength by precipitation. In order to obtain this effect, addition of 0.01% or more is necessary. However, if the addition exceeds 0.10%, reheating embrittlement of HAZ becomes remarkable. Therefore, when added, the range is limited to 0.01% or more and 0.10% or less.

Wは、焼入れ性の向上や固溶強化による室温引張り強度及び高温降伏強度の上昇に有効であり、この効果を得る為には0.01%以上の添加が必要である。また、WはMoよりフェライトまたはベイナイト中での拡散速度が小さく、Moに比べてHAZの旧γ粒界における析出が遅い為、HAZの再熱脆化を助長しにくい。しかし、0.50%以下を添加するとHAZの再熱脆化が著しくなる。従って、添加する場合はその範囲を0.01%以上、0.50%以下に制限する。   W is effective in improving hardenability and increasing room temperature tensile strength and high temperature yield strength by solid solution strengthening. To obtain this effect, 0.01% or more must be added. Further, W has a lower diffusion rate in ferrite or bainite than Mo, and precipitation of HAZ at the former γ grain boundary is slower than Mo, so it is difficult to promote reheat embrittlement of HAZ. However, if 0.50% or less is added, the reheat embrittlement of the HAZ becomes significant. Therefore, when added, the range is limited to 0.01% or more and 0.50% or less.

Zrは、炭化物及び窒化物として析出し高温降伏強度の増加に寄与する。この効果を得る為には0.001%以上の添加が必要であるが、0.050%を超えて添加すると粒界に析出する炭化物が粗大化しHAZの再熱脆化が顕著になるので、添加する場合は0.001%以上、0.050%以下とする。   Zr precipitates as carbides and nitrides and contributes to an increase in high-temperature yield strength. In order to obtain this effect, addition of 0.001% or more is necessary, but if added over 0.050%, the carbides precipitated at the grain boundaries are coarsened, and HAZ reheat embrittlement becomes prominent. When adding, it is made 0.001% or more and 0.050% or less.

Mgは、鋼材中の硫化物の形態を制御し、硫化物による母材靭性の低下を低減する効果がある。この効果を得る為には0.0005%以上の添加が必要であるが、0.0050%以上の添加で効果が飽和する事から、添加する場合はその範囲を0.005%以上、0.0050%以内に制限する。   Mg has the effect of controlling the form of sulfide in the steel material and reducing the reduction in the base metal toughness due to sulfide. In order to obtain this effect, addition of 0.0005% or more is necessary. However, since the effect is saturated when 0.0050% or more is added, the range of addition is 0.005% or more, and 0.005% or more. Limit to 0050%.

Caは、脱酸元素として有効であり、且つ鋼材中の硫化物の形態を制御し母材靭性の低下を低減する効果がある。これらの効果を得る為には0.0005%以上の添加が必要であるが、0.0050%以上の添加で効果が飽和する事から、添加する場合はその範囲を0.0005%以上、0.005%以内に制限する。   Ca is effective as a deoxidizing element, and has an effect of controlling the form of sulfide in the steel material and reducing the decrease in the base material toughness. In order to obtain these effects, addition of 0.0005% or more is necessary. However, since the effect is saturated with addition of 0.0050% or more, the range of addition is 0.0005% or more, 0 Limit to within .005%.

Yは、鋼材中の硫化物の形態を制御し、硫化物による母材靭性の低下を低減する効果がある。この効果を得る為には0.001%以上の添加が必要であるが、0.050%以上の添加を行うと粗大な酸化物クラスターとして析出し靭性を低下させる為、添加する場合はその範囲を0.001%以上、0.050%以内に制限する。   Y has the effect of controlling the form of the sulfide in the steel material and reducing the decrease in the base metal toughness due to the sulfide. In order to obtain this effect, addition of 0.001% or more is necessary, but addition of 0.050% or more causes precipitation as a coarse oxide cluster and decreases toughness. Is limited to 0.001% or more and 0.050% or less.

Laは、鋼材中の硫化物の形態を制御し、硫化物による母材靭性の低下を低減する効果がある。この効果を得る為には0.001%以上の添加が必要であるが、0.050%以上の添加を行うと粗大な酸化物クラスターとして析出し靭性を低下させる為、添加する場合はその範囲を0.001%以上、0.050%以内に制限する。   La has an effect of controlling the form of sulfide in the steel material and reducing a decrease in base material toughness due to sulfide. In order to obtain this effect, addition of 0.001% or more is necessary, but addition of 0.050% or more causes precipitation as a coarse oxide cluster and decreases toughness. Is limited to 0.001% or more and 0.050% or less.

Ceは、鋼材中の硫化物の形態を制御し、硫化物による母材靭性の低下を低減する効果がある。この効果を得る為には0.001%以上の添加が必要であるが、0.050%以上の添加を行うと粗大な酸化物クラスターとして析出し靭性を低下させる為、添加する場合はその範囲を0.001%以上、0.050%以内に制限する。   Ce has an effect of controlling the form of the sulfide in the steel material and reducing a decrease in the base material toughness due to the sulfide. In order to obtain this effect, addition of 0.001% or more is necessary, but addition of 0.050% or more causes precipitation as a coarse oxide cluster and decreases toughness. Is limited to 0.001% or more and 0.050% or less.

以上の合金元素の限定で、600℃における降伏強度が高く、且つ火災時のHAZの再熱脆化が防止され、入熱5kJ/mmの溶接HAZ靱性、及び母材靭性に優れた鋼材を得る事が可能となる。   By limiting the above alloy elements, a steel material having a high yield strength at 600 ° C., preventing reheating embrittlement of the HAZ at the time of fire, and excellent in weld HAZ toughness with a heat input of 5 kJ / mm and base metal toughness is obtained. Things will be possible.

更に、本発明における製造方法の限定理由について述べる。
本発明では、室温引張り強度が450MPa以上、650MPa以下となり、600℃における降伏強度が217MPa以上であり、HAZの再熱脆化が防止され、入熱5kJ/mmの溶接によるHAZでも靱性を確保し、且つ母材靭性を確保する為の必要条件となる成分系を提案しており、該成分を有する鋼片に、温度および圧下量を規定した熱間圧延と加速冷却を適用する事により、これらの特性を全て満たす鋼材を製造する事が可能となる。
Furthermore, the reasons for limiting the manufacturing method in the present invention will be described.
In the present invention, the room temperature tensile strength is 450 MPa or more and 650 MPa or less, the yield strength at 600 ° C. is 217 MPa or more, reheating embrittlement of HAZ is prevented, and toughness is secured even in HAZ by welding with a heat input of 5 kJ / mm. In addition, we have proposed a component system that is a necessary condition for ensuring the toughness of the base metal, and by applying hot rolling and accelerated cooling that define the temperature and reduction amount to the steel slab having the component, It is possible to produce a steel material that satisfies all of the above characteristics.

一般に、高温降伏強度は、鋼材中に存在する転位による転位強化と、転位運動の障害となる結晶粒界や析出物によって発現すると考えられている。特に、鋼材の温度が550℃を超えて転位の上昇運動による転位の合一消滅が起こる様になると、急激に高温降伏強度は減少する場合がある。   Generally, the high-temperature yield strength is considered to be manifested by dislocation strengthening due to dislocations existing in the steel material and crystal grain boundaries and precipitates that hinder dislocation motion. In particular, when the temperature of the steel material exceeds 550 ° C. and the coalescence of dislocations occurs due to the upward movement of dislocations, the high-temperature yield strength may suddenly decrease.

この為、高い高温降伏強度を確保する為には、鋼材が火災に曝される前の時点、即ち室温において、充分に余裕のある量の転位を持つ事、もしくは、転位の運動の障害となる組織、具体的には析出物や結晶粒界を多数含む事が効果的である。尚、析出物については火災に曝される段階で初めて生成するものであっても構わない。   For this reason, in order to ensure high high-temperature yield strength, the steel material has a sufficient amount of dislocations at the time before exposure to fire, that is, at room temperature, or it becomes an obstacle to the movement of dislocations. It is effective to include many structures, specifically precipitates and crystal grain boundaries. In addition, about a deposit, you may produce | generate for the first time in the stage exposed to a fire.

本発明者らは、鋼材組織の80%以上を結晶粒の微細なフェライト組織または転位密度の高いベイナイトもしくはマルテンサイト組織とし、且つベイナイトもしくはマルテンサイトの場合は組織を細粒化する事が、高温降伏強度の上昇と靭性の向上に有効である事を実験と解析を通じて明らかにした。なお残部は、結晶粒径が円相当径で20μm超のフェライト組織または、MA(マルテンサイト−オーステナイト混合物)組織または、介在物等の不可避的相となる。フェライト組織の場合は靭性に優れるものの、特にEBSPにより測定したフェライト結晶粒の円相当粒径の平均が20μmを超えると著しく高温降伏強度が低下する例が多い事が本発明者らの検討により知見されており、安定した高温強度を発揮する為には、円相当粒径で20μm超となるフェライト組織を鋼材組織の20%未満に抑制する必要がある。   The present inventors made 80% or more of the steel structure a fine ferrite structure of crystal grains or a bainite or martensite structure with a high dislocation density, and in the case of bainite or martensite, it is possible to refine the structure at a high temperature. It has been clarified through experiments and analyzes that it is effective in increasing yield strength and improving toughness. The remainder becomes an inevitable phase such as a ferrite structure with a crystal grain diameter equivalent to a circle of more than 20 μm, an MA (martensite-austenite mixture) structure, or inclusions. In the case of a ferrite structure, although it has excellent toughness, it has been found by examination of the present inventors that there are many cases in which the high-temperature yield strength is remarkably reduced especially when the average of the equivalent circle diameter of ferrite crystal grains measured by EBSP exceeds 20 μm. In order to exhibit stable high-temperature strength, it is necessary to suppress the ferrite structure having a circle equivalent particle size exceeding 20 μm to less than 20% of the steel material structure.

以上の様な特性を持つ鋼材組織を得る為に、本発明者らは、本発明の化学成分を有する鋼片を熱間圧延もしくは熱間加工するに際し、1000℃以下、800℃以上の温度範囲で圧下量もしく加工量を大きくとる、具体的には50%以上の加工を行い、その後Ar3点以上の温度域から600℃以下の温度範囲まで2℃/秒以上の冷速で加速冷却を行う事が有効である事を、実験と解析により見出した。
50%以上の加工を行う事により、本発明の範囲内において安定的に母材靭性を確保する事が可能となる。
また、圧延または加工の後に、Ar3点以上の温度域から600℃以下の温度範囲まで加速冷却を行うためには、800℃以上で熱間圧延または加工を終了する必要がある。
In order to obtain a steel structure having the above characteristics, the present inventors, when hot rolling or hot working a steel slab having the chemical component of the present invention, a temperature range of 1000 ° C. or lower and 800 ° C. or higher. The amount of reduction or machining is increased with 50% or more, and then accelerated cooling is performed at a cooling rate of 2 ° C / second or more from the temperature range of Ar3 or higher to 600 ° C or lower. It was found by experiment and analysis that it is effective to do.
By performing the processing of 50% or more, it becomes possible to stably secure the base material toughness within the scope of the present invention.
Further, in order to perform accelerated cooling from the temperature range of the Ar3 point or higher to the temperature range of 600 ° C or lower after rolling or processing, it is necessary to end the hot rolling or processing at 800 ° C or higher.

尚、一般にオーステナイト域での圧下量を大きくとると、Ar3点が上昇しベイナイト変態もしくはマルテンサイト変態が起き難くなりフェライト変態が起き易くなる。また、Ar3点直下でフェライト変態が開始する場合はフェライトの成長が速く、結晶粒径が粗大化する傾向がある。その為に、熱間圧延後もしくは熱間加工後は、Ar3点まで温度が低下する前に加速冷却を開始する必要がある。   In general, when the amount of reduction in the austenite region is increased, the Ar3 point rises, and bainite transformation or martensitic transformation does not easily occur and ferrite transformation is likely to occur. Further, when the ferrite transformation starts just below the Ar3 point, the ferrite grows quickly and the crystal grain size tends to become coarse. Therefore, after hot rolling or hot working, accelerated cooling needs to be started before the temperature drops to the Ar3 point.

更に、本発明では、加速冷却を行った後、焼戻し熱処理を適用する事も可能である。焼戻し熱処理を適用する事により、熱間圧延後の放冷ままで完全に析出せずに固溶状態で残っている合金元素の析出を促し、火災時の転位の減少を抑える析出物の数を更に増加させる事が可能となる。
この焼戻しは400℃以上650℃未満の間で適宜選択して温度を決定する事が可能であり、必要とする材料強度と析出させる合金元素の種類によって決定する事で、本発明の効果を高める。
焼戻しの時間についても同様であり、焼戻し時の組織変化が物質の拡散で支配される時には温度を高くする事と時間を長くする事は同じ効果を与える為、焼戻し温度に応じて5分〜360分の間で決定可能である。
Furthermore, in the present invention, tempering heat treatment can be applied after accelerated cooling. Applying tempering heat treatment further promotes precipitation of alloy elements remaining in a solid solution state without being completely precipitated as it is cooled after hot rolling, and further increases the number of precipitates that suppress the reduction of dislocations during a fire. It is possible to make it.
This tempering can be appropriately selected between 400 ° C. and less than 650 ° C. to determine the temperature, and the effect of the present invention can be enhanced by determining the required material strength and the type of alloy element to be precipitated. .
The same applies to the tempering time. When the change in structure during tempering is governed by the diffusion of the substance, increasing the temperature and increasing the time have the same effect, so that the time varies from 5 minutes to 360 depending on the tempering temperature. Can be determined in minutes.

以上に述べた様に、本発明では合金元素の析出を有効に利用する事が重要であり、その様な合金元素の析出を安定的に確実に得る為の手段として、該鋼片を熱間圧延する際に1000℃以上、1300℃以下に加熱しておく必要がある。
これは、1000℃以上の温度に加熱する事により、各種の合金元素の炭化物もしくは窒化物、例えば、TiC、ZrC、Cr23C6、等を完全にもしくは可能な限り多く固溶させておく事により、熱間圧延後の焼入れ性を調整し実機製造上の安定性を高める事を目的としている。
As described above, in the present invention, it is important to effectively use the precipitation of alloy elements. As a means for stably and reliably obtaining such precipitation of alloy elements, When rolling, it is necessary to heat to 1000 ° C. or higher and 1300 ° C. or lower.
This is achieved by heating to a temperature of 1000 ° C. or higher to completely or as much as possible dissolve solid carbides or nitrides of various alloy elements, for example, TiC, ZrC, Cr23C6, etc. The purpose is to adjust the hardenability after hot rolling and increase the stability in manufacturing the actual machine.

この加熱を行わない場合、C、Cr、Ti及びZr等の合金元素が熱間圧延前に既に粗大に析出する等して、熱間圧延後の焼入性の低下による鋼材の転位密度の減少や、熱間圧延後に析出する微細な炭化物もしくは窒化物の減少による析出強化量の減少を招く事となり、製造した鋼材の室温引張り強度や高温降伏強度の安定性に大きな影響を及ぼす事になる。
但し、該加熱温度を1300℃超とすると鋼材表面の酸化スケールの増加が著しくなる為、加熱温度の上限を1300℃に制限する。
以上に述べた様に、化学成分の限定に加えて製造技術の限定を併用する事で、最も歩留まり良く合金添加量も最適化された高温降伏強度に優れた耐火鋼材を提供する事が可能となる。
Without this heating, alloy elements such as C, Cr, Ti and Zr are already coarsely precipitated before hot rolling, etc., and the reduction in dislocation density of the steel due to the decrease in hardenability after hot rolling. In addition, the amount of precipitation strengthening is reduced due to the reduction of fine carbides or nitrides precipitated after hot rolling, which greatly affects the stability of the manufactured steel at room temperature tensile strength and high temperature yield strength.
However, if the heating temperature exceeds 1300 ° C., the increase in the oxide scale on the surface of the steel material becomes significant, so the upper limit of the heating temperature is limited to 1300 ° C.
As described above, by combining the limitation of the manufacturing technology in addition to the limitation of the chemical composition, it is possible to provide a refractory steel material excellent in high-temperature yield strength with the best yield and optimized alloy addition amount. Become.

本発明の実施例の一部を以下に示す。表1に鋼材の化学成分、表2に製造板厚、加熱温度、1000−800℃圧下比(圧延直前における圧延鋼材の表面温度が800℃以上1000℃以下にある間の総圧下率)および熱延仕上温度の、熱間圧延条件、冷却速度(熱延仕上げ直後に行われる加速冷却開始から水冷停止温度までの平均冷却速度)、水冷停止温度、焼戻し温度、表3に室温引張り強度(室温TS)、室温降伏強度(室温YS)、600℃降伏強度(600℃YS)、HAZの600℃引張試験の破断絞り値、0℃における母材シャルピー試験の吸収エネルギー、及び、0℃におけるHAZシャルピー試験の吸収エネルギーを示す。表1〜表3では、本発明の範囲に入らない項目に下線を付けて表示してある。   Some examples of the present invention are shown below. Table 1 shows the chemical composition of the steel material, Table 2 shows the manufacturing plate thickness, heating temperature, 1000-800 ° C. rolling reduction ratio (total rolling reduction rate when the surface temperature of the rolled steel material immediately before rolling is between 800 ° C. and 1000 ° C.) and heat. Hot rolling conditions, cooling rate (average cooling rate from accelerated cooling start to water cooling stop temperature performed immediately after hot rolling finish), water cooling stop temperature, tempering temperature, and room temperature tensile strength (room temperature TS) ), Room temperature yield strength (room temperature YS), 600 ° C. yield strength (600 ° C. YS), fracture drawing value of 600 ° C. tensile test of HAZ, absorbed energy of base metal Charpy test at 0 ° C., and HAZ Charpy test at 0 ° C. Shows the absorbed energy. In Tables 1 to 3, items that do not fall within the scope of the present invention are displayed with an underline.

室温引張試験はJISZ2241に基づき実施し、応力−歪曲線上に上降伏点が現れる場合は上降伏点を室温降伏強度とし、現れない場合には0.2%耐力を室温降伏強度とした。室温引張り強度の目標は450MPa以上、650MPa以下、室温降伏強度の目標は325MPa以上である。   The room temperature tensile test was carried out based on JISZ2241, and when the upper yield point appeared on the stress-strain curve, the upper yield point was taken as room temperature yield strength, and when it did not appear, 0.2% proof stress was taken as room temperature yield strength. The target of room temperature tensile strength is 450 MPa or more and 650 MPa or less, and the target of room temperature yield strength is 325 MPa or more.

高温引張試験はJISG0567に基づき600℃にて実施し、測定された0.2%耐力を600℃降伏強度とした。600℃降伏強度の目標は217MPa以上である。   The high temperature tensile test was performed at 600 ° C. based on JISG0567, and the measured 0.2% proof stress was defined as 600 ° C. yield strength. The target of 600 ° C. yield strength is 217 MPa or more.

HAZの600℃引張試験は、鋼片に入熱2kJ/mmの溶接を想定した熱履歴を付与し、その後室温から600℃まで20分間で昇温し、600℃で30分保持した後に歪速度0.10%/秒にて引張試験を実施し、試験片破断部の絞り値(断面積減少率)を測定したものであり、HAZの再熱脆化の指標としたものである。本指標の目標は25%以上とする。   The 600 ° C. tensile test of HAZ gives a heat history assuming a heat input of 2 kJ / mm to the steel slab, then raised the temperature from room temperature to 600 ° C. over 20 minutes, held at 600 ° C. for 30 minutes, and then strain rate A tensile test was carried out at 0.10% / second, and the drawing value (cross-sectional area reduction rate) of the fractured portion of the test piece was measured and used as an index of HAZ reheat embrittlement. The target of this index is 25% or more.

母材のシャルピー試験は、各鋼材の厚位置1/2tからJISZ2202に準拠の2mmV衝撃試験片を採取し、JISZ2242に準拠の衝撃試験方法により行った。吸収エネルギーの目標は建築構造物の耐震性を考慮して27J以上とした。   The Charpy test of the base material was carried out by taking a 2 mmV impact test piece in accordance with JISZ2202 from the thickness position 1 / 2t of each steel material and performing an impact test method in accordance with JISZ2242. The target of absorbed energy was set to 27J or more in consideration of the earthquake resistance of the building structure.

HAZのシャルピー試験は、各鋼材に対して入熱5kJ/mmの溶接を想定した熱サイクルを付与した上でJISZ2202に準拠の2mmVノッチ衝撃試験片を採取し、JISZ2242に準拠の衝撃試験方法により行った。吸収エネルギーの目標は建築構造物の耐震性を考慮して27Jとした。   The HAZ Charpy test is performed by applying a thermal cycle assuming a heat input of 5 kJ / mm to each steel material, collecting a 2 mm V notch impact test piece in accordance with JISZ2202, and performing an impact test method in accordance with JISZ2242. It was. The target of absorbed energy was 27J considering the earthquake resistance of the building structure.

更に、鋼材組織の板厚中心位置における光学顕微鏡観察の結果から算出した、EBSP(Electron Back Scattering Pattern)法により測定した円相当結晶粒径20μm以下のフェライト、ベイナイト及びマルテンサイトの組織分率を表3に示してある。これらの値の和は、本発明においては80%以上となる特徴がある。   Further, the structure fractions of ferrite, bainite and martensite having an equivalent crystal grain diameter of 20 μm or less, measured by an EBSP (Electron Back Scattering Pattern) method, calculated from the result of optical microscope observation at the center position of the thickness of the steel structure are shown. This is shown in FIG. The sum of these values is characterized by 80% or more in the present invention.

尚、光学顕微鏡観察は各鋼材の板厚中心位置から採取したサンプルをナイタール試薬により腐食した上で500μm×500μmの視野について行った。また、EBSP観察は同じく各鋼材の板厚中心位置から採取したサンプルを電解研磨処理した上で500μm×500μmの視野について0.5μm間隔で格子状に行った。EBSPにより測定したフェライトの円相当結晶粒径とは、15℃以上の結晶方位差を持つ測定点間を結晶粒界と定めて結晶粒を定義し、各結晶粒に対し等しい面積の円を考えた時の直径を指すものである。   In addition, the optical microscope observation was performed about the visual field of 500 micrometers x 500 micrometers after corroding the sample extract | collected from the plate | board thickness center position of each steel material with a Nital reagent. Similarly, the EBSP observation was performed in a grid pattern at intervals of 0.5 μm for a field of view of 500 μm × 500 μm after electrolytic polishing of a sample collected from the center position of the thickness of each steel material. The equivalent circle crystal grain size of ferrite measured by EBSP is defined as a crystal grain boundary between measurement points having a crystal orientation difference of 15 ° C. or more, and a circle with an equal area is considered for each crystal grain. It refers to the diameter when

表3の結果より、本発明の実施例の範囲にあるものは、室温引張り強度、室温降伏強度、600℃降伏強度が全て目標範囲に収まっている事が分かる。
同時に、本発明の重要な特徴である溶接HAZの600℃引張試験の破断絞り値も25%以上が確保され、HAZの高温延性が確保されている事が分かる。
更に、本発明の実施例の範囲にあるものは、母材及びHAZのシャルピー試験の吸収エネルギーも0℃で27J以上である。
また表3の結果より、本発明の範囲に入らない比較鋼は、室温引張り強度、室温降伏強度、600℃降伏強度、HAZの600℃引張試験の破断絞り値、0℃における母材シャルピー吸収エネルギー、または0℃におけるHAZシャルピー吸収エネルギー、のいずれかが目標を満たさない事が分かる。
From the results in Table 3, it can be seen that those within the range of the examples of the present invention all have room temperature tensile strength, room temperature yield strength, and 600 ° C. yield strength within the target range.
At the same time, it can be seen that the fracture drawing value in the 600 ° C. tensile test of the welded HAZ, which is an important feature of the present invention, is secured at 25% or more, and the high temperature ductility of the HAZ is secured.
Further, in the range of the examples of the present invention, the absorption energy of the Charpy test of the base material and the HAZ is 27 J or more at 0 ° C.
From the results shown in Table 3, the comparative steels that do not fall within the scope of the present invention are: room temperature tensile strength, room temperature yield strength, 600 ° C. yield strength, HAZ 600 ° C. tensile test fracture drawing value, base metal Charpy absorbed energy at 0 ° C. , Or HAZ Charpy absorbed energy at 0 ° C. does not meet the target.

Figure 2011190506
Figure 2011190506

Figure 2011190506
Figure 2011190506

Figure 2011190506
Figure 2011190506

Claims (5)

化学組成が質量%で、
C:0.005%以上、0.050%以下、
Si:0.01%以上、0.50%以下、
Mn:0.50%以上、2.00%以下、
Cr:0.50%以上、2.00%以下、
Ti:0.001%以上、0.030%以下、
Al:0.005%以上、0.10%以下、
N:0.001%以上、0.006%以下、
を含有し、
Mo:0.01%未満、
V:0.03%未満、
B:0.0003%以下、
P:0.02%未満、
S:0.01%未満、
O:0.01%未満
に制限した、残部Feおよび不可避的不純物からなる鋼材であって、該鋼材組織の面積率で80%以上が、ベイナイト組織、マルテンサイト組織、またはEBSP(Electron Back Scattering Pattern)法により測定した円相当粒径が20μm以下のフェライト組織のいずれか1種以上で構成されており、残部が円相当径が20μm超のフェライトもしくはMA(マルテンサイト−オーステナイト混合物)組織及び不可避的相であり、室温引張強さが450MPa以上、650MPa以下であり、本鋼材の母材の600℃降伏応力が217MPa以上であり、本鋼材の溶接熱影響部の600℃高温引張の破断絞り値が25%以上であることを特徴とする、母材の高温強度及び溶接熱影響部の高温延性に優れた耐火鋼材。
Chemical composition is mass%,
C: 0.005% or more, 0.050% or less,
Si: 0.01% or more, 0.50% or less,
Mn: 0.50% or more, 2.00% or less,
Cr: 0.50% or more, 2.00% or less,
Ti: 0.001% or more, 0.030% or less,
Al: 0.005% or more, 0.10% or less,
N: 0.001% or more, 0.006% or less,
Containing
Mo: less than 0.01%,
V: less than 0.03%,
B: 0.0003% or less,
P: less than 0.02%,
S: less than 0.01%,
O: Steel material consisting of the remaining Fe and inevitable impurities limited to less than 0.01%, and 80% or more by area ratio of the steel material structure is bainite structure, martensite structure, or EBSP (Electron Back Scattering Pattern) ) A ferrite or MA (martensite-austenite mixture) structure with an equivalent circle diameter of more than 20 μm and an inevitable structure with an equivalent circle diameter measured by the method of 20 μm or less. The tensile strength at room temperature is 450 MPa or more and 650 MPa or less, the 600 ° C. yield stress of the base material of this steel material is 217 MPa or more, and the fracture drawing value of the 600 ° C. high temperature tensile of the weld heat affected zone of this steel material is The high-temperature strength of the base metal and the high heat-affected zone of the base metal, characterized by being 25% or more Refractory steel with excellent hot-rollability.
請求項1に加えて、質量%で、
Nb:0.001%以上、0.10%以下、
Ni:0.01%以上、1.00%以下、
Cu:0.01%以上、0.10%以下、
W:0.01%以上、0.50%以下、
の内1種または2種以上を含有する事を特徴とする、請求項1に記載の母材の高温強度及び溶接熱影響部の高温延性に優れた耐火鋼材。
In addition to claim 1,
Nb: 0.001% or more, 0.10% or less,
Ni: 0.01% or more, 1.00% or less,
Cu: 0.01% or more, 0.10% or less,
W: 0.01% or more, 0.50% or less,
The refractory steel material excellent in the high temperature strength of the base material and the high temperature ductility of the weld heat affected zone according to claim 1, characterized by containing one or more of the above.
請求項1または2に加えて、質量%で、
Zr:0.001%以上、0.050%以下、
Mg:0.0005%以上、0.0050%以下、
Ca:0.0005%以上、0.0050%以下、
Y:0.001%以上、0.050%以下、
La:0.001%以上、0.050%以下、
Ce:0.001%以上、0.050%以下、
の内の1種または2種以上を含有する事を特徴とする、母材の高温強度及び溶接熱影響部の高温延性に優れた耐火鋼材。
In addition to claim 1 or 2,
Zr: 0.001% or more, 0.050% or less,
Mg: 0.0005% or more, 0.0050% or less,
Ca: 0.0005% or more, 0.0050% or less,
Y: 0.001% or more, 0.050% or less,
La: 0.001% or more, 0.050% or less,
Ce: 0.001% or more, 0.050% or less,
A refractory steel material excellent in high-temperature strength of a base material and high-temperature ductility of a weld heat-affected zone, characterized by containing one or more of them.
請求項1〜3に記載の鋼成分を有する鋼片を、1000℃以上、1300℃以下に加熱した後、熱間加工または熱間圧延を施すにあたり、800℃以上1000℃以下において50%以上の圧延または加工を行い、800℃以上で熱間圧延または加工を終了し、その後Ar3点以上の温度域から600℃以下の温度範囲まで2℃/秒以上の冷速で加速冷却する事を特徴とする、母材の高温強度及び溶接熱影響部の高温延性に優れた耐火鋼材の製造方法。   The steel slab having the steel component according to any one of claims 1 to 3 is heated to 1000 ° C or higher and 1300 ° C or lower, and then subjected to hot working or hot rolling. Rolling or processing is performed, hot rolling or processing is finished at 800 ° C or higher, and then accelerated cooling is performed at a cooling rate of 2 ° C / second or higher from a temperature range of Ar3 or higher to a temperature range of 600 ° C or lower. The manufacturing method of the refractory steel materials excellent in the high temperature strength of a preform | base_material, and the high temperature ductility of a welding heat affected zone. 請求項4に記載の製造方法を適用した後、鋼材を400℃以上650℃未満の温度範囲で5分以上、360分以内の焼戻し熱処理を行う事を特徴とする、母材の高温強度及び溶接熱影響部の高温延性に優れた耐火鋼材の製造方法。   After applying the manufacturing method according to claim 4, the steel material is subjected to a tempering heat treatment in a temperature range of 400 ° C or higher and lower than 650 ° C for 5 minutes or more and 360 minutes or less. A method for producing a refractory steel material excellent in high temperature ductility of a heat affected zone.
JP2010057983A 2010-03-15 2010-03-15 Refractory steel material excellent in high-temperature strength of base metal and high-temperature ductility of weld heat-affected zone and its manufacturing method Active JP5381828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010057983A JP5381828B2 (en) 2010-03-15 2010-03-15 Refractory steel material excellent in high-temperature strength of base metal and high-temperature ductility of weld heat-affected zone and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010057983A JP5381828B2 (en) 2010-03-15 2010-03-15 Refractory steel material excellent in high-temperature strength of base metal and high-temperature ductility of weld heat-affected zone and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2011190506A true JP2011190506A (en) 2011-09-29
JP5381828B2 JP5381828B2 (en) 2014-01-08

Family

ID=44795723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010057983A Active JP5381828B2 (en) 2010-03-15 2010-03-15 Refractory steel material excellent in high-temperature strength of base metal and high-temperature ductility of weld heat-affected zone and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5381828B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190502A (en) * 2010-03-15 2011-09-29 Nippon Steel Corp Fire-resistant steel material excellent in high-temperature strength and in low-temperature toughness and reheat embrittlement resistance in weld heat-affected zone, and method for manufacturing the same
JP2017025398A (en) * 2015-07-28 2017-02-02 Jfeスチール株式会社 High strength thick steel plate for building structure excellent in toughness of ultra-high heat input welding heat-affected zone
CN110662854A (en) * 2017-06-30 2020-01-07 Posco公司 Steel sheet having excellent liquid metal embrittlement cracking resistance and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211230A (en) * 1990-01-12 1991-09-17 Nippon Steel Corp Production of low alloy steel for line pipe with high corrosion resistance
WO2008126944A1 (en) * 2007-04-11 2008-10-23 Nippon Steel Corporation Steel material having excellent high-temperature strength and toughness, and method for production thereof
WO2010050394A1 (en) * 2008-10-27 2010-05-06 新日本製鐵株式会社 Fire-resistant steel material with excellent resistance to reheat embrittlement and with low-temperature toughness at welded heat-affected parts, and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211230A (en) * 1990-01-12 1991-09-17 Nippon Steel Corp Production of low alloy steel for line pipe with high corrosion resistance
WO2008126944A1 (en) * 2007-04-11 2008-10-23 Nippon Steel Corporation Steel material having excellent high-temperature strength and toughness, and method for production thereof
WO2010050394A1 (en) * 2008-10-27 2010-05-06 新日本製鐵株式会社 Fire-resistant steel material with excellent resistance to reheat embrittlement and with low-temperature toughness at welded heat-affected parts, and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190502A (en) * 2010-03-15 2011-09-29 Nippon Steel Corp Fire-resistant steel material excellent in high-temperature strength and in low-temperature toughness and reheat embrittlement resistance in weld heat-affected zone, and method for manufacturing the same
JP2017025398A (en) * 2015-07-28 2017-02-02 Jfeスチール株式会社 High strength thick steel plate for building structure excellent in toughness of ultra-high heat input welding heat-affected zone
CN110662854A (en) * 2017-06-30 2020-01-07 Posco公司 Steel sheet having excellent liquid metal embrittlement cracking resistance and method for producing same
CN110662854B (en) * 2017-06-30 2022-01-21 Posco公司 Steel sheet having excellent liquid metal embrittlement cracking resistance and method for producing same
US11299793B2 (en) 2017-06-30 2022-04-12 Posco Steel sheet having excellent resistance to liquid metal embrittlement cracks and method for manufacturing the same

Also Published As

Publication number Publication date
JP5381828B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5880787B2 (en) Steel tube for low alloy oil well and manufacturing method thereof
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP6468408B2 (en) H-section steel and its manufacturing method
JP4547041B2 (en) Refractory steel material excellent in reheat embrittlement resistance and low temperature toughness of weld heat affected zone and method for producing the same
US10597760B2 (en) High-strength steel material for oil well and oil well pipes
JP5958450B2 (en) Low-alloy high-strength seamless steel pipe with excellent resistance to sulfide stress corrosion cracking and its manufacturing method
JP5804229B1 (en) Abrasion-resistant steel plate and method for producing the same
JP6253974B2 (en) Thick steel plate for reactor containment vessel with excellent brittle crack propagation stopping characteristics
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
CN108342655B (en) Quenched and tempered acid-resistant pipeline steel and manufacturing method thereof
JP6344191B2 (en) High-strength ultra-thick H-shaped steel with excellent toughness and method for producing the same
AU2015291875A1 (en) Low alloy oil-well steel pipe
JP6135697B2 (en) Abrasion-resistant steel sheet having excellent low-temperature toughness and low-temperature tempering embrittlement cracking properties and method for producing the same
JP2006241552A (en) High tensile fire resistant steel having excellent weldability and gas cutting property and its production method
JP2017071827A (en) H shaped steel and manufacturing method therefor
JP2013095928A (en) High tensile strength steel sheet excellent in toughness and manufacturing method thereof
JPWO2014175122A1 (en) H-section steel and its manufacturing method
JP5692002B2 (en) High-tensile steel plate with excellent weldability and manufacturing method thereof
JP5381828B2 (en) Refractory steel material excellent in high-temperature strength of base metal and high-temperature ductility of weld heat-affected zone and its manufacturing method
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP5347824B2 (en) Refractory steel material excellent in high-temperature strength of base metal and high-temperature ductility of weld heat-affected zone and its manufacturing method
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP5499793B2 (en) Refractory steel material excellent in high temperature strength and low temperature toughness and reheat embrittlement resistance of weld heat affected zone and its manufacturing method
JP2007302977A (en) Method for manufacturing high-strength steel of tensile strength of 570 mpa class having excellent toughness of weld heat affected zone
JP2016079425A (en) Steel sheet excellent in high temperature strength and toughness and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R151 Written notification of patent or utility model registration

Ref document number: 5381828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350