JPH03257966A - Manufacture of solid-state image sensing device - Google Patents

Manufacture of solid-state image sensing device

Info

Publication number
JPH03257966A
JPH03257966A JP2057206A JP5720690A JPH03257966A JP H03257966 A JPH03257966 A JP H03257966A JP 2057206 A JP2057206 A JP 2057206A JP 5720690 A JP5720690 A JP 5720690A JP H03257966 A JPH03257966 A JP H03257966A
Authority
JP
Japan
Prior art keywords
solid
photodiode
alloy film
film
shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2057206A
Other languages
Japanese (ja)
Inventor
Naoto Minae
薬袋 直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP2057206A priority Critical patent/JPH03257966A/en
Publication of JPH03257966A publication Critical patent/JPH03257966A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent any aluminum hillock from being produced and hence make uniform sensitivity among pixels by sputter-evaporating an optical shielding and wiring Al-Si alloy film at silicon substrate temperature controlled to a specific temperature or lower. CONSTITUTION:A solid-state image sensing device includes an N type impurity layer 4 constituting an optical detector part of a photodiode, an impurity layer 5 comprising a buried channel type CCD N type well constituting a transfer line part for reaching a signal charge, and an optical shielding film 10 comprising an Al-Si alloy film having an opening part on the optical detector part of the photodiode and optically shielding the transfer line part. The optical shielding and wiring Al-Si alloy film is sputter-evaporated in the state where silicon substrate temperature is controlled to be 35 deg.C or lower. With the film formation process, any aluminum hillock is prevented from being produced owing to heat treatment and hence variations of the opening area of the photodiode part is reduced. Thus, a solid-state image sensing device with reduced sensitivity variations among pixels can be manufactured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体撮像装置製造方法、特にその遮光膜の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a solid-state imaging device, and particularly to a method of manufacturing a light-shielding film thereof.

従来の技術 固体撮像装置において、ホトダイオード部の開口を決定
しかつ転送部を遮光する膜として一般にAe−8i系合
金膜を用いている。上記遮光膜は、通常固体撮像装置内
の回路間の配線用Ae−8i系合金膜の成膜と同時にス
パッタ蒸着法により成膜を行なっている。
In conventional solid-state imaging devices, an Ae-8i alloy film is generally used as a film that determines the aperture of the photodiode section and shields the transfer section from light. The above-mentioned light-shielding film is usually formed by a sputter deposition method at the same time as the formation of an Ae-8i alloy film for wiring between circuits in a solid-state imaging device.

上述した遮光及び配線用Ae−Si系合金膜において、
配線部分とシリコン基板との間でオーミックコンタクト
をとるために行なう熱処理によりアルミヒロックと呼ば
れるアルミ突起が発生する。上記アルミヒロックの発生
によりホトダイオード部の開口面積が各画素間で興なり
、感度が画素ごとにばらつくという問題点がある。
In the above-mentioned Ae-Si alloy film for light shielding and wiring,
Heat treatment performed to establish ohmic contact between the wiring portion and the silicon substrate generates aluminum protrusions called aluminum hillocks. Due to the occurrence of the aluminum hillock, the aperture area of the photodiode section increases between each pixel, resulting in a problem that the sensitivity varies from pixel to pixel.

第2図は従来の固体撮像装置の一例の斜視図である。こ
の実施例は、CCD撮像装置の一方式であるインクライ
ン転送方式の斜視図を示しており、1はN型シリコン基
板、2は縦型オーバーフロードレインのためのホトダイ
オード直下の浅くて低濃度のP型ウェル、3は素子分離
用のP型チャンネルストッパー、4はホトダイオードの
受光部を構成するN型の不純物層、5は信号電荷を読み
出す転送線部を構成する埋込みチャンネル型CCDのN
型ウェルからなる不純物層、6は酸化膜、7はホトダイ
オードに蓄積された電荷を埋込みCCDに読み出し制御
をするトランスファー電極を兼ねた埋込みCCDの転送
りロック電極を構成する多結晶シリコンからなるゲート
、8は埋込みCCDの転送りロック電極を構成する多結
晶シリコンからなるゲート、9は眉間絶縁膜を構成する
酸化膜、10はホトダイオードの受光部上に開口部を有
しかつ転送IIIBを遮光するためのAeSi系合金膜
からなる遮光膜を示している。即ちホトダイオード部の
開口面積は、Ae −5i系合金膜の開ロバターンによ
り決定される。
FIG. 2 is a perspective view of an example of a conventional solid-state imaging device. This example shows a perspective view of an incline transfer method, which is a type of CCD imaging device. 1 is an N-type silicon substrate, and 2 is a shallow, low-concentration P layer directly below a photodiode for a vertical overflow drain. type well, 3 is a P-type channel stopper for element isolation, 4 is an N-type impurity layer that constitutes the light receiving part of the photodiode, and 5 is the N type well of the buried channel type CCD that constitutes the transfer line part for reading signal charges.
an impurity layer consisting of a type well, 6 an oxide film, 7 a gate made of polycrystalline silicon constituting a transfer lock electrode of the embedded CCD which also serves as a transfer electrode for controlling readout of charges accumulated in the photodiode to the embedded CCD; Reference numeral 8 denotes a gate made of polycrystalline silicon constituting a transfer lock electrode of the embedded CCD, 9 an oxide film constituting an insulating film between the eyebrows, and 10 having an opening above the light receiving part of the photodiode to shield transfer IIIB from light. A light shielding film made of an AeSi alloy film is shown. That is, the opening area of the photodiode portion is determined by the opening pattern of the Ae-5i alloy film.

従って、Ae−8i系合金膜を成膜しホトダイオード開
口部のパターンを形成した後に熱処理を加えることによ
りホトダイオード受光部上にアルミヒロックが突き出る
とホトダイオードの開口面積が減少し、上記画素の受光
量の減少、即ち感度の低下をおこす。第2図11にホト
ダイオード受光部上に突き出たアルミヒロックを示す。
Therefore, if heat treatment is applied after forming an Ae-8i alloy film to form a photodiode opening pattern, and aluminum hillocks protrude above the photodiode light receiving area, the opening area of the photodiode will be reduced, and the amount of light received by the pixel will be reduced. decrease, that is, a decrease in sensitivity. FIG. 2 11 shows an aluminum hillock protruding above the photodiode light receiving section.

上記アルミヒロックは規則性がなく発生するので各画素
間でホトダイオード部の開口面積が異なり、そのため各
画素間の感度のばらつきを生じる。
Since the aluminum hillocks are generated irregularly, the aperture area of the photodiode section differs between pixels, resulting in variations in sensitivity between pixels.

発明が解決しようとする課題 上述したように、従来、固体撮像装置においては、ホト
ダイオード部の開口を有しかつ転送部を遮光するA+!
−Si系合金膜がその熱処理によりアルミヒロックを発
生し、ホトダイオード部の開口面積が各画素間で異なり
、各画素間の感度のばらつきを生じるという問題点があ
る。
Problems to be Solved by the Invention As described above, conventional solid-state imaging devices have A+!
There are problems in that the -Si alloy film generates aluminum hillocks due to its heat treatment, and the opening area of the photodiode portion differs between pixels, resulting in variations in sensitivity between pixels.

本発明は各画素間の感度のばらつきを低減することがで
きる固体撮像装置の製造方法を提供することを目的とす
る。
An object of the present invention is to provide a method for manufacturing a solid-state imaging device that can reduce variations in sensitivity between pixels.

課題を解決するための手段 本発明は上述の問題点を解決するための遮光及び配線用
Ae−8i系合金膜のスパッタ蒸着をシリコン基板温度
を35℃以下に制御した状態で行なうものである。
Means for Solving the Problems The present invention solves the above-mentioned problems by performing sputter deposition of an Ae-8i alloy film for light shielding and wiring while controlling the silicon substrate temperature to 35° C. or lower.

作用 本発明のAl−8i系合金膜の成膜方法によって、熱処
理によるアルミヒロックの発生が抑制され、ホトダイオ
ード部の開口面積のばらつきが低減でき、各画素間の感
度ばらつきの少ない固体撮像装置を製造することが可能
となる。
Effect: The method of forming an Al-8i alloy film of the present invention suppresses the formation of aluminum hillocks due to heat treatment, reduces variations in the opening area of the photodiode portion, and produces a solid-state imaging device with less variation in sensitivity between each pixel. It becomes possible to do so.

44う 実施例 次に本発明の一実施例について図面を参照して説明する
。第1図は固体撮像装置の遮光膜として使用されるAe
−5i系合金膜をスパッタ蒸着法で成膜する際のシリコ
ン基板の温度と固体撮像装置の各画素間の感度のばらつ
きの相関特性曲線図である。第1図から明らかなように
、スパッタ蒸着時のシリコン基板温度が高いとアルミヒ
ロックの発生が多く、感度ばらつきが大きい。一方シリ
コン基板温度を35℃以下に制御することによりアルミ
ヒロックの発生が制御され、固体撮像装置の感度ばらつ
きを低減することができる。 そこで、本発明の実施例
においては、ホトダイオード部の開口を決める遮光膜で
あるAe−Si系合金膜の成膜において、シリコン基板
温度を35℃以下に制御してスパッタ蒸着することによ
り、後の熱処理によるアルミヒロックの発生を抑制し、
ホトダイオード開口面積のばらつきを減少し、感度を均
一にしている。
44th Embodiment Next, an embodiment of the present invention will be described with reference to the drawings. Figure 1 shows Ae used as a light-shielding film in solid-state imaging devices.
FIG. 3 is a correlation characteristic curve diagram between the temperature of a silicon substrate and variations in sensitivity between pixels of a solid-state imaging device when a -5i alloy film is formed by sputter deposition. As is clear from FIG. 1, when the temperature of the silicon substrate during sputter deposition is high, aluminum hillocks occur frequently and sensitivity variations are large. On the other hand, by controlling the silicon substrate temperature to 35° C. or lower, the occurrence of aluminum hillocks can be controlled, and sensitivity variations in the solid-state imaging device can be reduced. Therefore, in the embodiment of the present invention, when forming the Ae-Si alloy film, which is a light-shielding film that determines the opening of the photodiode section, the temperature of the silicon substrate is controlled to 35° C. or less during sputter deposition, so that the subsequent Suppresses the occurrence of aluminum hillocks due to heat treatment,
Reduces variations in photodiode aperture area and makes sensitivity uniform.

発明の効果 本発明によれば、遮光及び配線用Al−Si系合金膜の
スパッタ蒸着を、シリコン基板温度を35℃以下に制御
した状態で行なうことにより、アルミヒロックの発生を
抑制し、各画素間の感度を均一にすることができる。
Effects of the Invention According to the present invention, sputter deposition of an Al-Si alloy film for light shielding and wiring is performed while controlling the silicon substrate temperature to 35°C or less, thereby suppressing the occurrence of aluminum hillocks and improving the quality of each pixel. It is possible to equalize the sensitivity between the two.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はAe−5i系合金膜のスパッタ蒸着時のシリコ
ン基板温度と固体撮像装置の感度ばらつきの相関を示す
特性曲線図、第2図は従来の固体撮像装置の斜視図であ
る。 4・・・・・・ホトダイオード受光部、5・・・・・・
電荷転送部、7・・・・・・トランスファーゲートを兼
ねた転送ゲート、8・・・・・・転送ゲート、10・・
・・・・遮光膜、11・・・・・・アルミヒロック。
FIG. 1 is a characteristic curve diagram showing the correlation between the temperature of a silicon substrate during sputter deposition of an Ae-5i alloy film and the sensitivity variation of a solid-state imaging device, and FIG. 2 is a perspective view of a conventional solid-state imaging device. 4...Photodiode light receiving section, 5...
Charge transfer unit, 7...Transfer gate that also serves as a transfer gate, 8...Transfer gate, 10...
... Light shielding film, 11 ... Aluminum hillock.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面に形成された所定のパターンの光電変換
用の受光部と該受光部で光電変換された信号電荷を読み
出す電荷転送部と前記受光部上に開口部を有しかつ前記
転送部を遮光する膜としてAl−Si系合金膜とを少な
くとも備えた固体撮像装置において、前記Al−Si系
合金膜を半導体基板温度が35℃以下の状態で成膜する
ことにより各受光部ごとの感度ばらつきを減少すること
を特徴とする固体撮像装置の製造方法。
A light receiving section for photoelectric conversion in a predetermined pattern formed on the surface of a semiconductor substrate, a charge transfer section for reading signal charges photoelectrically converted in the light receiving section, and an opening above the light receiving section and shielding the transfer section from light. In a solid-state imaging device that is equipped with at least an Al-Si alloy film as a film, the Al-Si alloy film is formed at a semiconductor substrate temperature of 35° C. or lower to reduce sensitivity variations among each light receiving part. A method for manufacturing a solid-state imaging device, characterized in that
JP2057206A 1990-03-08 1990-03-08 Manufacture of solid-state image sensing device Pending JPH03257966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2057206A JPH03257966A (en) 1990-03-08 1990-03-08 Manufacture of solid-state image sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2057206A JPH03257966A (en) 1990-03-08 1990-03-08 Manufacture of solid-state image sensing device

Publications (1)

Publication Number Publication Date
JPH03257966A true JPH03257966A (en) 1991-11-18

Family

ID=13049034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2057206A Pending JPH03257966A (en) 1990-03-08 1990-03-08 Manufacture of solid-state image sensing device

Country Status (1)

Country Link
JP (1) JPH03257966A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066091A (en) * 2013-01-11 2013-04-24 陆伟 Method of reducing number of hillocks of image sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558369A (en) * 1978-10-20 1980-05-01 Nec Corp Preparation of electric conductive film of aluminum-silicon alloy
JPS58125968A (en) * 1982-01-22 1983-07-27 Nec Corp Solid-state image pickup device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558369A (en) * 1978-10-20 1980-05-01 Nec Corp Preparation of electric conductive film of aluminum-silicon alloy
JPS58125968A (en) * 1982-01-22 1983-07-27 Nec Corp Solid-state image pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066091A (en) * 2013-01-11 2013-04-24 陆伟 Method of reducing number of hillocks of image sensor

Similar Documents

Publication Publication Date Title
US5581099A (en) CCD solid state image device which has a semiconductor substrate with a P-type region with an N-type region formed therein by injection of arsenic
US5349216A (en) Charge coupled device image sensor
JP2781425B2 (en) Method for manufacturing solid-state imaging device
US5898195A (en) Solid-state imaging device of a vertical overflow drain system
TW202203445A (en) Transistors having increased effective channel width
US5288656A (en) Method of manufacturing a CCD solid state image sensing device
JPH0319711B2 (en)
US5246875A (en) Method of making charge coupled device image sensor
JP3008163B2 (en) Solid-state imaging device and method of manufacturing the same
JP2641809B2 (en) CCD image element
JPH03257966A (en) Manufacture of solid-state image sensing device
KR0172849B1 (en) Solid state image sensing device and manufacturing method thereof
KR100188014B1 (en) Solid-state image sensing device having improved smear and blooming characteristics
JP3481654B2 (en) Solid-state imaging device
JPS5846905B2 (en) Kotai Satsuzou Sochi
JPH06205303A (en) Smear removing of camera charge coupling device type
JPH0697416A (en) Solid-state image sensing device and manufacture thereof
JPH0685233A (en) Manufacture of solid-state image sensing device
JPH0586669B2 (en)
JPS59172763A (en) Manufacture of solid-state image pickup device
JPH08227989A (en) Solid state image pickup element
JP2805848B2 (en) Solid-state imaging device
JPH0425756B2 (en)
KR970004493B1 (en) A method for manufacture and structure of semiconductor device
JPH03190272A (en) Solid-state camera device