JPH03257858A - Thin film capacitor - Google Patents

Thin film capacitor

Info

Publication number
JPH03257858A
JPH03257858A JP5705990A JP5705990A JPH03257858A JP H03257858 A JPH03257858 A JP H03257858A JP 5705990 A JP5705990 A JP 5705990A JP 5705990 A JP5705990 A JP 5705990A JP H03257858 A JPH03257858 A JP H03257858A
Authority
JP
Japan
Prior art keywords
film
thin film
lower electrode
film capacitor
rhenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5705990A
Other languages
Japanese (ja)
Other versions
JPH0687493B2 (en
Inventor
Shogo Matsubara
正吾 松原
Yoichi Miyasaka
洋一 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2057059A priority Critical patent/JPH0687493B2/en
Priority to DE69014027T priority patent/DE69014027T2/en
Priority to US07/575,368 priority patent/US5122923A/en
Priority to EP90309477A priority patent/EP0415750B1/en
Publication of JPH03257858A publication Critical patent/JPH03257858A/en
Publication of JPH0687493B2 publication Critical patent/JPH0687493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To form a thin film capacitor having a high-insulating characteristic and high-dielectric constant by using a film of specific elements and silicides or oxide thereof, which generate no surface roughness in a high temperature process, for the lower part electrode of a thin film capacitor. CONSTITUTION:In a thin film capacitor being formed on a board 1 having the structure, where a lower part electrode 3, a dielectric 4 and an upper part electrode 5 are by turns laminated, when the thin film capacitor is formed, where the lower part electrode 3 directly filming the dielectric 4 consists of one or more materials selected from rhenium, rhenium oxide and rhenium silicide, or where the lower electrode 3 consist of one or more materials selected from osmium, osmium oxide and osmium silicide, or where the lower electrode 3 consists of one or more materials selected from rhodium, rhodium oxide and rhodium silicide, or where the lower electrode 3 consists of one or more materials selected from iridium, iridium oxide and iridium silicide, dielectric breakdown strength is three times larger than the case where a conventional Pd film is used thus enabling excellent insulation to be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、小型電子回路に用いる薄膜コンデンサに関す
る (従来の技術) 集積回路技術の発達によって電子回路がますます小型化
しており、各種電子回路に必須の回路素子であるコンデ
ンサの小型化も一段と重要になっている。誘電体薄膜を
用いた薄膜コンデンサが、トランジスタ等の能動素子と
同一の基板上に形成されて利用されているが、能動素子
の小型化が急速に進む中で薄膜コンデンサの小型化は遅
れており、より一層の高集積化を阻む大きな要因となっ
てきている。これは、従来用いられている誘電体薄膜材
料が5i02、Si3N4等のような誘電率がたがだか
10以下の材料に限られているためであり、薄膜コンデ
ンサを小型化する手段として誘電率の大きな誘電体薄膜
を開発することが必要となっている。化学式ABO3で
表されるペロブスカイト型酸化物であるBaTiO3,
5rTi03、PbZrO3およびイルメナイト型酸化
物LiNbO3あるいはBi4Ti3O12等の強誘電
体に属する酸化物は、上記の単一組成並びに相互の固溶
体組成で、単結晶あるいはセラミックにおいて100以
上1ooooにも及ぶ誘電率を有することが知られてお
り、セラミック・コンデンサに広く用いられている。こ
れら材料の薄膜化は上述の薄膜コンデンサの小型化に極
めて有効であり、がなり以前から研究が行われている。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a thin film capacitor used in small electronic circuits (prior art) With the development of integrated circuit technology, electronic circuits are becoming more and more compact, and various electronic circuits The miniaturization of capacitors, which are essential circuit elements, is also becoming increasingly important. Thin film capacitors using dielectric thin films are used by being formed on the same substrate as active elements such as transistors, but while the miniaturization of active elements is progressing rapidly, the miniaturization of thin film capacitors has lagged behind. , has become a major factor preventing even higher integration. This is because conventionally used dielectric thin film materials are limited to materials with a dielectric constant of 10 or less, such as 5i02, Si3N4, etc. There is a need to develop large dielectric thin films. BaTiO3, which is a perovskite oxide represented by the chemical formula ABO3,
Oxides belonging to ferroelectrics, such as 5rTi03, PbZrO3, and ilmenite-type oxides LiNbO3 or Bi4Ti3O12, have a dielectric constant of 100 or more and as much as 1oooo in single crystal or ceramic in the above-mentioned single composition and mutual solid solution composition. is known and widely used in ceramic capacitors. Making these materials thinner is extremely effective in reducing the size of the thin film capacitors mentioned above, and research has been conducted since before the advent of technology.

それらの中で比較的良好な特性が得られている例として
は、プロシーディング・オブ・アイ・イー・イー・イー
(Proceedings ofthe IEEE)第
59巻lO号1440−1447頁に所載の論文があり
、スパッタリングによる成膜および熱処理を行ったBa
TiO3薄膜で16(室温で作成)から1900(12
00°Cで熱処理)の誘電率が得られている。
Among them, an example with relatively good characteristics is the paper published in Proceedings of the IEEE, Vol. 59, No. 10, pp. 1440-1447. Yes, Ba film formed by sputtering and heat treated
16 (made at room temperature) to 1900 (12
The dielectric constant was obtained (heat treated at 00°C).

(発明が解決しようとする課題) 上記のような従来作成されているBaTiO3等の誘電
体薄膜は、高い誘電率を得るためには薄膜作成時に高温
を必要とし、いずれも白金、パラジウム等の高融点貴金
属材料からなる下部電極の上に作成されたものである。
(Problems to be Solved by the Invention) The conventionally produced dielectric thin films such as BaTiO3 as described above require high temperatures during the production of the thin film in order to obtain a high dielectric constant. It was created on a lower electrode made of a melting point noble metal material.

一般に電極材料として用いられるアルミニウムやニクロ
ム、銅などでは、高温での電極の蒸発や誘電体膜との相
互反応により誘電率の著しい低下を招く。しかし、上記
のような高融点貴金属電極でも、300°C以上での誘
電体成膜において、再結晶による電極表面荒れを生じる
。このような電極上に形成された誘電体膜は膜厚が一様
でなく、電圧を印加したときに膜厚が薄い部分に電界が
強くかかるために絶縁特性に問題がある。
Aluminum, nichrome, copper, and the like commonly used as electrode materials cause a significant decrease in dielectric constant due to evaporation of the electrode at high temperatures and interaction with the dielectric film. However, even with the above-mentioned high melting point noble metal electrode, electrode surface roughness occurs due to recrystallization when dielectric film is formed at 300° C. or higher. The dielectric film formed on such an electrode is not uniform in film thickness, and when a voltage is applied, a strong electric field is applied to a thinner part of the film, resulting in problems with insulation properties.

現在の高集積回路に広く用いられている電極材料は多結
晶シリコンあるいはシリコン基板自体の一部に不純物を
高濃度にドーピングした低抵抗シリコン層である。以下
これらを総してシリコン電極と呼ぶ。シリコン電極は微
細加工技術が確立されており、すでに広く用いられてい
るため、シリコン電極上に良好な高誘電率薄膜が作製で
きれば、集積回路用コンデンサへの利用が可能となる。
The electrode material widely used in current highly integrated circuits is polycrystalline silicon or a low-resistance silicon layer in which a portion of the silicon substrate itself is heavily doped with impurities. Hereinafter, these will be collectively referred to as silicon electrodes. Microfabrication technology for silicon electrodes has been established and is already widely used, so if a good high dielectric constant thin film can be produced on silicon electrodes, it will be possible to use them in capacitors for integrated circuits.

しかしながら、従来技術では例えばIBM・ジャーナル
・オブ・リサーチ・アンド・ディベロップメン  ト(
IBM Journal of Re5earch a
nd Development)1969年11月号6
86−695頁に所載の5rTi03膜に関する論文に
おいて687−688頁の記載に、シリコン上に高誘電
率材料の薄膜を形成する場合には約100人の二酸化シ
リコン(Si02)に等価な層が界面に形成されてしま
うと報告されている。この界面層は誘電率が低い層であ
るため、結果としてシリコン上に形成した高誘電率薄膜
の実効的な誘電率は大きく低下してしまい、高誘電率材
料を用いる利点がほとんど損なわれていた。同様の報告
の他の例としてはジャーナル・オブ・バキュ、−ム・サ
イエンス・アンド・テクノロジー(Jouenal o
f Vacuum 5cience and Tech
−nology)第16巻2号315−318頁に所載
のBaTiO3に関する論文において、316頁の記載
に見ることができる。
However, in the prior art, for example, IBM Journal of Research and Development (
IBM Journal of Research a
nd Development) November 1969 Issue 6
In the paper on 5rTi03 film published on pages 86-695, it is stated on pages 687-688 that when forming a thin film of a high dielectric constant material on silicon, approximately 100 layers equivalent to silicon dioxide (Si02) are required. It has been reported that it is formed at the interface. Since this interfacial layer has a low dielectric constant, the effective dielectric constant of the high dielectric constant thin film formed on silicon is greatly reduced, almost eliminating the advantage of using high dielectric constant materials. . Other examples of similar reports include the Journal of Vaccination, Science and Technology;
f Vacuum 5science and Tech
This can be seen in the description on page 316 of the paper on BaTiO3 published in Vol. 16, No. 2, pp. 315-318.

本発明はBaTiO3,5rTi03に代表される高誘
電率材料の薄膜を用いて、高い容量密度と優れた絶縁特
性を有し、シリコン集積回路に適用可能な薄膜コンデン
サを実現することを目的としている。
An object of the present invention is to use a thin film of a high dielectric constant material such as BaTiO3 and 5rTi03 to realize a thin film capacitor that has high capacitance density and excellent insulation properties and is applicable to silicon integrated circuits.

(課題を解決するだめの手段) 本発明は基板上に形成され、下部電極、誘電体、上部電
極が順次積層形成された構造の薄膜コンデンサにおいて
、誘電体を直接成膜する下部電極がレニウム、オスミウ
ム、ロヂウム、イリヂウム、及びこれらのシリサイドあ
るいは酸化物のうちの1以上であることを特徴とする薄
膜コンデンサ及びその製造方法である。
(Means for Solving the Problems) The present invention provides a thin film capacitor that is formed on a substrate and has a structure in which a lower electrode, a dielectric material, and an upper electrode are sequentially laminated. A thin film capacitor characterized by being made of one or more of osmium, rhodium, iridium, and their silicides or oxides, and a method for manufacturing the same.

(実施例1) 以下、本発明の実施例について図面を参照して説明する
(Example 1) Hereinafter, examples of the present invention will be described with reference to the drawings.

第1図は実施例1の薄膜コンデンサの構造図で、シリコ
ン基板1の表面に絶縁層として酸化シリコン膜2が形成
され、酸化シリコン層上に下部電極3が形成され、下部
電極上に誘電体のBaTiO3膜4が形成され、その上
に上部電極のAI膜5が形成されている。
FIG. 1 is a structural diagram of the thin film capacitor of Example 1, in which a silicon oxide film 2 is formed as an insulating layer on the surface of a silicon substrate 1, a lower electrode 3 is formed on the silicon oxide layer, and a dielectric layer is formed on the lower electrode. A BaTiO3 film 4 is formed, and an AI film 5 as an upper electrode is formed thereon.

まず、水蒸気熱酸化法により単結晶シリコンの表面に酸
化シリコン層をlpm形成した。雰囲気は酸素ガスと水
素ガスの流量比をそれぞれ1:1に制御し、温度は11
00°Cで熱酸化を行った。下部電極は直流マグネトロ
ンスパッタ法で0.5pmの膜厚のものを作製した。動
またはReSi2組成のターゲットを用い、Arガス雰
囲気またはArと02の混合ガス雰囲気、4X10−3
Torr、基板温度100°Cで行った。
First, an 1pm silicon oxide layer was formed on the surface of single crystal silicon by steam thermal oxidation. The atmosphere was controlled at a flow rate ratio of 1:1 of oxygen gas and hydrogen gas, and the temperature was 11:1.
Thermal oxidation was performed at 00°C. The lower electrode was fabricated with a film thickness of 0.5 pm by direct current magnetron sputtering. Using a dynamic or ReSi2 composition target, Ar gas atmosphere or mixed gas atmosphere of Ar and 02, 4X10-3
Torr, and the substrate temperature was 100°C.

BaTiO3膜は化学量論組成の粉末ターゲットを用い
、高周波マグネトロンスパッタ法で0.5pmの膜厚の
ものを作製した。Ar −02混合ガス中、lXl0−
2Torr、基板温度600°Cでスパッタ成膜した。
A BaTiO3 film having a thickness of 0.5 pm was fabricated by high frequency magnetron sputtering using a powder target with a stoichiometric composition. In Ar-02 mixed gas, lXl0-
The film was formed by sputtering at 2 Torr and a substrate temperature of 600°C.

上部電極には0.5pmのAIを直流スパッタ法により
成膜した。本コンデンサの有効面積は3 X 5mm2
である。
A 0.5 pm AI film was formed on the upper electrode by direct current sputtering. The effective area of this capacitor is 3 x 5mm2
It is.

つぎに下部電極に、高融点貴金属であるPd膜を用いた
場合と本方法の膜令用いた場合のBaTiO3膜の特性
の違いについて述べる。第2図(a)は本方法の下部電
極膜を用いた場合のBaTiO3膜の、第2図(b)は
膜厚0.5pmのPd膜を用いた場合のBaTiO3膜
の絶縁破壊強度のヒストグラムである。絶縁破壊強度は
lXl0−’A/cm2の電流が流れたときの電界強度
と定義した。絶縁破壊強度は本方法の方が3倍以上大き
く、かつ、その分布にばらつきがなく、優れた絶縁特性
を示している。
Next, the difference in the characteristics of the BaTiO3 film when a Pd film, which is a high melting point noble metal, is used for the lower electrode and when the film age of this method is used will be described. Fig. 2(a) is a histogram of the dielectric breakdown strength of a BaTiO3 film using the lower electrode film of this method, and Fig. 2(b) is a histogram of the dielectric breakdown strength of a BaTiO3 film using a Pd film with a thickness of 0.5 pm. It is. The dielectric breakdown strength was defined as the electric field strength when a current of 1X10-'A/cm2 flows. The dielectric breakdown strength of this method is more than three times higher, and there is no variation in its distribution, indicating excellent insulation properties.

BaTiO3膜の一部をエツチングで除去し、下部電極
の表面粗さを触針式表面膜差計で測定したところ、レニ
ウムなどの膜とPd膜の平均粗さhは、それぞれ、50
人、380人であや、レニウムなどの膜の方が表面平坦
性に優れていることがわかった。なお、BaTiO3を
成膜する前の下部電極の表面粗さはそれぞれ30人程度
である。従って、両者の絶縁特性の違いはBaTiO3
成膜の高温プロセスでの下部電極の表面粗れに起因して
いると考えられる。この場合、下部電極としてレニウム
、酸化レニウム、レニウムシリサイド、またはこれらの
積層構造においても効果は同じであった。
When a part of the BaTiO3 film was removed by etching and the surface roughness of the lower electrode was measured using a stylus type surface film difference meter, the average roughness h of the rhenium film and the Pd film was 50%.
A total of 380 people found that films made of rhenium had better surface flatness. Note that the surface roughness of the lower electrode before forming the BaTiO3 film is about 30. Therefore, the difference in insulation properties between the two is BaTiO3
This is thought to be caused by surface roughness of the lower electrode during the high-temperature process of film formation. In this case, the same effect was obtained even when the lower electrode was made of rhenium, rhenium oxide, rhenium silicide, or a laminated structure thereof.

また、本実施例のレニウム、酸化レニウム、レニウムシ
リサイドの代わりにオスミウム、ロヂウム、イリヂウム
、及びそれらのシリサイドあるいは酸化物を用いた場合
でも、その上に形成されたBaTiO3膜の絶縁破壊強
度が従来のPd膜を用いた場合よりも3倍以上大きく、
優れた絶縁性が得られた。第1表に下部電極材料とその
上に形成された第1表 (実施例2) 第3図は実施例2の薄膜コンデンサの構造図で、単結晶
シリコン基板6の表面に絶縁層として酸化シリコン層7
が形成され、酸化シリコン層上に下部電極として多結晶
シリコン膜8とその上にレニウムなどの膜9が形成され
、これら下部電極上に誘電体のBaTiO3膜10が形
成され、その上に上部電極のAI膜11が形成されてい
る。
Moreover, even when osmium, rhodium, iridium, and their silicides or oxides are used instead of rhenium, rhenium oxide, and rhenium silicide in this example, the dielectric breakdown strength of the BaTiO3 film formed thereon is still lower than that of the conventional one. More than 3 times larger than when using Pd film,
Excellent insulation properties were obtained. Table 1 shows the lower electrode materials and the materials formed thereon in Table 1 (Example 2). layer 7
is formed, a polycrystalline silicon film 8 is formed as a lower electrode on the silicon oxide layer, a film 9 made of rhenium or the like is formed thereon, a dielectric BaTiO3 film 10 is formed on these lower electrodes, and an upper electrode is formed on it. An AI film 11 is formed.

多結晶シリコン膜はプラスマCVD法により、300°
Cで膜厚0.3pmのものを作製した。この多結晶シリ
コン膜にヒ素イオンを70KVの加速電圧で2×101
6cm−2の量をイオン注入し、更に900°Cで20
分間熱処理することにより約100ΩCのシート抵抗と
した。その他の膜の成膜は実施例1と同様に行った。
The polycrystalline silicon film is heated at 300° by plasma CVD method.
A film with a film thickness of 0.3 pm was prepared using C. Arsenic ions are applied to this polycrystalline silicon film at 2×101 at an accelerating voltage of 70 KV.
Ions were implanted in an amount of 6 cm-2, and further heated at 900 °C for 20
A sheet resistance of approximately 100 ΩC was achieved by heat treatment for a minute. The other films were formed in the same manner as in Example 1.

この場合、多結晶シリコン膜は絶縁層の酸化シリコンと
下部電極との密着性を良くするために用いているが、レ
ニウムなどの膜を多結晶シリコン膜の上に形成しても、
実施例1と同様に優れた絶縁特性を有する薄膜コンデン
サが得られた。なお、レニウムまたは酸化レニウムの場
合には多結晶シリコンの代わりに、レニウムシリサイド
などのメタルシリサイドとレニウムもしくは多結晶シリ
コンなどを含む多層膜でもよい。
In this case, the polycrystalline silicon film is used to improve the adhesion between the silicon oxide of the insulating layer and the lower electrode, but even if a film of rhenium or the like is formed on the polycrystalline silicon film,
A thin film capacitor having excellent insulation properties as in Example 1 was obtained. Note that in the case of rhenium or rhenium oxide, a multilayer film containing metal silicide such as rhenium silicide and rhenium or polycrystalline silicon may be used instead of polycrystalline silicon.

(実施例3) 第4図は実施例3の薄膜コンデンサの構造図である。単
結晶シリコン12の表面の一部にリンを高濃度にドーピ
ングして低抵抗層13が形成され、その上に層間絶縁膜
として酸化シリコン膜14が形成されている。酸化シリ
コン膜の一部は、低抵抗層を通じて下部電極を引き出す
ためのコンタクトポールが2箇所形成されており、一方
のコンタクトホールは下部電極膜15で埋められ、もう
一方のコンタクトホールはAI膜16で埋められている
。従って、AI膜16は下部電極の端子となる。下部電
極膜はコンタクトホールを埋めると共にその一部が酸化
シリコン膜上べ形成されていてもよい。下部電極膜上に
はBaTiO3膜17が形成され、その上には上部電極
としてA118が形成されている。
(Example 3) FIG. 4 is a structural diagram of a thin film capacitor of Example 3. A low resistance layer 13 is formed by doping a portion of the surface of the single crystal silicon 12 with phosphorus at a high concentration, and a silicon oxide film 14 is formed thereon as an interlayer insulating film. Two contact poles are formed in a part of the silicon oxide film to draw out the lower electrode through the low resistance layer, one contact hole is filled with the lower electrode film 15, and the other contact hole is filled with the AI film 16. It is filled with Therefore, the AI film 16 becomes a terminal of the lower electrode. The lower electrode film fills the contact hole, and a portion of the lower electrode film may be formed on top of the silicon oxide film. A BaTiO3 film 17 is formed on the lower electrode film, and A118 is formed thereon as an upper electrode.

本実施例では下部電極を単結晶シリコンの低抵抗層を通
じて引き出すために、下部電極膜を単結晶シリコンの上
に作製しているが、その薄膜コンデンサの絶縁特性は実
施例1と同様に優れていることを確認した。
In this example, the lower electrode film is fabricated on single crystal silicon in order to draw out the lower electrode through the low resistance layer of single crystal silicon, but the insulation properties of the thin film capacitor are as excellent as in Example 1. I confirmed that there is.

次に下部電極に多結晶シリコン膜を用いた場合と本発明
の膜を用いた場合のBaTiO3膜の誘電率の違いにつ
いて述べる。多結晶シリコン膜は現在のシリコンLSI
の電極膜として一般に用いられている材料である。第5
図はBaTiO3膜の誘電率と膜厚の関係を調べたもの
で、本発明の膜を用いた場合(a)と多結晶シリコン膜
(b)を用いた場合の結果である。
Next, the difference in dielectric constant of the BaTiO3 film when a polycrystalline silicon film is used for the lower electrode and when the film of the present invention is used will be described. Polycrystalline silicon film is used in current silicon LSI
This is a material commonly used as an electrode film. Fifth
The figure shows the relationship between the dielectric constant and film thickness of a BaTiO3 film, and shows the results when the film of the present invention (a) is used and when a polycrystalline silicon film (b) is used.

本発明の膜を用いた場合、BaTiO3膜の誘電率はそ
の膜厚に依存せず、約240で一定であるのに対して、
多結晶シリコン膜を用いた場合のBaTiO3膜の誘電
率は膜厚に依存し、膜厚が薄くなるにつれて誘電率が小
さくなっている。これは従来技術で述べたように、低誘
電率の酸化シリコン膜がBaTiO3と多結晶シリコン
との界面に形成され、BaTiO3膜の見かけの誘電率
が低下したものと考えられる。
When using the film of the present invention, the dielectric constant of the BaTiO3 film does not depend on its film thickness and is constant at about 240;
The dielectric constant of a BaTiO3 film when a polycrystalline silicon film is used depends on the film thickness, and the dielectric constant becomes smaller as the film thickness becomes thinner. This is considered to be because, as described in the prior art, a silicon oxide film with a low dielectric constant is formed at the interface between BaTiO3 and polycrystalline silicon, and the apparent dielectric constant of the BaTiO3 film is lowered.

また、実施例2と同様に、下部電極はレニウムなどの膜
とその下に多結晶シリコンがある二層構造でもよい。こ
の場合の多結晶シリコン膜はレニウムなどの膜と単結晶
シリコン、及び、酸化シリコンとの密着性をよくする効
果がある。更に、多結晶シリコン膜でコンタクトホール
を埋める平坦化技術は確立しており、下部電極の一部と
して用いる利点は大きい。
Further, as in the second embodiment, the lower electrode may have a two-layer structure including a film made of rhenium or the like and polycrystalline silicon underneath. In this case, the polycrystalline silicon film has the effect of improving the adhesion between the rhenium film and the single crystal silicon and silicon oxide. Furthermore, a planarization technique for filling contact holes with a polycrystalline silicon film has been established, and there are great advantages to using it as part of the lower electrode.

本実施例に示すように下部電極にレニウム、オスミウム
、ロヂウム、イリヂウム、及びそれらのシリサイドある
いは酸化物の1以上からなる膜を用いることにより、誘
電体膜の膜厚に依存せず一定の高い誘電率を有する薄膜
コンデンサをシリコン電極上に作製することができる。
As shown in this example, by using a film made of one or more of rhenium, osmium, rhodium, iridium, and their silicides or oxides for the lower electrode, a constant high dielectric constant can be achieved regardless of the thickness of the dielectric film. Thin film capacitors can be fabricated on silicon electrodes.

(発明の効果) 本発明は以上説明したように、薄膜コンデンサの下部電
極に高温プロセスで表面荒れを起こさないイリジウム、
オスミウム、ロヂウム、イリヂウム、及びそれらのシリ
サイドあるいは酸化物などの膜を用いることにより、絶
縁特性に優れた高誘電率の薄膜コンデンサを提供するこ
とができる。
(Effects of the Invention) As explained above, the present invention uses iridium, which does not cause surface roughness during high-temperature processes, for the lower electrode of a thin film capacitor.
By using films of osmium, rhodium, iridium, their silicides or oxides, it is possible to provide a high dielectric constant thin film capacitor with excellent insulation properties.

また、従来のシリコン電極のように誘電体との界面に低
誘電率の酸化シリコン層を形成することがないので、誘
電体膜の膜厚に依存せず一定の高い誘電率を有する薄膜
コンデンサをシリコン上に作製することができる。
In addition, unlike conventional silicon electrodes, there is no need to form a silicon oxide layer with a low dielectric constant at the interface with the dielectric, so thin film capacitors with a constant high dielectric constant regardless of the thickness of the dielectric film can be created. Can be fabricated on silicon.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における実施例を示す薄膜コンデンサの
断側面図、第2図(a)、(b)は絶縁破壊強度のヒス
トグラム図、第3図、第4図は実施例を示す薄膜コンデ
ンサの断側面図、第5図はBaTiO3膜の誘電率と膜
厚の関係を示す図。 1.6.12は単結晶シリコン基板、2.7.14は酸
化シリコン、3.9.15は下部電極、4.10.17
はBaTiO3,5,11,16,18はAI、8は多
結晶シリコン、13は単結晶シリコンの低抵抗層。
Fig. 1 is a cross-sectional side view of a thin film capacitor showing an embodiment of the present invention, Figs. 2(a) and (b) are histograms of dielectric breakdown strength, and Figs. 3 and 4 are thin film capacitors showing an embodiment. FIG. 5 is a diagram showing the relationship between the dielectric constant and the film thickness of the BaTiO3 film. 1.6.12 is a single crystal silicon substrate, 2.7.14 is silicon oxide, 3.9.15 is a lower electrode, 4.10.17
is BaTiO3, 5, 11, 16, and 18 are AI, 8 is polycrystalline silicon, and 13 is a low resistance layer of single crystal silicon.

Claims (4)

【特許請求の範囲】[Claims] 1.基板上に形成され、下部電極、誘電体、上部電極が
順次積層形成された構造の薄膜コンデンサにおいて、誘
電体を直接成膜する下部電極がレニウム、酸化レニウム
、及びレニウムシリサイドから選ばれた1以上の材料か
らなることを特徴とする薄膜コンデンサ。
1. In a thin film capacitor formed on a substrate and having a structure in which a lower electrode, a dielectric material, and an upper electrode are sequentially laminated, the lower electrode on which the dielectric material is directly formed is one or more selected from rhenium, rhenium oxide, and rhenium silicide. A thin film capacitor characterized by being made of a material.
2.基板上に形成され、下部電極、誘電体、上部電極が
順次積層形成された構造の薄膜コンデンサにおいて、誘
電体を直接成膜する下部電極がオスミウム、酸化オスミ
ウム、及びオスミウムシリサイドから選ばれた1以上の
材料からなることを特徴とする薄膜コンデンサ。
2. In a thin film capacitor formed on a substrate and having a structure in which a lower electrode, a dielectric material, and an upper electrode are sequentially laminated, the lower electrode on which the dielectric material is directly formed is one or more selected from osmium, osmium oxide, and osmium silicide. A thin film capacitor characterized by being made of a material.
3.基板上に形成され、下部電極、誘電体、上部電極が
順次積層形成された構造の薄膜コンデンサにおいて、誘
電体を直接成膜する下部電極がロヂウム、酸化ロヂウム
、及びロヂウムシリサイドから選ばれた1以上の材料か
らなることを特徴とする薄膜コンデンサ。
3. In a thin film capacitor that is formed on a substrate and has a structure in which a lower electrode, a dielectric material, and an upper electrode are sequentially laminated, the lower electrode on which the dielectric material is directly deposited is selected from rhodium, rhodium oxide, and rhodium silicide. A thin film capacitor characterized by being made of one or more materials.
4.基板上に形成され、下部電極、誘電体、上部電極が
順次積層形成された構造の薄膜コンデンサにおいて、誘
電体を直接成膜する下部電極がイリヂウム、酸化イリヂ
ウム、及びイリヂウムシリサイドから選ばれた1以上の
材料からなることを特徴とする薄膜コンデンサ。
4. In a thin film capacitor that is formed on a substrate and has a structure in which a lower electrode, a dielectric material, and an upper electrode are sequentially laminated, the lower electrode on which the dielectric material is directly deposited is selected from iridium, iridium oxide, and iridium silicide. A thin film capacitor characterized by being made of one or more materials.
JP2057059A 1989-08-30 1990-03-07 Thin film capacitors Expired - Fee Related JPH0687493B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2057059A JPH0687493B2 (en) 1990-03-07 1990-03-07 Thin film capacitors
DE69014027T DE69014027T2 (en) 1989-08-30 1990-08-30 Thin film capacitors and their manufacturing processes.
US07/575,368 US5122923A (en) 1989-08-30 1990-08-30 Thin-film capacitors and process for manufacturing the same
EP90309477A EP0415750B1 (en) 1989-08-30 1990-08-30 Thin-film capacitors and process for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2057059A JPH0687493B2 (en) 1990-03-07 1990-03-07 Thin film capacitors

Publications (2)

Publication Number Publication Date
JPH03257858A true JPH03257858A (en) 1991-11-18
JPH0687493B2 JPH0687493B2 (en) 1994-11-02

Family

ID=13044873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2057059A Expired - Fee Related JPH0687493B2 (en) 1989-08-30 1990-03-07 Thin film capacitors

Country Status (1)

Country Link
JP (1) JPH0687493B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740342A3 (en) * 1995-04-28 1997-10-29 Rohm Co Ltd Semiconductor device and wiring method
US5883781A (en) * 1995-04-19 1999-03-16 Nec Corporation Highly-integrated thin film capacitor with high dielectric constant layer
US5973342A (en) * 1996-04-25 1999-10-26 Rohm Co., Ltd. Semiconductor device having an iridium electrode
US6015989A (en) * 1996-06-28 2000-01-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a capacitor electrode formed of iridum or ruthenium and a quantity of oxygen
US6187622B1 (en) 1997-01-14 2001-02-13 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device and method for producing the same
US6239460B1 (en) 1995-06-30 2001-05-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor device which includes a capacitor having a lower electrode formed of iridium or ruthenium
JP2002134710A (en) * 1994-01-13 2002-05-10 Rohm Co Ltd Dielectric capacitor
JP2002261252A (en) * 1994-01-13 2002-09-13 Rohm Co Ltd Ferroelectric capacitor
JP2006319357A (en) * 1994-01-13 2006-11-24 Rohm Co Ltd Process for fabricating dielectric capacitor
JP2006319358A (en) * 1994-01-13 2006-11-24 Rohm Co Ltd Ferroelectric capacitor and its fabrication process
US8593784B2 (en) * 1999-03-01 2013-11-26 Round Rock Research, Llc Thin film structure that may be used with an adhesion layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413283A (en) * 1977-06-30 1979-01-31 Ibm Method of forming metal silicide layer on substrate
JPS6042872A (en) * 1983-08-19 1985-03-07 Matsushita Electric Ind Co Ltd Gaas fet
JPS6094716A (en) * 1983-10-28 1985-05-27 日本電信電話株式会社 Thin film condenser
JPS62222616A (en) * 1986-03-25 1987-09-30 宇部興産株式会社 Heat-resistant electrode thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413283A (en) * 1977-06-30 1979-01-31 Ibm Method of forming metal silicide layer on substrate
JPS6042872A (en) * 1983-08-19 1985-03-07 Matsushita Electric Ind Co Ltd Gaas fet
JPS6094716A (en) * 1983-10-28 1985-05-27 日本電信電話株式会社 Thin film condenser
JPS62222616A (en) * 1986-03-25 1987-09-30 宇部興産株式会社 Heat-resistant electrode thin film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261252A (en) * 1994-01-13 2002-09-13 Rohm Co Ltd Ferroelectric capacitor
JP2006319358A (en) * 1994-01-13 2006-11-24 Rohm Co Ltd Ferroelectric capacitor and its fabrication process
JP2006319357A (en) * 1994-01-13 2006-11-24 Rohm Co Ltd Process for fabricating dielectric capacitor
JP2002134710A (en) * 1994-01-13 2002-05-10 Rohm Co Ltd Dielectric capacitor
US5883781A (en) * 1995-04-19 1999-03-16 Nec Corporation Highly-integrated thin film capacitor with high dielectric constant layer
US5841160A (en) * 1995-04-28 1998-11-24 Rohm Co., Ltd. Semiconductor device having a capacitor electrode made of iridium
KR100468114B1 (en) * 1995-04-28 2005-05-19 로무 가부시키가이샤 Semiconductor device
EP0740342A3 (en) * 1995-04-28 1997-10-29 Rohm Co Ltd Semiconductor device and wiring method
US6239460B1 (en) 1995-06-30 2001-05-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor device which includes a capacitor having a lower electrode formed of iridium or ruthenium
US6420191B2 (en) 1995-06-30 2002-07-16 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device which includes a capacitor having a lower electrode formed of iridium or ruthenium
US5973342A (en) * 1996-04-25 1999-10-26 Rohm Co., Ltd. Semiconductor device having an iridium electrode
US6015989A (en) * 1996-06-28 2000-01-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a capacitor electrode formed of iridum or ruthenium and a quantity of oxygen
US6187622B1 (en) 1997-01-14 2001-02-13 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device and method for producing the same
US8593784B2 (en) * 1999-03-01 2013-11-26 Round Rock Research, Llc Thin film structure that may be used with an adhesion layer

Also Published As

Publication number Publication date
JPH0687493B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
US5122923A (en) Thin-film capacitors and process for manufacturing the same
KR920005320B1 (en) Capacitor and method for manufacturing thereof
EP0096773A2 (en) Method of making high dielectric constant insulators and capacitors using same
JPH11177051A (en) Thin-film capacitor and its manufacture
JPS60153158A (en) Manufacture of semiconductor device
JP2000022111A (en) Formation of capacitor for semiconductor element using high-temperature oxidation
JPH03257858A (en) Thin film capacitor
CN1790569B (en) Dielectric thin film, dielectric thin film device, and method of production thereof
JPH0387055A (en) Thin film capacitor and manufacture thereof
JPH03101260A (en) Thin film capacitor
JP3087672B2 (en) Thin film capacitors
JP2000022105A (en) Manufacture of semiconductor device
JPH03253065A (en) Thin-film capacitor and its manufacture
JPH03257857A (en) Thin film capacitor and manufacture thereof
JPH0387056A (en) Thin film capacitor and manufacture thereof
JP2006140136A (en) Dielectric thin film, thin-film dielectric device, and its manufacturing method
JP3242732B2 (en) Capacitor
JP3120568B2 (en) Thin film capacitors
JP2677996B2 (en) Semiconductor device
JP2000077629A (en) Laminated capacitor provided with diffusion barrier
JP2971689B2 (en) Grain boundary type semiconductor porcelain capacitor
JPH04167554A (en) Thin film capacitor and manufacture thereof
JPS61265856A (en) Capacitor
JPH0380562A (en) Manufacture of thin film capacitor
JPH0561783B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees