JP2641809B2 - CCD image element - Google Patents

CCD image element

Info

Publication number
JP2641809B2
JP2641809B2 JP3107229A JP10722991A JP2641809B2 JP 2641809 B2 JP2641809 B2 JP 2641809B2 JP 3107229 A JP3107229 A JP 3107229A JP 10722991 A JP10722991 A JP 10722991A JP 2641809 B2 JP2641809 B2 JP 2641809B2
Authority
JP
Japan
Prior art keywords
type
region
conductivity type
bccd
smear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3107229A
Other languages
Japanese (ja)
Other versions
JPH0774334A (en
Inventor
ソン ミン イ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ERU JII SEMIKON CO Ltd
Original Assignee
ERU JII SEMIKON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19298928&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2641809(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ERU JII SEMIKON CO Ltd filed Critical ERU JII SEMIKON CO Ltd
Publication of JPH0774334A publication Critical patent/JPH0774334A/en
Application granted granted Critical
Publication of JP2641809B2 publication Critical patent/JP2641809B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、CCD映像素子に係
り、特に、スミアノイズを低減させることができる技術
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CCD image element, and more particularly to a technique capable of reducing smear noise.

【0002】[0002]

【従来の技術】一般に、CCD(電荷結合デバイス:チ
ャージ カプルド デバイス(Charge Coupled Device))
映像素子は、n型半導体基板に高濃度p型ウェルを形成
し、この高濃度p型ウェルの表面領域に所定の間隔をお
いてn型ホトダイオードとn型VCCD(バーティカル
チャージ カプルド デバイス(Vertical Charge Couple
d Device))とを形成し、上記n型ホトダイオードとn
型VCCDとの間の上部には両者の相互接続のためのト
ランスファゲートを形成した構造を有する。
2. Description of the Related Art Generally, a CCD (Charge Coupled Device) is used.
As the image element, a high-concentration p-type well is formed in an n-type semiconductor substrate, and an n-type photodiode and an n-type VCCD (Vertical Charge Coupled Device (Vertical Charge Coupled Device) are provided at predetermined intervals in the surface region of the high-concentration p-type well.
d Device)) and the n-type photodiode and n
A transfer gate for interconnecting the two is formed on the upper portion between the type VCCD.

【0003】上記n型VCCDは、BCCD(ベリード
チャージ カプルド デバイス(Buried Charge Coupled
Device))またはSCCD(サーフェス チャージ カプ
ルドデバイス(Surface Charge Coupled Device))の構
造で作ることができるが、上記SCCDは現在ほとんど
使用されない。一般的なCCD映像素子では、画面に現
われる焦点ぼけ(ブルーミング(Blooming))の現象を低
減するために、上記n型ホトダイオードの下方の領域に
OFD(オーバー フロー ドレイン(Over FlowDrain))
の電圧を制御するための反焦点ぼけ電圧(アンチ ブル
ーミング バイアス(Anti-Blooming Bias))を印加す
る。すなわち、図示しない電位ウェルに蓄積された信号
電荷があふれ出すのを防ぐための電位障壁を形成する。
The n-type VCCD is a BCCD (Buried Charge Coupled Device).
Device)) or SCCD (Surface Charge Coupled Device) structure, but the SCCD is rarely used at present. In a general CCD image device, an OFD (Over Flow Drain) is provided in an area below the n-type photodiode in order to reduce a phenomenon of defocus (Blooming) appearing on a screen.
An anti-blooming bias (Anti-Blooming Bias) is applied to control the voltage of the pixel. That is, a potential barrier is formed to prevent overflow of signal charges accumulated in a potential well (not shown).

【0004】上記OFD電圧制御方式は、HOFD(ホ
リゾンタル オーバー フロー ドレイン(Horizontal Ov
er Flow Drain))方式と、VOFD(バーティカル オ
ーバー フロー ドレイン(Vertical Over Flow Drai
n))方式とがある。しかし、HOFD方式は、クロッ
キング(Clocking)方式であるので、各々のホトダイオ
ードに一致するVCCDは一直線上に配置される。した
がって、ホトダイオードの開口面積は、相対的に縮小さ
れ、フィル ファクター(Fill Factor)は減少し、CC
D映像素子の感度は下がる。このため、現在、OFD電
圧制御方式としてはVOFD方式が使用されている。こ
の方式では、2度のイオン注入工程を実施し、ホトダイ
オード領域の下方に適当な深さの浅いp型ウェルを形成
し、他の領域には、適当な深さの深いp型ウェルを形成
し、適当な反焦点ぼけの電圧を印加するようにしたもの
である。
The OFD voltage control method is based on a HOFD (Horizontal Overflow Drain).
er Flow Drain) and VOFD (Vertical Over Drain)
n)) method. However, since the HOFD method is a clocking method, VCCDs corresponding to the respective photodiodes are arranged on a straight line. Therefore, the opening area of the photodiode is relatively reduced, the fill factor is reduced, and the CC is reduced.
The sensitivity of the D image element decreases. For this reason, the VOFD method is currently used as the OFD voltage control method. In this method, two ion implantation steps are performed to form a shallow p-type well with an appropriate depth below the photodiode region, and a deep p-type well with an appropriate depth in other regions. , An appropriate anti-blur voltage is applied.

【0005】上記VOFD方式のCCD映像素子の構造
は、図8に示すように、n型基板1の上にn型エピタキ
シャル層2を形成し、n型エピタキシャル層2にイオン
注入工程を2度実施して浅いp型ウェル3と深いp型ウ
ェル4とを形成し、浅いp型ウェル3の上方にはn型ホ
トダイオード5を、深いp型ウェル4の上方にはn型B
CCD6を形成し、n型ホトダイオード5とn型BCC
D6との間の表面領域上にこれらの相互接続のための多
結晶シリコン膜からなるトランスファゲート7と、n型
BCCD6上に多結晶シリコン膜からなり、n型BCC
D6にクロック信号を供給するBCCDクロック信号供
給用ゲート7aを形成したものである。
As shown in FIG. 8, the structure of the VOFD CCD image element is such that an n-type epitaxial layer 2 is formed on an n-type substrate 1 and an ion implantation step is performed twice on the n-type epitaxial layer 2. Then, a shallow p-type well 3 and a deep p-type well 4 are formed, an n-type photodiode 5 is provided above the shallow p-type well 3, and an n-type B
Forming CCD 6, n-type photodiode 5 and n-type BCC
A transfer gate 7 made of a polycrystalline silicon film for these interconnections on a surface area between the gates D6 and D6, and an n-type BCC
A BCCD clock signal supply gate 7a for supplying a clock signal to D6 is formed.

【0006】図8に示すように、光λが入射してn型ホ
トダイオード5の下方に信号電荷が生成されれば、この
信号電荷はトランスファゲート7に供給されるハイレベ
ル信号によってn型BCCD6へ移動されてその下方に
蓄積される。このとき、通常のCCDのクロッキングに
よってBCCDへ移動される。図9は、図8のa−a′
線に沿う電位のアウトラインを示す図である。
As shown in FIG. 8, when light λ is incident to generate signal charges below the n-type photodiode 5, the signal charges are transferred to the n-type BCCD 6 by a high-level signal supplied to the transfer gate 7. It is moved and accumulated below it. At this time, the CCD is moved to the BCCD by ordinary clocking of the CCD. FIG. 9 shows aa 'of FIG.
It is a figure which shows the outline of the electric potential along a line.

【0007】しかし、同時にn型ホトダイオード5の下
方に生成された電荷は深いp型ウェル4とn型BCCD
6との間に漂流するか、またはn型基板1に流れ出てし
まうので、スミア現象を起こす。さらに、n型基板1に
シャッタ電圧(約30〜40V程度)を印加する場合、この
シャッタ電圧は非常に大きいので、上記電荷はこのシャ
ッタ電圧によってn型基板1に流れ出てしまうからスミ
ア現象がさらに増加し得る。
However, at the same time, the electric charge generated below the n-type photodiode 5 is changed to the deep p-type well 4 and the n-type BCCD.
6 or flows out to the n-type substrate 1, causing a smear phenomenon. Furthermore, when a shutter voltage (approximately 30 to 40 V) is applied to the n-type substrate 1, since the shutter voltage is very large, the charges flow out to the n-type substrate 1 due to the shutter voltage, so that the smear phenomenon further occurs. May increase.

【0008】上記スミア現象を防止するために、従来
は、高エネルギーで高濃度p型のイオン注入を行ってn
型BCCD6と深いp型ウェル4との間の所定の領域に
高濃度p型BPL(ブロッキング p型層(Blocking P T
ype Layer))(図16の符号8)を形成した。
Conventionally, in order to prevent the smear phenomenon, high energy and high concentration p-type ion
A high concentration p-type BPL (blocking p-type layer (Blocking PT-type layer) is formed in a predetermined region between the type BCCD 6 and the deep p-type well 4.
ype Layer)) (reference numeral 8 in FIG. 16).

【0009】高濃度p型BPLを利用した従来のCCD
映像素子の製造工程を図10〜図15を用いて説明す
る。まず、図10に示すように、n型基板1上にn型エ
ピタキシャル層2を形成する。
Conventional CCD using high concentration p-type BPL
The manufacturing process of the image element will be described with reference to FIGS. First, an n-type epitaxial layer 2 is formed on an n-type substrate 1 as shown in FIG.

【0010】次に、OFD電圧制御のため、図11に示
すように、高濃度p型のイオン注入工程を2度実施す
る。
Next, as shown in FIG. 11, a high-concentration p-type ion implantation process is performed twice for OFD voltage control.

【0011】次に、イオンを拡散させるため、熱処理を
行って図12に示すように、所定の深さの浅いp型ウェ
ル3と深いp型ウェル4とを形成する。
Next, in order to diffuse ions, heat treatment is performed to form a shallow p-type well 3 and a deep p-type well 4 having a predetermined depth, as shown in FIG.

【0012】次に、図13に示すように、深いp型ウェ
ル4の所定の領域に高エネルギー(約600KeV)のイ
オン注入装置を使って高濃度p型BPL8を形成する。
この高濃度p型BPL8は、BCCDに蓄積された信号
電荷が基板のシャッタ電圧によって基板の方へ流れ出
し、ホトダイオードに生成された信号電荷が上記BCC
Dに移動されないというスミア現象を防止する。
Next, as shown in FIG. 13, a high-concentration p-type BPL 8 is formed in a predetermined region of the deep p-type well 4 by using a high-energy (about 600 KeV) ion implantation apparatus.
In the high-concentration p-type BPL8, the signal charges accumulated in the BCCD flow toward the substrate due to the shutter voltage of the substrate, and the signal charges generated in the photodiode are converted into the BCC.
The smear phenomenon of not being moved by D is prevented.

【0013】次に、図14に示すように、浅いp型ウェ
ル3と深いp型ウェル4の所定の表面領域にn型イオン
を注入してn型ホトダイオード5とn型BCCD6とを
形成する。このとき、n型ホトダイオード5の表面には
通常高濃度p型薄膜9を形成する。
Next, as shown in FIG. 14, n-type ions are implanted into predetermined surface regions of the shallow p-type well 3 and the deep p-type well 4 to form an n-type photodiode 5 and an n-type BCCD 6. At this time, a high-concentration p-type thin film 9 is usually formed on the surface of the n-type photodiode 5.

【0014】次に、図15に示すように、多結晶シリコ
ン膜を用いて、n型ホトダイオード5とn型BCCD6
との間の表面上部にこれらを相互接続するためのトラン
スファゲート7を形成し、n型BCCD6上にBCCD
クロック信号供給用ゲート7aを形成する。このとき、
多結晶シリコンの代わりにアルミニウムのような金属も
使用することができるが、金属は伝達特性が悪いので、
ほとんど使用しない。
Next, as shown in FIG. 15, an n-type photodiode 5 and an n-type BCCD 6 are formed by using a polycrystalline silicon film.
A transfer gate 7 for interconnecting them is formed in the upper part of the surface between
A clock signal supply gate 7a is formed. At this time,
Metals like aluminum can be used instead of polycrystalline silicon, but metals have poor transfer properties,
Rarely used.

【0015】図16は、上述の工程によって製造された
CCD映像素子の動作を説明するための図である。
FIG. 16 is a diagram for explaining the operation of the CCD image element manufactured by the above-described steps.

【0016】n型ホトダイオード5に光λが入射する
と、このn型ホトダイオード5と浅いp型ウェル3との
間の領域である光信号電荷出力領域Oに信号電荷が生成
される。トランスファゲート7にハイレベル駆動信号が
供給されると、この信号電荷は、n型ホトダイオード5
とn型BCCD6との間の領域である信号電荷伝達チャ
ネル領域Pを通ってn型BCCD6に隣接する領域であ
る信号電荷蓄積領域Qに蓄積される。次に、この信号電
荷蓄積領域Qに蓄積された信号電荷は、通常のCCDの
クロッキング動作によりHCCD(ホリゾンタル チャ
ージ カプルド デバイス(Horizontal Charge Coupled D
evice):図示せず)に移動する。このとき、光信号電荷
出力領域Oで生成された信号電荷が信号電荷伝達チャネ
ル領域Pを通過せず、深いp型ウェル4と高濃度p型B
PL8の間の領域であるスミア信号排出領域Rに流れ出
ると、CCD映像素子の画面にはスミア現象が発生す
る。しかし、図16のb−b′線の電位のアウトライン
を示す図17に示すように、高濃度p型BPL8の高い
電位障壁のため、信号電荷がスミア信号排出領域Rに流
れ出にくいからスミア現象が低減される。実際、n型基
板1に流れ出るスミア信号よりn型BCCD6の方で漂
流している信号電荷がもっと大きい問題となる。
When light λ is incident on the n-type photodiode 5, a signal charge is generated in an optical signal charge output region O which is a region between the n-type photodiode 5 and the shallow p-type well 3. When a high-level drive signal is supplied to the transfer gate 7, this signal charge is transferred to the n-type photodiode 5
The signal charge is accumulated in a signal charge accumulation region Q, which is a region adjacent to the n-type BCCD 6, through a signal charge transfer channel region P, which is a region between the n-type BCCD 6. Next, the signal charges stored in the signal charge storage region Q are transferred to a HCCD (Horizontal Charge Coupled Device) by a normal CCD clocking operation.
evice): Move to (not shown). At this time, the signal charges generated in the optical signal charge output region O do not pass through the signal charge transfer channel region P, and the deep p-type well 4 and the high concentration p-type B
When flowing into the smear signal discharge area R, which is the area between PL8, a smear phenomenon occurs on the screen of the CCD image element. However, as shown in FIG. 17, which shows the outline of the potential of the line bb 'in FIG. 16, the smear phenomenon occurs because the signal charge does not easily flow into the smear signal discharge region R due to the high potential barrier of the high concentration p-type BPL8. Reduced. In fact, there is a problem that the signal charge drifting in the n-type BCCD 6 is larger than the smear signal flowing out to the n-type substrate 1.

【0017】上述の従来構造では、反焦点ぼけの電圧印
加のためにp型イオン注入を2度行ってプレート型の浅
いp型ウェル3と深いp型ウェル4とを形成したが、浅
いp型ウェルをハート形状に形成してもよい。
In the above-mentioned conventional structure, the p-type ion implantation is performed twice to apply the anti-focus blur voltage to form the plate-type shallow p-type well 3 and the deep p-type well 4, but the shallow p-type well 3 is formed. The well may be formed in a heart shape.

【0018】また、上記高濃度p型ウェル全体を平坦に
形成し、イオン注入工程時、ホトダイオードの下方とB
CCDの下方との部分の不純物濃度を異なるように調整
してスミア現象の防止とOFD電圧制御のためのCCD
映像素子の構造およびその製造方法とが工夫されている
が、イオン注入工程の難しさに起因して使用されない。
Further, the entire high-concentration p-type well is formed flat, and the lower portion of the photodiode and the B
CCD for preventing the smear phenomenon and controlling the OFD voltage by adjusting the impurity concentration of the lower part of the CCD differently
Although the structure of the image element and the method of manufacturing the same have been devised, they are not used due to the difficulty of the ion implantation process.

【0019】[0019]

【発明が解決しようとする課題】上述の図10〜17の
CCD映像素子およびその製造方法では、次のような問
題がある。すなわち、高濃度p型BPLを形成するため
のイオン注入装置が高価であるのみならず、この装置の
用途が制限され実用的でない。また、高濃度p型イオン
注入時、約600KeVほどの高エネルギーが使用される
ので、基板表面に欠陥を与えやすい。したがって、高濃
度p型BPLを形成することによりスミア現象低減効果
はあるが、上記欠陥によるノイズの発生が憂慮されるの
で、高濃度p型BPLの形成のための高度の技術が要求
される。
The above-described CCD image element shown in FIGS. 10 to 17 and the method of manufacturing the same have the following problems. That is, not only is an ion implantation apparatus for forming a high-concentration p-type BPL expensive, but the use of this apparatus is limited and impractical. In addition, since high energy of about 600 KeV is used at the time of high-concentration p-type ion implantation, a defect is easily given to the substrate surface. Therefore, although the formation of the high-concentration p-type BPL has the effect of reducing the smear phenomenon, the generation of noise due to the above-mentioned defect is a concern, and therefore, a high technology for forming the high-concentration p-type BPL is required.

【0020】本発明の目的は、OFD電圧の制御および
スミアノイズの低減が容易なCCD映像素子を提供する
ことにある。
An object of the present invention is to provide a CCD image element which can easily control OFD voltage and reduce smear noise.

【0021】[0021]

【課題を解決するための手段】上記目的を達成するため
に、本発明のCCD映像素子は、第1導電型基板の表面
領域に水平方向に所定の間隔をおいて設けたOFD電圧
制御用第1導電型領域およびスミア現象低減用第2導電
型領域と、その上に全体的に設けた第2導電型エピタキ
シャル層と、上記第2導電型エピタキシャル層の表面領
域の、上記OFD電圧制御用第1導電型領域の上部と上
記スミア現象低減用第2導電型領域の上部にそれぞれ設
けた第1導電型ホトダイオードおよび第1導電型BCC
Dと、上記第1導電型ホトダイオードと上記第1導電型
BCCDとの間の上記第2導電型エピタキシャル層表面
上部に設けたトランスファゲートと、上記第1導電型B
CCD上の上記第2導電型エピタキシャル層表面上部に
設けたBCCDクロック信号供給用ゲートを有し、上記
OFD電圧制御用第1導電型領域は、上記第1導電型基
板に不純物を導入して設け、かつ、上記スミア現象低減
用第2導電型領域は、上記第1導電型BCCDの直下の
みに設けたことを特徴とする。
In order to achieve the above object, a CCD image sensor according to the present invention comprises a first conductive type substrate having an OFD voltage control for an OFD voltage control provided at a predetermined interval in a horizontal direction at a surface region thereof. A first conductivity type region and a second conductivity type region for reducing a smear phenomenon, a second conductivity type epitaxial layer provided entirely thereon, and a surface region of the second conductivity type epitaxial layer, wherein A first conductivity type photodiode and a first conductivity type BCC respectively provided above the one conductivity type region and the second conductivity type region for reducing the smear phenomenon.
D, a transfer gate provided above the surface of the second conductivity type epitaxial layer between the first conductivity type photodiode and the first conductivity type BCCD, and the first conductivity type B
A gate for supplying a BCCD clock signal provided above the surface of the second conductive type epitaxial layer on the CCD; and the first conductive type region for controlling the OFD voltage is provided by introducing impurities into the first conductive type substrate. and second conductivity type regions for the smear phenomenon reduction, characterized in that provided only immediately under the first conductive type BCCD.

【0022】また、上記OFD電圧制御用第1導電型領
域と上記スミア現象低減用第2導電型領域との間に、ス
ミア信号排出領域を設けたことを特徴とする。
Also, the first conductivity type region for OFD voltage control
Between the region and the second region of the second conductivity type for smear reduction.
It is characterized in that a mire signal discharge area is provided.

【0023】[0023]

【作用】本発明では、第1導電型BCCDの下方にスミ
ア現象低減用第2導電型領域を有するので、従来に比べ
て優れたスミア現象低減特性を有する。また、従来の製
造工程に比べて高価なイオン注入装置を必要としないの
で、経済的であるのみならず、イオン注入時、高エネル
ギーを必要としないので、基板の欠陥を防止することが
できる。さらに、従来の製造工程に比べて高精密度が要
求されないので、迅速な工程進行ができる。
According to the present invention, since the second conductivity type region for reducing the smear phenomenon is provided below the first conductivity type BCCD, the smear phenomenon reduction characteristic is superior to the conventional one. In addition, since an expensive ion implantation apparatus is not required as compared with the conventional manufacturing process, not only is it economical, but also because high energy is not required at the time of ion implantation, a defect of the substrate can be prevented. Further, since high precision is not required as compared with the conventional manufacturing process, the process can be performed quickly.

【0024】[0024]

【実施例】以下、本発明の一実施例のCCD映像素子の
製造工程を図1〜図5を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A manufacturing process of a CCD image element according to an embodiment of the present invention will be described below with reference to FIGS.

【0025】まず、図1に示すように、n型基板11上
の所定の領域にn型イオンを注入する。
First, as shown in FIG. 1, n-type ions are implanted into a predetermined region on the n-type substrate 11.

【0026】次に、図2に示すように、n型イオンが注
入された領域から水平方向に所定の間隔離れた領域のn
型基板11に高濃度p型イオンを注入する。
Next, as shown in FIG. 2, n in a region horizontally separated from the region into which the n-type ions are implanted by a predetermined distance.
High concentration p-type ions are implanted into the mold substrate 11.

【0027】次に、図3に示すように、熱処理を行って
上記注入されたn型イオンと高濃度p型イオンとを拡散
させてOFD電圧制御用n型領域12とスミア現象低減
用高濃度p型領域13とを形成した後、その上に全体的
にp型エピタキシャル層14を形成する。ここで、OF
D電圧制御用n型領域12とスミア現象低減用高濃度p
型領域13との間は、スミア信号がn型基板11に流れ
出る通路の機能を果たし、p型エピタキシャル層14
は、図12に示した従来の構造のp型ウェル3、4と同
じ機能を果たす。
Next, as shown in FIG. 3, heat treatment is performed to diffuse the implanted n-type ions and the high-concentration p-type ions to form an n-type region 12 for OFD voltage control and a high concentration for smear phenomenon reduction. After the formation of the p-type region 13, a p-type epitaxial layer 14 is entirely formed thereon. Where OF
N-type region 12 for D voltage control and high concentration p for smear phenomenon reduction
A function of a passage through which a smear signal flows out to the n-type substrate 11 is provided between the p-type epitaxial layer 14 and the p-type epitaxial layer 14.
Perform the same function as the p-type wells 3 and 4 of the conventional structure shown in FIG.

【0028】次に、図4に示すように、p型エピタキシ
ャル層14の表面領域にそれぞれn型イオンを注入し
て、OFD電圧制御用n型領域12とスミア現象低減用
高濃度p型領域13の上部にn型ホトダイオード15と
n型BCCD16とを形成する。
Next, as shown in FIG. 4, n-type ions are implanted into the surface regions of the p-type epitaxial layer 14, respectively, to form an n-type region 12 for OFD voltage control and a high-concentration p-type region 13 for smear phenomenon reduction. An n-type photodiode 15 and an n-type BCCD 16 are formed on the upper part of FIG.

【0029】次に、図5に示すように、n型ホトダイオ
ード15の表面上に高濃度p型薄膜18を形成する。次
に、多結晶シリコン膜を用いて、n型ホトダイオード1
5とn型BCCD16との間の表面上部にこれらを相互
接続するためのトランスファゲート17を形成し、n型
BCCD16上にBCCDクロック信号供給用ゲート1
7aを形成する。このとき、多結晶シリコンの代わり
に、アルミニウムのような金属を使用することができ
る。図6および図7は、上記工程により作製したCCD
映像素子の作用を説明する図で、これを参照して説明す
る。
Next, as shown in FIG. 5, a high-concentration p-type thin film 18 is formed on the surface of the n-type photodiode 15. Next, an n-type photodiode 1 is formed using a polycrystalline silicon film.
A transfer gate 17 for interconnecting them is formed above the surface between the first and second n-type BCCDs 16 and a BCCD clock signal supply gate 1 is provided on the n-type BCCD 16.
7a is formed. At this time, a metal such as aluminum can be used instead of polycrystalline silicon. FIGS. 6 and 7 show the CCD manufactured by the above process.
This is a diagram for explaining the operation of the video element, and the description will be made with reference to this drawing.

【0030】まず、n型ホトダイオード15に光λが入
射すると、このn型ホトダイオード15の下方の光信号
電荷出力領域Oには信号電荷が生成される。この信号電
荷はトランスファゲート17にハイレベル信号が供給さ
れると、p型エピタキシャル層14中の信号電荷伝達チ
ャネル領域Pを通ってn型BCCD16の下方の信号電
荷蓄積領域Qに移動されて蓄積される。次に、この信号
電荷蓄積領域Qに蓄積された信号電荷は、CCDのクロ
ッキング動作によりHCCD(図示せず)に移動する。
このとき、光信号電荷出力領域Oから信号電荷伝達チャ
ネル領域Pを通って信号電荷蓄積領域Qに到達されない
信号電荷の一部によって、スミア現象が発生する。ここ
で、n型基板11に流れ出たスミア電荷より、n型BC
CD16の下方に漂流しているスミア電荷が、画面の映
像の品質に大きな影響を与える。なぜならば、複数のC
CD映像素子が固体撮像素子に使用される場合、1つの
ホトダイオードで生成されたスミア電荷が漂流し、この
スミア電荷が他のダイオードで生成された信号電荷に影
響を与えるからである。
First, when light λ is incident on the n-type photodiode 15, a signal charge is generated in the optical signal charge output region O below the n-type photodiode 15. When a high-level signal is supplied to the transfer gate 17, the signal charge is transferred to the signal charge storage region Q below the n-type BCCD 16 through the signal charge transfer channel region P in the p-type epitaxial layer 14 and stored therein. You. Next, the signal charges stored in the signal charge storage region Q move to the HCCD (not shown) by the clocking operation of the CCD.
At this time, a smear phenomenon occurs due to a part of the signal charge that does not reach the signal charge storage region Q from the optical signal charge output region O through the signal charge transfer channel region P. Here, from the smear charge flowing out to the n-type substrate 11, the n-type BC
Smear charge drifting below the CD 16 has a significant effect on the image quality of the screen. Because multiple C
This is because, when a CD image element is used for a solid-state imaging device, smear charges generated by one photodiode drift, and the smear charges affect signal charges generated by another diode.

【0031】本実施例の構造では、図6に示すように、
n型BCCD16の下方にスミア現象低減用高濃度p型
領域13が形成されているので、この領域に高い電位障
壁が形成される。したがって、スミア信号は、この領域
に留まらず、電位障壁が形成されないスミア信号排出領
域Rを介してn型基板11に流れ出る。
In the structure of this embodiment, as shown in FIG.
Since the high-concentration p-type region 13 for reducing the smear phenomenon is formed below the n-type BCCD 16, a high potential barrier is formed in this region. Therefore, the smear signal does not remain in this region and flows out to the n-type substrate 11 through the smear signal discharge region R where no potential barrier is formed.

【0032】図6のc−c′線の電位のアウトラインを
図7に示す。図7に示すように、スミア現象低減用高濃
度p型領域13中には、高い電位障壁と広い中立領域と
が形成されるので、スミア信号はこの領域に留まらず、
OFD電圧制御用n型領域12とスミア現象低減用高濃
度p型領域13との間の電位障壁が非常に低いスミア信
号排出領域Rを通ってn型基板11に流れ出る。
FIG. 7 shows an outline of the potential along the line cc 'in FIG. As shown in FIG. 7, a high potential barrier and a wide neutral region are formed in the high-concentration p-type region 13 for smear phenomenon reduction, so that the smear signal does not remain in this region.
The potential barrier between the n-type region 12 for OFD voltage control and the high-concentration p-type region 13 for smear phenomenon reduction flows out to the n-type substrate 11 through the smear signal discharge region R which is very low.

【0033】以上説明したように、上記実施例では次の
ような効果を有する。すなわち、n型BCCD16の下
方にスミア現象低減用高濃度p型領域13を有するの
で、従来に比べて優れたスミア現象低減特性を有する。
また、従来の製造工程に比べて高価なイオン注入装置を
必要としないので、経済的であるのみならず、イオン注
入時、高エネルギーを必要としないので、基板の欠陥を
防止することができる。さらに、従来の製造工程に比べ
て高精密度が要求されないので、迅速な工程進行ができ
る。
As described above, the above embodiment has the following effects. That is, since the high-concentration p-type region 13 for smear phenomenon reduction is provided below the n-type BCCD 16, the smear phenomenon reduction characteristic is superior to that of the related art.
In addition, since an expensive ion implantation apparatus is not required as compared with the conventional manufacturing process, not only is it economical, but also because high energy is not required at the time of ion implantation, a defect of the substrate can be prevented. Further, since high precision is not required as compared with the conventional manufacturing process, the process can be performed quickly.

【0034】以上本発明を実施例に基づいて具体的に説
明したが、本発明は上記実施例に限定されるものではな
く、その要旨を逸脱しない範囲において種々変更可能で
あることは勿論である。
Although the present invention has been described in detail with reference to the embodiments, the present invention is not limited to the above-described embodiments, and it is needless to say that various changes can be made without departing from the scope of the invention. .

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
優れたスミア現象低減特性を有するCCD映像素子を提
供することができる。また、従来の製造工程に比べて高
価なイオン注入装置を必要としないので、経済的である
のみならず、イオン注入時、高エネルギーを必要としな
いので、基板の欠陥を防止することができる。さらに、
従来の製造工程に比べて高精密度が要求されないので、
迅速な工程進行ができる。
As described above, according to the present invention,
A CCD image element having excellent smear phenomenon reduction characteristics can be provided. In addition, since an expensive ion implantation apparatus is not required as compared with the conventional manufacturing process, not only is it economical, but also because high energy is not required at the time of ion implantation, a defect of the substrate can be prevented. further,
Since high precision is not required compared to conventional manufacturing processes,
Rapid process progress is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のCCD映像素子の製造工程
断面図である。
FIG. 1 is a sectional view showing a manufacturing process of a CCD image element according to an embodiment of the present invention.

【図2】本発明の一実施例のCCD映像素子の製造工程
断面図である。
FIG. 2 is a cross-sectional view illustrating a manufacturing process of the CCD image element according to the embodiment of the present invention.

【図3】本発明の一実施例のCCD映像素子の製造工程
断面図である。
FIG. 3 is a cross-sectional view illustrating a manufacturing process of the CCD image element according to the embodiment of the present invention.

【図4】本発明の一実施例のCCD映像素子の製造工程
断面図である。
FIG. 4 is a cross-sectional view illustrating a manufacturing process of the CCD image element according to the embodiment of the present invention.

【図5】本発明の一実施例のCCD映像素子の製造工程
断面図である。
FIG. 5 is a cross-sectional view illustrating a manufacturing process of the CCD image element according to the embodiment of the present invention.

【図6】本発明の一実施例のCCD映像素子の動作説明
図である。
FIG. 6 is an explanatory diagram of an operation of the CCD image element according to one embodiment of the present invention.

【図7】図6のc−c′線の電位のアウトラインを示す
図である。
FIG. 7 is a diagram showing an outline of the potential of the line cc 'of FIG. 6;

【図8】従来のスミア現象を考慮しないCCD映像素子
の構造断面および動作説明図である。
FIG. 8 is a structural sectional view and operation explanatory view of a conventional CCD image element without considering a smear phenomenon.

【図9】図8のa−a′線の電位のアウトラインを示す
図である。
FIG. 9 is a diagram showing an outline of the potential of the line aa ′ in FIG. 8;

【図10】従来のCCD映像素子の製造工程断面図であ
る。
FIG. 10 is a cross-sectional view illustrating a manufacturing process of a conventional CCD image element.

【図11】従来のCCD映像素子の製造工程断面図であ
る。
FIG. 11 is a cross-sectional view showing a manufacturing process of a conventional CCD image element.

【図12】従来のCCD映像素子の製造工程断面図であ
る。
FIG. 12 is a cross-sectional view illustrating a manufacturing process of a conventional CCD image element.

【図13】従来のCCD映像素子の製造工程断面図であ
る。
FIG. 13 is a cross-sectional view showing a manufacturing process of a conventional CCD image element.

【図14】従来のCCD映像素子の製造工程断面図であ
る。
FIG. 14 is a cross-sectional view showing a manufacturing process of a conventional CCD image element.

【図15】従来のCCD映像素子の製造工程断面図であ
る。
FIG. 15 is a cross-sectional view illustrating a manufacturing process of a conventional CCD image element.

【図16】従来のスミア現象を考慮したCCD映像素子
の構造断面および動作説明図である。
FIG. 16 is a structural sectional view and operation explanatory view of a conventional CCD image element in which a smear phenomenon is considered.

【図17】図8のb−b′線の電位のアウトラインを示
す図である。
FIG. 17 is a diagram showing an outline of the potential of line bb ′ in FIG. 8;

【符号の説明】[Explanation of symbols]

11…n型基板11、12…OFD電圧制御用n型領
域、13…スミア現象低減用高濃度p型領域、14…p
型エピタキシャル層、15…n型ホトダイオード、16
…n型BCCD、17…トランスファゲート、17a…
BCCDクロック信号供給用ゲート、18…高濃度p型
薄膜、λ…光、O…光信号電荷出力領域、P…信号電荷
伝達チャネル領域、Q…信号電荷蓄積領域、R…スミア
信号排出領域。
11: n-type substrate 11, 12: n-type region for OFD voltage control, 13: high-concentration p-type region for smear phenomenon reduction, 14: p
-Type epitaxial layer, 15... N-type photodiode, 16
... n-type BCCD, 17 ... transfer gate, 17a ...
A gate for supplying a BCCD clock signal, 18 a high-concentration p-type thin film, λ light, O light signal charge output region, P signal charge transfer channel region, Q signal charge storage region, and R smear signal discharge region.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1導電型基板の表面領域に水平方向に所
定の間隔をおいて設けたOFD電圧制御用第1導電型領
域およびスミア現象低減用第2導電型領域と、その上に
全体的に設けた第2導電型エピタキシャル層と、上記第
2導電型エピタキシャル層の表面領域の、上記OFD電
圧制御用第1導電型領域の上部と上記スミア現象低減用
第2導電型領域の上部にそれぞれ設けた第1導電型ホト
ダイオードおよび第1導電型BCCDと、上記第1導電
型ホトダイオードと上記第1導電型BCCDとの間の上
記第2導電型エピタキシャル層表面上部に設けたトラン
スファゲートと、上記第1導電型BCCD上の上記第2
導電型エピタキシャル層表面上部に設けたBCCDクロ
ック信号供給用ゲートを有し、上記OFD電圧制御用第
1導電型領域は、上記第1導電型基板に不純物を導入し
て設け、かつ、上記スミア現象低減用第2導電型領域
は、上記第1導電型BCCDの直下のみに設けたことを
特徴とするCCD映像素子。
1. A first conductivity type region for controlling OFD voltage and a second conductivity type region for reducing smear phenomenon provided on a surface region of a first conductivity type substrate at a predetermined interval in a horizontal direction, and a whole region thereon. A second conductive type epitaxial layer provided on the first conductive type region for controlling the OFD voltage and a second conductive type region for reducing the smear phenomenon in the surface region of the second conductive type epitaxial layer. A first conductivity type photodiode and a first conductivity type BCCD provided respectively; a transfer gate provided on an upper surface of the second conductivity type epitaxial layer between the first conductivity type photodiode and the first conductivity type BCCD; The second type on the first conductivity type BCCD
A gate for supplying a BCCD clock signal provided on the upper surface of the conductive type epitaxial layer; the first conductive type region for OFD voltage control provided by introducing impurities into the first conductive type substrate; reduction for the second conductivity type region, CCD image sensor, characterized in that provided only immediately under the first conductive type BCCD.
【請求項2】 上記OFD電圧制御用第1導電型領域と上
記スミア現象低減用第2導電型領域との間に、スミア信
号排出領域を設けたことを特徴とする請求項1記載のC
CD映像素子。
2. The device according to claim 1 , wherein a smear signal discharge region is provided between the OFD voltage control first conductivity type region and the smear phenomenon reducing second conductivity type region.
CD image element.
JP3107229A 1990-05-11 1991-05-13 CCD image element Expired - Lifetime JP2641809B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019900006730A KR920007355B1 (en) 1990-05-11 1990-05-11 Method of producing a ccd image sensor
KR1990-6730 1990-05-11

Publications (2)

Publication Number Publication Date
JPH0774334A JPH0774334A (en) 1995-03-17
JP2641809B2 true JP2641809B2 (en) 1997-08-20

Family

ID=19298928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3107229A Expired - Lifetime JP2641809B2 (en) 1990-05-11 1991-05-13 CCD image element

Country Status (7)

Country Link
JP (1) JP2641809B2 (en)
KR (1) KR920007355B1 (en)
DE (1) DE4115060C2 (en)
FR (1) FR2662852B1 (en)
GB (1) GB2245423B (en)
NL (1) NL9100825A (en)
RU (1) RU2025830C1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960002645B1 (en) * 1992-04-03 1996-02-24 엘지반도체주식회사 Charge transferring device and solid state image picking-up device
KR0130959B1 (en) * 1992-06-03 1998-04-14 쓰지 하루오 Solid state imaging device and method of manufacture therefor
DE4329838B4 (en) * 1993-09-03 2005-09-22 Hynix Semiconductor Inc., Ichon Solid-state image sensor
JP2003248097A (en) 2002-02-25 2003-09-05 Konica Corp Radiation image conversion panel and its production method
JP5375142B2 (en) * 2009-02-05 2013-12-25 ソニー株式会社 Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
JP5375141B2 (en) * 2009-02-05 2013-12-25 ソニー株式会社 Solid-state imaging device, method for manufacturing solid-state imaging device, driving method for solid-state imaging device, and electronic apparatus
JP4752926B2 (en) * 2009-02-05 2011-08-17 ソニー株式会社 Solid-state imaging device, manufacturing method of solid-state imaging device, driving method of solid-state imaging device, electronic apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4527182A (en) * 1980-09-19 1985-07-02 Nippon Electric Co., Ltd. Semiconductor photoelectric converter making excessive charges flow vertically
JPS5819080A (en) * 1981-07-27 1983-02-03 Sony Corp Solid-state image sensor
JPH0614544B2 (en) * 1983-10-03 1994-02-23 松下電子工業株式会社 Method of manufacturing solid-state imaging device
JPS60169165A (en) * 1984-02-10 1985-09-02 Hitachi Ltd Solid image sensor element
JP2610010B2 (en) * 1984-02-29 1997-05-14 ソニー株式会社 Vertical overflow image sensor
JPS6156583A (en) * 1984-08-27 1986-03-22 Sharp Corp Solid-state image pickup device
JPH07107928B2 (en) * 1986-03-25 1995-11-15 ソニー株式会社 Solid-state imaging device
JP2573582B2 (en) * 1986-09-05 1997-01-22 日本電気株式会社 Method for manufacturing solid-state image sensor
JPH07120774B2 (en) * 1986-12-05 1995-12-20 松下電子工業株式会社 Solid-state imaging device
JPH01207964A (en) * 1988-02-16 1989-08-21 Oki Electric Ind Co Ltd Solid-state image sensor

Also Published As

Publication number Publication date
NL9100825A (en) 1991-12-02
RU2025830C1 (en) 1994-12-30
GB9109966D0 (en) 1991-07-03
GB2245423A (en) 1992-01-02
FR2662852A1 (en) 1991-12-06
FR2662852B1 (en) 1996-12-27
GB2245423B (en) 1994-02-02
KR910020919A (en) 1991-12-20
DE4115060C2 (en) 1997-07-31
KR920007355B1 (en) 1992-08-31
JPH0774334A (en) 1995-03-17
DE4115060A1 (en) 1991-12-19

Similar Documents

Publication Publication Date Title
KR100262774B1 (en) Top bus virtual phase frame interline transfer ccd image sensor
US4593303A (en) Self-aligned antiblooming structure for charge-coupled devices
JP3177514B2 (en) Solid-state image sensor
KR100259063B1 (en) Ccd image device
JPS5819080A (en) Solid-state image sensor
JPH02168670A (en) Solid-state image sensing device and manufacture thereof
US6974975B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and method for processing image signal
US5118631A (en) Self-aligned antiblooming structure for charge-coupled devices and method of fabrication thereof
JPS6216599B2 (en)
EP0278565B1 (en) Charge-coupled device and camera provided with such a device
US6551910B2 (en) Method of manufacturing solid-state image pickup device
US20050029553A1 (en) Clocked barrier virtual phase charge coupled device image sensor
JP2641809B2 (en) CCD image element
JPS6244818B2 (en)
JP3695748B2 (en) Solid-state imaging device, manufacturing method and driving method thereof
EP0069649B1 (en) Self-aligned antiblooming structure for charge-coupled devices and method of fabrication thereof
US5276341A (en) Structure for fabrication of a CCD image sensor
JP2008153428A (en) Solid-state imaging device and its manufacturing method
JPH08264747A (en) Solid-state picturization device having container-lateral-side overflow-drain inplant,and its manufacture
JP4277572B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
JPH04218966A (en) Solid state pickup device and fabrication and driving thereof
JPS60244068A (en) Buried channel charge coupled device
JPH08227989A (en) Solid state image pickup element
KR100240188B1 (en) Solid state image pickup device and manufacturing method thereof
JPH0697416A (en) Solid-state image sensing device and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S633 Written request for registration of reclamation of name

Free format text: JAPANESE INTERMEDIATE CODE: R313633

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S633 Written request for registration of reclamation of name

Free format text: JAPANESE INTERMEDIATE CODE: R313633

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

S633 Written request for registration of reclamation of name

Free format text: JAPANESE INTERMEDIATE CODE: R313633

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 15