JPH0325723A - Magnetic recording medium and production thereof - Google Patents

Magnetic recording medium and production thereof

Info

Publication number
JPH0325723A
JPH0325723A JP1158191A JP15819189A JPH0325723A JP H0325723 A JPH0325723 A JP H0325723A JP 1158191 A JP1158191 A JP 1158191A JP 15819189 A JP15819189 A JP 15819189A JP H0325723 A JPH0325723 A JP H0325723A
Authority
JP
Japan
Prior art keywords
protective layer
magnetic recording
recording medium
layer
strengthening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1158191A
Other languages
Japanese (ja)
Other versions
JP2774149B2 (en
Inventor
Yuichi Kokado
雄一 小角
Satoru Matsunuma
悟 松沼
Shigehiko Fujimaki
藤巻 茂彦
Makoto Kito
鬼頭 諒
Kenji Furusawa
賢司 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1158191A priority Critical patent/JP2774149B2/en
Priority to US07/540,187 priority patent/US5104709A/en
Publication of JPH0325723A publication Critical patent/JPH0325723A/en
Application granted granted Critical
Publication of JP2774149B2 publication Critical patent/JP2774149B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/726Two or more protective coatings
    • G11B5/7262Inorganic protective coating
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/725Protective coatings, e.g. anti-static or antifriction containing a lubricant, e.g. organic compounds
    • G11B5/7253Fluorocarbon lubricant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To strengthen the adhesive strength of a lubricating layer and to provide the longer life and higher reliability of the magnetic recording medium by uniformly dispersing and sticking an intervening material for strengthening the adhesive strength consisting of one kind of metal atoms and compd. thereof to the surface of a protective layer without covering the entire surface. CONSTITUTION:An underlying layer 2 consisting of Cr, a magnetic layer 3 consisting of a CO-Ni alloy, and the protective layer 4 consisting of sputtered carbon are formed by sputtering in this order on an Al disk substrate 1 on which an Ni-P plating film is previously formed. The sputtering of the layer 4 is executed by a direct sputtering method using a target consisting of graphite and 5mTorr gaseous Ar pressure. The Ni atoms 6 are stuck by the sputtering on this substrate and after the substrate is immersed in a Freon soln. contg. a fluorine lubricant 5, the substrate is pulled up at a specific speed to form the lubricant layer. The durability of the produced disk is tested by a CSS testing machine. The desirable result is obtd. at 3 to 60% surface atom occupying rate of the metal elements.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野1 本発明は、例えば電子計算機やワードプロセッサーその
他の情報機器あるいはオーディオテープ、ビデオテープ
等の電子機器の記憶媒体として広く用いられている磁気
記録媒体とその製造方法並びにそれを用いた応用製品に
関する。 [従来の技術】 磁気記録の分野では必要とされる情報量が年々増加の一
途をたどり、一Mの大容量化と高速化が望まれている。 このため記録密度の向Lが最大の課題と或っており、記
録媒体の構造や材料面での改善が必須と成っている。構
造の面では記録層の薄膜化が最も効果があり、従来は磁
性体の粉末をバインダーと呼ばれる樹脂と混ぜ、これを
塗布して磁性層としていたが,最近は磁性体自身の薄膜
を真空蒸着やスパッタリング等で形成する薄膜磁気ディ
スクや蒸着磁気テープが開発されている.しかしながら
、この薄膜化に伴い記録層の機械的強度が弱くなるため
、これを保護することが必要である。それ故、従来から
もこのために摩耗や破壊損傷を受けにくい保護膜で記録
層表面を覆い、かつその上に潤滑剤を塗布して磁気ヘッ
ドとの摺動時の損傷を出来るだけ少なくすることが行わ
れてきた。従ってこの保護膜と潤滑剤とを総合した特性
の良否が、磁気記録媒体の寿命や信頼性を左右すること
になる. 薄膜磁気記録媒体の保護膜として、従来から非品質の炭
素系薄膜や炭化物等が多く用いられているが、これはこ
れらの材料の優れた耐摩耗性のためである.しかしなが
ら,一般にこれらの保護膜に対して潤滑剤の吸着力が弱
いということが分かってきた。たとえば、フロロク口口
カーボン系の溶剤で洗浄するとその大部分が除去されて
しまうということがその証拠である. 潤滑剤を保護膜に強固に結合させる目的で種々の提案が
なされている.たとえば,特開昭62−234226号
には分子の末端に吸着しやすい官能基がついた潤滑剤の
例があり、また、特開昭61−210519号にはアミ
ド基を介して潤滑剤を共有結合させる等の方法が開示さ
れている。また、特開昭61−220120号にはカー
ボン保護層の上に金属酸化物皮膜を形成しこれに極性基
のついた潤滑剤を塗布する方法が開示されている
[Industrial Application Field 1] The present invention relates to a magnetic recording medium that is widely used as a storage medium for electronic devices such as electronic computers, word processors, and other information equipment, and audio tapes and video tapes, as well as a method for manufacturing the same and a method for using the same. Regarding applied products. [Prior Art] In the field of magnetic recording, the amount of information required continues to increase year by year, and it is desired to increase the capacity to 1M and increase the speed. For this reason, the direction of recording density L is the biggest issue, and it is essential to improve the structure and materials of recording media. In terms of structure, the most effective method is to make the recording layer thinner. Traditionally, magnetic powder was mixed with a resin called a binder and coated to form the magnetic layer, but recently thin films of the magnetic material itself have been vacuum-deposited. Thin-film magnetic disks and vapor-deposited magnetic tapes formed by methods such as lithography and sputtering have been developed. However, as the recording layer becomes thinner, the mechanical strength of the recording layer becomes weaker, so it is necessary to protect it. Therefore, for this reason, it has traditionally been necessary to cover the surface of the recording layer with a protective film that is less susceptible to abrasion and breakage damage, and to apply lubricant thereon to minimize damage when sliding with the magnetic head. has been carried out. Therefore, the overall quality of the protective film and lubricant determines the lifespan and reliability of the magnetic recording medium. Poor-quality carbon-based thin films and carbides have traditionally been used as protective films for thin-film magnetic recording media, due to the excellent wear resistance of these materials. However, it has been found that the adsorption power of lubricants to these protective films is generally weak. For example, evidence of this is that cleaning with a Fluorox-based carbon solvent removes most of it. Various proposals have been made for the purpose of firmly bonding lubricants to protective films. For example, JP-A No. 62-234226 has an example of a lubricant with a functional group attached to the end of the molecule that is easily adsorbed, and JP-A No. 61-210519 has an example of a lubricant with a functional group attached to the end of the molecule, and JP-A No. 61-210519 has an example of a lubricant with a functional group attached to the end of the molecule. Methods such as coupling are disclosed. Furthermore, JP-A No. 61-220120 discloses a method in which a metal oxide film is formed on a carbon protective layer and a lubricant with a polar group is applied thereto.

【発明
が解決しようとするasn しかし、上記のように潤滑剤と保護膜とを共有結合させ
て付着力を強化する従来の方式では、未反応物が有ると
それが潤滑性を損なったり経時変化の原因となる.また
、結合部分の反応性が他の部分より高く,摺動時の熱で
分解しやすい等の問題がある,また,摺動時に分解によ
り結合が切れた場合には再度結合する可能性は小さく、
潤滑剤の補給が困難である。しかも、保護膜全面にわた
り、このような結合を均一かつ十分な密度で形成するこ
とは、プロセス上非常に困難である。 一方、保護膜上に金属酸化物の皮膜を設け、これに極性
基を持つ潤滑剤を吸着させ結合力を強化しようとする場
合には、この金属酸化物の膜が薄い潤滑剤層を介して磁
気ヘッドの摺動部分と直接こすり合うため,この摺動に
より生じた金属酸化物の摩耗片(屑)で下地の保護膜を
損傷してしまい、せっかく強度の高い保護膜を設けても
保護膜の特性が十分に生かされない。このように,金属
酸化膜は一般に保護膜材料として用いる炭素膜や炭化物
等に比べ強度が弱いので,逆に磁気記録媒体全体として
の耐久性を弱くしてしまうという問題があった.したが
って、本発明の目的は、上記従来の問題を解消すること
にあり、その第1の目的は、保護膜と潤滑剤との結合力
をさらに強化した改良された磁気記録媒体を、第2の目
的は,その製造方法を、そして第3の目的は、その応用
製品を,それぞれ提供することにある. 【課題を解決するための手段】 本発明者等は、潤滑剤の塗布方法や塗布された状態、塗
布量等と磁気記録媒体としての摩擦摩耗特性の間の関係
を詳細に検討し、共有結合ではなく化学吸着等で潤滑剤
を均一にかつ過不足なく強固に保護膜に吸着させ、しか
も保護膜として特性が変化しないようにすることが磁気
記録媒体の長寿命化に最も効果的であることを見出した
。潤滑剤と保護膜表面自身との吸着力が大きい場合には
、潤滑切れが起こり難いとともに一旦起こっても再度吸
着して修復することが出来る. 潤滑剤との結合力を高めるには炭素以外の元素特に金属
原子またはその化合物を保護膜の表面に存在させ、これ
を介して潤滑剤を吸着させれば良いことが分かった.更
に、保護膜の特性を損なわないでこれを行う為には保護
膜表面に保護膜材料と上記金RIM子またはその化合物
を混在させるのが良いことを見出した. 本発明はこのような上記知見に基づいてなされたもので
、上記第1の目的は、非磁性基体上に、少なくとも強磁
性体からなる磁気記録層と保護層と潤滑層とを順次積層
してなる磁気記録媒体において、前記少なくとも保護層
表面に,金属原子およびその化合物の少なくとも1種か
らなる付着力強化介在物質を前記保護層の全面を覆い隠
すことなくその一部を露出させつつ均一に分散,付着せ
しめて配し,前記保護層に対する潤滑層の付着力を強化
せしめて成る磁気記録媒体により、達或される。 そして、上記保護層表面に付着せしめる上記付着力強化
介在物質の表面原子占有率を0.5〜80%とすること
が好ましい.なお、この表面原子占有率とは,上記保護
層表面の領域全体に占める上記付着力強化介在物質の占
有率を意味している。 また、上記付着力強化介在物質を構成する金属原子とし
ては、水素よりイオン化エネルギーの低い金属原子及び
/又はその化合物からなり、この化合物としては、水酸
化物、塩及び酸化物の群から選択される少なくとも1種
から成るものが望ましい。 上記付着力強化介在物質は、上記保護層表面に散在させ
てもよく,また、保護層内に分散、混在させ、その一部
を保護層表面に露出させることにより実質的に前記保護
層表面に散在せしめてもよい.本発明で重要なのは、保
護層全面をこの付着力強化介在物質で完全に覆い隠さな
いこと、つまりこの物質の表面原子占有率を100%に
しないことである.この付着力強化介在物質を保護層内
に分散、混在させる場合には,層の内部よりも表面に多
く分布するよう濃度勾配をもたせることが好ましい。 上記保護層としては、硬度の高い、例えば炭素、炭化物
、窒化物及び酸化物の少なくとも1種から選ばれるが,
とりわけ炭素系保護膜が好ましい。 また、上記潤滑剤としては,少なくとも一方の末端に不
対電子あるいは電子供与性の原子や官能基を有する原子
を含む末端基を保持し,主鎖にフッ素を含む鎖状有機化
合物が好ましい.本発明の上記第2の目的は、非磁性基
体上に磁気記録層を形成する工程と、その上に保護層を
形成する工程と,さらにその上に潤滑剤を塗布する工程
とを有する磁気記録媒体の製造工程において、前記保護
層を形成する工程と,前記潤滑剤を塗布する工程との間
に、金属原子及び金属化合物の少なくとも1種からなる
付着力強化介在物質を前記保護層の全面を覆い隠さない
ようその一部を露出させつつ均一に分散付着させる工程
を有して戊る磁気記録媒体の製造方法により、達成され
る。 そして好ましくは,上記保護層を形戊する工程の中で上
記付着力強化介在物質をその表面に分散付着させること
であり、この場合は,非磁性基体上に磁気記録層を形成
する工程と、その上に保護層を形成する工程と,さらに
その上に潤滑剤を塗布する工程とを有する磁気記録媒体
の製造工程において、前記保護層を形戊する工程として
、保護層を炭素系材料で構成すると共に、この保護層形
成時に金属原子及び金属化合物の少なくとも1挿からな
る付着力強化介在物質を前記保護層中に分敢混在せしめ
その一部が保護層表面に露出することにより前記付着力
強化介在物質を実質的に前記保護層表面に散在せしめて
形成する工程を有して成る磁気記録媒体の製造方法によ
り、達成される。 そして、この付着力強化介在物質を混在する保護層を形
戊する工程としては、前記付着力強化介在物質を含む炭
素系ターゲットを用いてスパッタリングするか、もしく
は付着力強化介在物質からなるターゲットと炭素系ター
ゲットとを個別に準備し、これらを同時にもしくは交互
にスパッタリングする工程とするか,もしくは原料ガス
に上記付着力強化介在物質の一つである金属元素を含む
有機化合物蒸気もしくは金属元素を含む化合物と有機化
合物との混合蒸気をプラズマ中で分解する化学気相法に
より形成する工程とすることにより,達成することがで
きる。 さらにまた、この付着力強化介在物質を混在する保護層
を形成する工程としては、炭素原料としての有機化合物
と不活性ガスとの混合ガスでプラズマを発生させプラズ
マCVDを行うと同時に,上記付着力強化介在物質をス
パッタリングする工程としてもよい.また、上記のよう
に保護層中に付着力強化介在物質を混在させる場合には
、この物質の量を、保護層の内部に比べその表面に多く
分布するよう濃度勾配をもたせて形戒することが望まし
い。 上記付着力強化介在物質を構戒する金属原子としては、
水素よりイオン化エネルギーの低い金属元素が、またそ
の化合物としては,水酸化物、塩及び酸化物の群から選
択される少なくとも1種が好ましい。 上記保護層表面に付着せしめる上記付着力強化介在物質
は,その表面原子占有率が0.5〜80%となるように
形成することが望ましく、これの具体的な調整は、蒸着
、スパッタリング,CVD(プラズマCVDを含む)等
による物質の析出付着条件を所定値に設定することによ
り容易にできる。 また、上記潤滑剤を塗布する工程において、潤滑剤とし
ては,少なくとも一方の末端に不対電子を有する涼子あ
るいは電子供与性の原子や官能基を含む末端基を保持し
、主鎖にフッ素を含む鎖状有機化合物を用いることが望
ましい. 以下、図面を用いて本発明の詳細をさらに具
体的に説明する。 第1図は本発明を具体化した磁気記録媒体の断面の概念
図であり,非磁性基板1の上に下地層2、磁性層3、保
護層4、潤滑暦5がこの順に形成されている。 非磁性基板1は、たとえば磁気ディスクの場合はAQ基
板やガラス基板,セラミックス等であり、フロッピーデ
ィスクや磁気テープ等の場合はポリエステルやポリイミ
ド等の高分子フィルムである。図面には表示してないが
、非磁性基板1の表層にはNi−Pめっき膜,酸化物,
窒化物等の非磁性膜を設け硬度を高めても良い5 下地層2は、磁性層の配向性を良くする為の物で、たと
えばCrスパッタ膜等が用いられるが、これに限られる
ものでなく、勿論無くても良い.磁性層3は、強磁性を
示す薄膜で、たとえばCo−Ni,Co−Cr等のCo
基合金,及びこれらとPt,Ta,W+ Zr,Cr,
Mow Ti+V,Si,Ga等から選ばれる少なくと
も1種の元素との合金、Fe,窒化鉄、γFe20,,
コバルト酸化物、バリウムフェライト等を用いることが
出来る。 保護層4は、磁性層を摩擦摩耗から保護するもので、ス
パッタリングで形成したカーボン膜、プラズマCVDや
イオンビームデポジション法で形成した硬質炭素膜、プ
ラズマ重合膜,炭化物,窒化物、酸化物等の耐摩耗性の
優れた材料が用いられる。スパッタリングで炭素膜を形
戊する場合には、グラファイトからなるターゲットをカ
ソードとして、たとえばAr等の不活性ガスのプラズマ
を発生させるか,上記ターゲットを高エネルギーのイオ
ンビームで叩いてターゲットと対向する位置にある基板
に炭素膜を堆積させる。また、プラズマCVD法で硬質
炭素膜を形戊する場合には、メタン,エタン、プロパン
等の炭化水素あるいはメタノール、アセトン等の含酸素
炭化水素のガスを原料としてプラズマを発生させ、プラ
ズマの電位に比べ基板の電位が−100V〜−2000
V程度の負電位となるようにしてCVDを行う.さらに
また,炭化物,窒化物についてはこれらの化合物材料か
らなるターゲットを用意してスパッタリングを行うこと
も出来るが、それぞれを構成する元素単体からなるター
ゲットを個別に準備し、これらを同時にスパッタするコ
ースバッタ法や、窒素ガス雰囲気でスパッタリングを行
う反応性スバッタ法によっても良い.その他.保護層4
を2層構造とし、その一方にSi02等の耐食性の良い
膜を設けても良い。 潤滑層5は、たとえば主鎖にパーフロ口ポリエーテルを
持つ分子量1000〜20000程度の高分子またはオ
リゴマーであり、少なくとも一方の末端にO,N,P,
S等の不対電子を持つ原子あるいは電子供与性の原子又
は官能基を含む化合物が好ましい. 保護膜4の表面には本発明の特徴である金属原子または
その化合物からなる付着力強化介在物質6が分散付着さ
れており,この物質6を介して潤滑剤が吸着している.
金属原子は単体でも、成るいはまた化合物の状態、たと
えば酸化物でも水酸化物でもあるいは塩の状態でも良い
が、水酸化物の方が効果が大きく好ましい.これは水酸
基と潤滑剤末端基との水素結合の効果が加わる為である
と推定される。 本発明のもう一つの特徴は上記金属元素が保護膜表面を
完全に覆わず、表面において保護膜を構或する原子と混
在していることにある。第2図は保護膜4の表面に金属
原子またはその化合物が分散している様子をモデル的に
示したもので、第2図(.)の7に示すように原子状態
で分散しているのが最も好ましい.ただし、第2図(b
)の8に示すように部分的に集合して島状になっていて
も完全に保護膜材料を覆っていなければ効果がある。保
護膜表面を完全に金属あるいはその化合物で覆って膜状
になった場合には磁気ヘッド等との摺動において上記の
膜の強度が十分でないために破壊され、結果として摺動
耐久性を悪化させてしまう。一方、本発明のように保護
膜の表面全体を覆い隠すことなく選択的に金属原子また
はその化合物を分散させた場合には、摺動特性は保護膜
自身の特性に近い状態を保障し、潤滑剤の吸着力だけを
向上出来るために飛躍的な効果が生じるのである。 保護膜表面の金属原子またはその化合物の量と分布を調
べるには,光電子分光法やオージェ分光法等の既存の表
面分析手法を用いることが出来る。第3図は、本発明に
おいて好適なその内部及び外部表面に金属原子(この例
ではCo)の分布を持った炭素からなる保護膜を形成し
、そのオージェ分析を行った結果のオージェ電子スペク
トルである.この図から、炭素Cの強度の強いスペクト
ルがw4測され保護膜表面に付着させた金属原子が保護
膜全面を覆っていないことが分かる。つまり、この図の
縦軸はスペクトル強度を示し、その大きさは原子の相対
量を表している.また,横軸はエネルギーレベルを示し
ており、原子固有のスペクトルを呈し,この例では炭素
C、酸素O、コバルトCoの3元素のスペクトルがあら
われている。 したがって、保護膜表面には,その強度の大きさから炭
素が最も多く存在しており、次いで酸素,コバルトの順
となっている。そして、これら各元素のスペクトル強度
比を求めれば、それがそれぞれの表面原子占有率となり
、この例では、コバルトの表面原子占有率は10数%と
なっている。 本発明者等の実験によれば、潤滑剤が保護膜の表面を十
分に覆うためには、付着力強化介在物質である金g!t
yX子またはその化合物の表面濃度(ここでは表面原子
占有率と定義した)が、原子数比にして0.5%以上必
要であり,保護膜の摺動特性を損なわないようにするに
は80%以下、好ましくは3〜60%であることが判明
した。 金属原子を保護膜表面に存在させる為には、たとえば次
の様な方法を用いることが出来る。 l.保護膜形成後、特定の金属元素からなる材料をター
ゲットとしてスパッタリングを行うか、あるいは真空蒸
着をすることにより保I Iyj4表面にその金属原子
を付着させる。 2.保護膜形成後,特定の金属の化合物を含むガスを原
料としてプラズマを発生させ,保護膜表面にその金属あ
るいは金属を含む化合物を付着させる. 3.保護膜形成後、特定の金属元素を含む溶液に浸した
後、乾燥し,表面にその金属を含む物質を付着させる. 4.金属原子を含む炭素材料をターゲットとしてスパッ
タリングを行うことによりその金属原子を含む炭素皮膜
を形成する. 5.金属のターゲットと炭素材料のターゲッ!一とを個
々に並べて配置し,同時にスパッタリングを行うことに
よりその金属原子を含む炭素皮膜を形成する。 6.炭素材料をスパッタリングあるいはプラズマCVD
で形成しつつ基板の附近で金属のワイアーに電流を流し
その金属ワイアーを加熱することによって金属元素を飛
びださせ、その金属原子を含む炭素皮膜を形成する. 上記2,4,5.6の方法で金属原子を含む炭素皮膜を
形成した後、表面を酸素プラズマでわずかにエッチング
して表面の金属原子の密度を高めると効果が大きくなる
。また、金属原子を含む膜を形成した後、水蒸気分圧の
高い条件で一定時間放置することにより金属原子が水酸
化物あるいはイオンとなり炭素膜表面に均一に分布する
ようになるので、更に効果がある。 本発明に用いられる金属原子は、基本的にはいずれの金
属でも効果があるが、好ましいのは周期律表■aないし
■aに分類される遷移金属元素または水素よりイオン化
ポテンシャルの低い金属元素である。これらの元素とし
て、たとえばSc,Ti,V,Cr,Mn,Fe,Go
,Ni,Y,Zr,Nb.Mo,Cu,Pd,Ag,H
f,Ta,W,I r,P t,Au,AI,Ga,I
 n,Ge,Sn,Pb,Ba,Ca, Mg.Lit
Na,K,Be等を挙げるそことができる。。これらの
中でも特にC r p F a * C o * N 
I T A Q,Sn等からなるグループの元素の効果
が大きく、保護膜形成と同種のスバッタ等のプロセスに
より容易に付着させることができるので、m造プロセス
との整合性の上からも良く好ましい.一方,本発明で用
いる潤滑剤は、たとえば主鎖にフッ化カーボンを含む化
合物で、 一般式* Rl  (CnF+++Ok)  R2で表
されるものが好ましい。ここで、Rよ,R2の少なくと
も一方はO,N,S等のへテロ原子かベンゼン・環のい
ずれか一方あるいは両方を含む基であり,主鎖CnFm
Okは、たとえば分子量500ないし10000のポリ
フッ化カーボンまたはバーフロ口ポリエーテルである.
n,mは正の整数kは正の整数またはOである.上記の
へテロ原子および/またはベンゼン環を含む基R.,R
,が,金属元素と強い結合を形成するために保護膜表面
に潤滑剤が強固に付着するのである.#!って、本発明
の効果は上記の潤滑剤のみならず飽和脂肪酸やそのエス
テル類でも同様の効果がある.また,上記のフッ化カー
ボンに他の基が付加されていても良い. 本発明を実施するためには下地層2から保護層4までを
通常の成膜装置で形成し、金Ii4原子を別途スパッタ
等で形成してもよいが,保護層4までをスパッタリング
で連続して形戊する場合には,金属原子導入用のターゲ
ットを1つ追加するだけで簡単に実現することが出来る
。但し、金属原子を保護膜自身に混在させる場合には、
金属含有保護膜原料ターゲットにするかあるいは有機金
属化合物のプラズマCVD等で工程を増やさずに実現出
来るので、更に好ましい。 [作用1 本発明によって潤滑剤が強固に保護膜に吸着され、良好
な潤滑特性を示すようになる理由は必ずしも完全に解明
されている訳ではないが、次のように考えられる。 金属原子の多くは潤滑剤中のO,N,S,P等の不対電
子を持つ原子と配位結合を作り安く、この結合は可逆的
でありしかも通常の分子間力に比へかなり強いものであ
る。また、表面に存在する金属原子は、そのほとんどが
水酸化物や酸化物の状態で存在するが,特に水酸化物等
では上記の不対電子を持つ原子と水素結合を作り安い.
また、保護膜の表面にしてもある程度酸化されており、
この酸素原子も金属原子に対して配位結合を作り安い。 このような作用により金Ix原子を介して保護膜材料表
面と潤滑剤分子との間で強い吸着力が生じると考えられ
る. [実施例} 実施例1〜3. 前記第1図の断面構造と同様な成膜構造を有する磁気デ
ィスクの例を以下に示す. 先ず、AQ製ディスク用基板4に、予めNi −Pめっ
き膜を10.の厚さに形成したものにCr下地層2、C
o−Ni合金磁性層3、スパッタカーボン保護層4をこ
の順にスパッタリングで形成した。保護膜としてのカー
ボン層のスパッタリングはグラファイトのターゲットを
用い、Arガス圧5mTo r rで直流スパッタ法に
より行った。 次いで,この基板上にスパッタリングによりNi原子6
を付着させた.この基板をフッ素系潤滑剤5を重量%で
0.2%含むフレオン溶液に浸した後一定速度で引き上
げ、潤滑剤層を形成した.むお、このフッ素系潤滑剤と
しては、モンテフロス社製の商品名AM2001を使用
した。このようにして製作した磁気ディスク円板をコン
タクト・スタート・ストップ(CSS)試験機にかけ、
その耐久性を調べた. その結果は、第1表に示す通りであり実用上の一つの評
価基準であるCSS寿命30k回以上を達或し、かつ試
験中の摩擦係数の増加も少なかった. なお、実施例1〜3を対比してみれば明らかなように、
金属の付着割合によって、CSS寿命に差があり、多す
ぎるよりは少ない方がよい特性が得られている。しかし
、この表に例示してないが極端に少ないと効果が十分で
なく、実用的には0.5〜80%,さらに好ましくは3
〜60%であった。なお,表中の金属元素の表面原子占
有率は、既に述べた金属原子(N i )付着後におけ
る保護層表面のオージェ電子スペクトルを計測し、これ
により求めた. 上記の工程で製作した磁気ディスク円板を8枚用いて磁
気ディスク装置を組み立て、実際に稼動させたところ、
2,000時間の稼動に対しても異常は発生せず、その
後ディスク表面を観察しても摺動傷や汚れは見られなか
った。 実施例4〜15. 実施例1と同じようにCr下地層、Co−Ni合金磁性
層,スパッタカーボン保′S層をこの順にスパッタリン
グで形成したN j. − Pめっき膜付きAQ基板に
、異なる種類の金属原子をスパッタリングで付着させ、
その付着量を変えた磁気ディスクを用意して、実施例1
と同様の工程で潤滑剤を塗布してCSS試験を行った。 保護膜表面における金属原子の量は,上記実施例1と同
様にオージ工電子分光法で測定した。 結果は第1表に示すように,いずれの場合もCSS寿命
30k回以上を達成し、かつ試験中の摩擦係数の増加も
少なかった。 [比較例1] 実施例1においてカーボンの上に金属をスパッタしない
で潤滑剤を塗布し、実施例1と同様の試験を行ったとこ
ろ、CSS寿命は15k回で,CSS回数と共に摩擦係
数が増加した.また、このような磁気ディスクを8枚用
いて磁気ディスク装置を組み立て,実際に稼動させたと
ころ500時間を越えたところで摩擦係数が大きくなっ
たためにディスクが動かなくなった。 [比較例2] 実施例1において、Niを10nmの厚さにスパッタし
て保護膜表面を完全に覆い、後は同様に潤滑剤を塗布し
てCSS試験を行ったところ、7k回でクラッシュし、
磁気ヘッドと磁気ディスク両方に傷が付いた。特に磁気
ディスクの傷は磁性層まで達していた. 第1表 以下令白 実施例16〜20. 実施例1のカーボンスパッタにおいて、グラファイトの
替わりにグラフデイトに所定量の金属元素を混ぜた物を
ターゲットとし、スパッタリングを行って金属元素の混
入したカーボン膜を形成した。これに実施例1と同様に
潤滑剤を塗布し、磁気ディスクとしてのCSS寿命を調
べた。 その結果は、第2表に示す通りであり、いずれの場合も
CSS寿命30k回以上を達成し、かつ試験中の摩擦係
数の増加も少なかった。 第2表 ただし、表中のM1は,ターゲット中に含まれる金属元
素の組成比を表す。 実施例21〜25. AQ製磁気ディスク用基板に、予めNi−Pめっき膜を
10.の厚さに形成したものに、Cr下地層、Co−N
i合金磁性層をこの順にスパッタリングで形成した。そ
の後,メタンガスの雰囲気中でディスク側に負のバイア
ス電圧がかかるように高周波電力を印加し、プラズマを
発生させて硬質な非品質水素化カーボン膜を形成した.
次に実施例1と同じように金属原子をスパンタリングし
た後、潤滑剤を塗布し、やはり実施例1と同じようにC
SS試験を行った. その結果は、第3表に示すようにいずれもCSS寿命7
0k回以上を達或し、摩擦係数の増加も見られなかった
. 実施例26〜30. 実施例21においてメタンガスに表4に示す有機金属化
合物の蒸気を混合させたものを原料とし、実施例21と
同様の手順でプラズマCVDを行い、金属原子を1〜1
0%含む硬質カーボン膜を形成した.この基板に潤滑剤
を塗布し,実施例1と同様にCSS試験を行ったところ
、その結果は、第4表に示すようにいずれもCSS寿命
70k回以上で摩擦係数の増加も見られなかった。 第3表 第4表 実施例31. 厚さ10一のポリエステルフイルムの表面に真空蒸着法
で厚さ500人のC o − N i合金の薄膜を形成
し、実施例21で述べたプラズマCVD法で有機金属化
合物としてフエ口センを用い、Feを5%含む厚さ0.
02μの硬質カーボン膜を形成した.これに実施例1で
用いたものと同一の潤滑剤を塗布し、8mm幅にカット
して磁気テープを作成した.これを用いてVTRのスチ
ル画像を再生し、再生出力が10%減少するまでの時間
(スチル寿命)を測定した。 その結果、第5表に示すようにFeを含まない[比較例
3]に比べ、スチル寿命が約3倍に向上し、試験後のテ
ープ表面の損傷も軽微であった.第5表 実施例32. 厚さ50一のポリイミドフィルムの両面にパーマロイ膜
を0.2.の厚さにスパッタリングで形成し、その上に
C o − C r合金を0.1μの厚さにスパッタリ
ングして、垂直磁化用記録膜を設けた.この上に実施例
3lと同様にプラズマCVD法でFeを5%含む厚さ0
.02Ilmの非品質炭素保護膜を形成した.一方、実
施例1で用いたものと同じ潤滑剤をフレオンに0.2%
の濃度で溶かした溶液を準備しておき、この溶液中に上
記フイルムを通して表面に潤滑剤を付着させた。その後
、このフィルムから3.5インチ径の円板を切り出し、
これにサファイア製の直径R 3 0 m mの球面を
持つ摺動子を荷重20gで押し付け、この円板を100
0rpmで回転させて摩耗の様子を調べた.その結果、
3 0 m i n間の摺動によっても磁性層に至る摩
耗は生じなかった. [比較例4コ 実施例32と同じ工程でポリイミドフィルムに、パーマ
ロイ膜、C o −C r合金、非晶質炭素保護膜を順
次設けた。但し、非品質炭素保護膜の原料ガスをメタン
のみとして金属原子を含まない保護膜とした。このフィ
ルムから実施例32と同しように円板を切り出して摺動
試験を行い摩耗の様子を調べた。その結果,8min間
の摺動により摩耗が磁性層まで至り,磁性層が破壊され
た。
[asn that the invention aims to solve]However, in the conventional method of covalently bonding the lubricant and the protective film to strengthen the adhesion as described above, if there are unreacted substances, they may impair lubricity or change over time. It causes In addition, the reactivity of the bonded part is higher than other parts, and there are problems such as being easily decomposed by the heat during sliding.Also, if the bond breaks due to decomposition during sliding, there is a small possibility that it will bond again. ,
It is difficult to replenish lubricant. Moreover, it is extremely difficult to form such bonds uniformly and with sufficient density over the entire surface of the protective film. On the other hand, when a metal oxide film is provided on the protective film and a lubricant with a polar group is adsorbed to this film to strengthen the bonding force, this metal oxide film is formed through a thin lubricant layer. Since it rubs directly against the sliding part of the magnetic head, the metal oxide wear particles (debris) generated by this sliding damage the underlying protective film, and even if a strong protective film is installed, the protective film will not work. characteristics are not fully utilized. As described above, since metal oxide films are weaker than carbon films, carbides, etc. that are generally used as protective film materials, there is a problem in that they weaken the durability of the magnetic recording medium as a whole. Therefore, an object of the present invention is to solve the above-mentioned conventional problems, and the first object is to provide an improved magnetic recording medium in which the bonding force between the protective film and the lubricant is further strengthened. The purpose is to provide its manufacturing method, and the third purpose is to provide its applied products. [Means for Solving the Problems] The present inventors have investigated in detail the relationship between the lubricant application method, applied state, application amount, etc., and the frictional wear characteristics of a magnetic recording medium, and have found that the covalent bond Instead, the most effective way to extend the life of a magnetic recording medium is to use chemical adsorption to uniformly and firmly adsorb the lubricant to the protective film, and to prevent the characteristics of the protective film from changing. I found out. If the adsorption force between the lubricant and the protective film surface itself is large, lubrication is less likely to run out, and even if it does occur, it can be repaired by adsorption again. It has been found that in order to increase the bonding strength with the lubricant, it is possible to have an element other than carbon, especially a metal atom, or a compound thereof on the surface of the protective film, and to allow the lubricant to be adsorbed through this. Furthermore, in order to achieve this without impairing the properties of the protective film, we have found that it is better to mix the protective film material and the gold RIM element or its compound on the surface of the protective film. The present invention has been made based on the above-mentioned findings, and the first object is to sequentially laminate at least a magnetic recording layer made of a ferromagnetic material, a protective layer, and a lubricating layer on a non-magnetic substrate. In the magnetic recording medium, an adhesion-strengthening intervening substance made of at least one metal atom and a compound thereof is uniformly dispersed on the surface of at least the protective layer while exposing a part of the protective layer without covering the entire surface of the protective layer. This is accomplished by a magnetic recording medium having a lubricating layer attached thereto to enhance the adhesion of the lubricating layer to the protective layer. Further, it is preferable that the surface atomic occupancy of the adhesion-strengthening intervening substance to be adhered to the surface of the protective layer is 0.5 to 80%. Note that the surface atomic occupancy refers to the occupancy of the adhesion-strengthening intervening substance in the entire area of the surface of the protective layer. Further, the metal atoms constituting the adhesion-strengthening intervening substance include metal atoms and/or compounds thereof, which have lower ionization energy than hydrogen, and the compounds are selected from the group of hydroxides, salts, and oxides. It is preferable that the material consists of at least one kind. The adhesion-strengthening intervening substance may be scattered on the surface of the protective layer, or it may be dispersed or mixed within the protective layer and a portion thereof may be exposed on the surface of the protective layer, thereby substantially forming the surface of the protective layer. They may be scattered. What is important in the present invention is that the entire surface of the protective layer is not completely covered with this adhesion-strengthening intervening substance, that is, that the surface atomic occupancy of this substance is not 100%. When this adhesion-strengthening intervening substance is dispersed or mixed in the protective layer, it is preferable to create a concentration gradient so that it is distributed more on the surface than inside the layer. The protective layer is selected from at least one of carbon, carbide, nitride, and oxide having high hardness,
Particularly preferred is a carbon-based protective film. The lubricant is preferably a chain organic compound having at least one end group containing an unpaired electron, an electron-donating atom, or an atom having a functional group, and containing fluorine in the main chain. The second object of the present invention is to provide a magnetic recording medium comprising the steps of forming a magnetic recording layer on a non-magnetic substrate, forming a protective layer thereon, and further applying a lubricant thereon. In the manufacturing process of the medium, between the step of forming the protective layer and the step of applying the lubricant, an adhesion-strengthening intervening substance consisting of at least one of metal atoms and metal compounds is applied to the entire surface of the protective layer. This is achieved by a method of manufacturing a magnetic recording medium, which includes a step of uniformly dispersing and adhering the medium while exposing a part thereof so as not to cover it. Preferably, the adhesion-strengthening intervening substance is dispersed and adhered to the surface of the protective layer during the step of forming the protective layer, and in this case, the step of forming the magnetic recording layer on the nonmagnetic substrate; In the manufacturing process of a magnetic recording medium, which includes a step of forming a protective layer thereon and a step of applying a lubricant thereon, the step of forming the protective layer includes forming the protective layer with a carbon-based material. At the same time, when forming this protective layer, an adhesion-strengthening intervening material consisting of at least one of a metal atom and a metal compound is intentionally mixed into the protective layer, and a part thereof is exposed on the surface of the protective layer, thereby strengthening the adhesion. This is achieved by a method for manufacturing a magnetic recording medium comprising the step of forming an intervening substance substantially scattered over the surface of the protective layer. The step of forming the protective layer containing the adhesion-strengthening intervening material is performed by sputtering using a carbon-based target containing the adhesion-strengthening intervening material, or by sputtering a target consisting of the adhesion-strengthening intervening material and carbon. The process involves separately preparing a system target and sputtering them simultaneously or alternately, or using an organic compound vapor containing a metal element or a compound containing a metal element as one of the adhesion-strengthening intervening substances in the raw material gas. This can be achieved by using a chemical vapor phase method to decompose a mixed vapor of organic compound and organic compound in plasma. Furthermore, in the step of forming a protective layer containing this adhesion-strengthening intervening material, plasma is generated using a mixed gas of an organic compound as a carbon raw material and an inert gas, and plasma CVD is performed. It may also be a process of sputtering reinforcing intervening substances. In addition, when adhesion-enhancing intervening substances are mixed in the protective layer as described above, the amount of this substance should be controlled so that it has a concentration gradient so that it is distributed more on the surface than inside the protective layer. is desirable. The metal atoms that control the adhesion-strengthening intervening substances are:
A metal element having an ionization energy lower than that of hydrogen, and a compound thereof preferably at least one selected from the group of hydroxides, salts, and oxides. The adhesion-strengthening intervening substance to be attached to the surface of the protective layer is desirably formed so that its surface atomic occupancy is 0.5 to 80%. This can be easily achieved by setting the conditions for depositing and adhering substances to predetermined values (including plasma CVD) or the like. In addition, in the step of applying the lubricant, the lubricant has a terminal group containing an unpaired electron or an electron-donating atom or a functional group at at least one end, and contains fluorine in the main chain. It is desirable to use chain organic compounds. Hereinafter, the details of the present invention will be explained in more detail using the drawings. FIG. 1 is a conceptual diagram of a cross section of a magnetic recording medium embodying the present invention, in which a base layer 2, a magnetic layer 3, a protective layer 4, and a lubricant layer 5 are formed in this order on a nonmagnetic substrate 1. . The nonmagnetic substrate 1 is, for example, an AQ substrate, a glass substrate, ceramics, etc. in the case of a magnetic disk, and a polymer film such as polyester, polyimide, etc. in the case of a floppy disk, magnetic tape, etc. Although not shown in the drawing, the surface layer of the non-magnetic substrate 1 includes a Ni-P plating film, oxide,
A non-magnetic film such as nitride may be provided to increase the hardness.5 The underlayer 2 is a material for improving the orientation of the magnetic layer, and for example, a Cr sputtered film is used, but it is not limited to this. Of course, there is no need for it. The magnetic layer 3 is a thin film exhibiting ferromagnetism, and is made of Co, such as Co-Ni or Co-Cr.
base alloy, and these and Pt, Ta, W+ Zr, Cr,
Mow Ti + alloy with at least one element selected from V, Si, Ga, etc., Fe, iron nitride, γFe20,,
Cobalt oxide, barium ferrite, etc. can be used. The protective layer 4 protects the magnetic layer from frictional wear, and is made of a carbon film formed by sputtering, a hard carbon film formed by plasma CVD or ion beam deposition, a plasma polymerized film, carbide, nitride, oxide, etc. A material with excellent wear resistance is used. When forming a carbon film by sputtering, a graphite target is used as a cathode to generate plasma of an inert gas such as Ar, or the target is hit with a high-energy ion beam to form a position facing the target. Deposit a carbon film on a substrate located at In addition, when forming a hard carbon film using the plasma CVD method, a plasma is generated using a hydrocarbon gas such as methane, ethane, propane, or an oxygen-containing hydrocarbon gas such as methanol or acetone, and the potential of the plasma is adjusted. Comparatively, the potential of the board is -100V to -2000
CVD is performed at a negative potential of about V. Furthermore, for carbides and nitrides, it is possible to perform sputtering by preparing targets made of these compound materials, but it is also possible to perform sputtering by preparing targets made of single elements constituting each substance separately and sputtering them at the same time. Alternatively, a reactive sputtering method in which sputtering is performed in a nitrogen gas atmosphere may be used. others. Protective layer 4
It is also possible to have a two-layer structure and provide a film with good corrosion resistance such as Si02 on one side. The lubricating layer 5 is, for example, a polymer or oligomer with a molecular weight of about 1,000 to 20,000 having a perfluoro polyether in its main chain, and O, N, P,
Compounds containing an atom with an unpaired electron such as S, an electron-donating atom, or a functional group are preferred. On the surface of the protective film 4, an adhesion-strengthening intervening substance 6 made of metal atoms or their compounds, which is a feature of the present invention, is dispersed and adhered, and the lubricant is adsorbed through this substance 6.
The metal atom may be a single element, or it may be in the form of a compound, such as an oxide, hydroxide, or salt, but hydroxide is preferred because it has a greater effect. This is presumed to be due to the effect of hydrogen bonding between the hydroxyl group and the lubricant terminal group. Another feature of the present invention is that the above-mentioned metal elements do not completely cover the surface of the protective film, but are mixed with atoms constituting the protective film on the surface. Figure 2 is a model showing how metal atoms or their compounds are dispersed on the surface of the protective film 4. As shown in 7 in Figure 2 (.), they are dispersed in an atomic state. is the most preferable. However, in Figure 2 (b
) As shown in item 8, even if it is partially aggregated into an island shape, it is effective as long as it does not completely cover the protective film material. If the surface of the protective film is completely covered with metal or its compound and becomes a film, the strength of the film is insufficient when it slides with a magnetic head, etc., and it is destroyed, resulting in poor sliding durability. I'll let you. On the other hand, when metal atoms or their compounds are selectively dispersed without covering the entire surface of the protective film as in the present invention, the sliding properties are guaranteed to be close to those of the protective film itself, and the lubrication A dramatic effect is produced because only the adsorption power of the agent can be improved. Existing surface analysis techniques such as photoelectron spectroscopy and Auger spectroscopy can be used to examine the amount and distribution of metal atoms or their compounds on the surface of the protective film. Figure 3 shows the Auger electron spectrum obtained by performing Auger analysis on a protective film made of carbon with a distribution of metal atoms (Co in this example) formed on its internal and external surfaces, which is suitable for the present invention. be. From this figure, it can be seen that the strong spectrum of carbon C was measured w4, and the metal atoms attached to the surface of the protective film did not cover the entire surface of the protective film. In other words, the vertical axis of this figure shows the spectral intensity, and its size represents the relative amount of atoms. Further, the horizontal axis indicates the energy level, and exhibits a spectrum unique to atoms, and in this example, spectra of three elements, carbon C, oxygen O, and cobalt Co, appear. Therefore, carbon is present in the highest amount on the surface of the protective film due to its strength, followed by oxygen and cobalt. If the spectral intensity ratio of each of these elements is determined, it becomes the surface atomic occupancy of each element, and in this example, the surface atomic occupancy of cobalt is about 10%. According to experiments conducted by the present inventors, in order for the lubricant to sufficiently cover the surface of the protective film, it is necessary to use gold g, which is an intervening substance that strengthens adhesion. t
The surface concentration of yX molecules or their compounds (here defined as surface atom occupancy) must be 0.5% or more in terms of atomic ratio, and 80% or more in order not to impair the sliding properties of the protective film. %, preferably from 3 to 60%. For example, the following method can be used to make metal atoms exist on the surface of the protective film. l. After forming the protective film, sputtering is performed using a material made of a specific metal element as a target, or the metal atoms are attached to the surface of the protective film by vacuum evaporation. 2. After the protective film is formed, plasma is generated using a gas containing a specific metal compound as a raw material, and the metal or compound containing the metal is attached to the surface of the protective film. 3. After forming the protective film, it is immersed in a solution containing a specific metal element, dried, and a substance containing the metal is attached to the surface. 4. By performing sputtering using a carbon material containing metal atoms as a target, a carbon film containing the metal atoms is formed. 5. Metal targets and carbon material targets! A carbon film containing the metal atoms is formed by arranging them individually and sputtering them at the same time. 6. Sputtering or plasma CVD of carbon material
A current is applied to the metal wire near the substrate to heat the metal wire, causing metal elements to fly out, forming a carbon film containing the metal atoms. After forming a carbon film containing metal atoms using methods 2, 4, and 5.6 above, the effect will be enhanced if the surface is slightly etched with oxygen plasma to increase the density of metal atoms on the surface. In addition, after forming a film containing metal atoms, by leaving it for a certain period of time under conditions of high water vapor partial pressure, the metal atoms become hydroxides or ions and are evenly distributed on the carbon film surface, making it even more effective. be. Basically, any metal is effective as the metal atom used in the present invention, but transition metal elements classified in the periodic table (a) to (a) or metal elements whose ionization potential is lower than that of hydrogen are preferable. be. These elements include, for example, Sc, Ti, V, Cr, Mn, Fe, Go
, Ni, Y, Zr, Nb. Mo, Cu, Pd, Ag, H
f, Ta, W, I r, P t, Au, AI, Ga, I
n, Ge, Sn, Pb, Ba, Ca, Mg. Lit
Examples include Na, K, Be, etc. . Among these, especially C r p F a * C o * N
Elements in the group consisting of ITAQ, Sn, etc. have a large effect, and can be easily attached by a process such as sputtering, which is the same as forming a protective film, so they are preferred from the standpoint of compatibility with the m-manufacturing process. .. On the other hand, the lubricant used in the present invention is preferably a compound containing fluorinated carbon in its main chain, and is represented by the general formula *Rl (CnF+++Ok) R2. Here, at least one of R and R2 is a group containing a hetero atom such as O, N, or S, or a benzene/ring, or both, and the main chain CnFm
Ok is, for example, polyfluorinated carbon or barflow polyether with a molecular weight of 500 to 10,000.
n, m are positive integers k is a positive integer or O. The above-mentioned heteroatom- and/or benzene ring-containing group R. ,R
However, the lubricant firmly adheres to the surface of the protective film because it forms a strong bond with the metal element. #! Therefore, the effects of the present invention are not limited to the above-mentioned lubricants, but also apply to saturated fatty acids and their esters. Further, other groups may be added to the above fluorinated carbon. In order to carry out the present invention, the base layer 2 to the protective layer 4 may be formed using a normal film forming apparatus, and the gold Ii4 atoms may be formed separately by sputtering, etc., but the layers up to the protective layer 4 may be formed continuously by sputtering. In the case of shaping the structure, it can be easily realized by simply adding one target for introducing metal atoms. However, when metal atoms are mixed in the protective film itself,
This is more preferable because it can be realized without increasing the number of steps by using a metal-containing protective film raw material target or by plasma CVD of an organometallic compound. [Effect 1] The reason why the lubricant is strongly adsorbed to the protective film and exhibits good lubricating properties according to the present invention is not completely elucidated, but it is thought to be as follows. Many metal atoms easily form coordination bonds with atoms with unpaired electrons such as O, N, S, and P in lubricants, and these bonds are reversible and are considerably stronger than normal intermolecular forces. It is something. In addition, most of the metal atoms that exist on the surface exist in the form of hydroxides or oxides, and hydroxides are particularly easy to form hydrogen bonds with atoms that have the above-mentioned unpaired electrons.
In addition, the surface of the protective film is also oxidized to some extent,
This oxygen atom also easily forms coordination bonds with metal atoms. It is thought that this action causes a strong adsorption force between the surface of the protective film material and the lubricant molecules via the gold Ix atoms. [Example} Examples 1 to 3. An example of a magnetic disk having a film formation structure similar to the cross-sectional structure shown in FIG. 1 is shown below. First, a Ni-P plating film was applied in advance to the AQ disk substrate 4 for 10 minutes. Cr underlayer 2, C
An o-Ni alloy magnetic layer 3 and a sputtered carbon protective layer 4 were formed in this order by sputtering. Sputtering of the carbon layer as a protective film was performed by direct current sputtering using a graphite target at an Ar gas pressure of 5 mTorr. Next, Ni atoms 6 are deposited on this substrate by sputtering.
was attached. This substrate was immersed in a Freon solution containing 0.2% by weight of fluorine-based lubricant 5 and then pulled up at a constant speed to form a lubricant layer. As this fluorine-based lubricant, AM2001 (trade name) manufactured by Montefloss was used. The magnetic disk disc manufactured in this way was subjected to a contact start stop (CSS) tester.
We investigated its durability. The results are shown in Table 1, and the CSS life exceeded 30k cycles, which is one of the practical evaluation criteria, and the increase in the friction coefficient during the test was also small. In addition, as is clear from comparing Examples 1 to 3,
There is a difference in CSS life depending on the proportion of metal attached, and better characteristics are obtained when there is less than too much. However, although not exemplified in this table, if the amount is extremely low, the effect will not be sufficient, and for practical purposes, 0.5 to 80%, more preferably 3
It was ~60%. The surface atomic occupancy of the metal elements in the table was determined by measuring the Auger electron spectrum of the surface of the protective layer after the metal atoms (N i ) were attached as described above. When a magnetic disk device was assembled using eight magnetic disk disks manufactured in the above process and actually operated,
No abnormality occurred even after 2,000 hours of operation, and when the disk surface was observed thereafter, no scratches or stains were found due to sliding. Examples 4-15. As in Example 1, a Nj. - Different types of metal atoms are attached to the AQ substrate with P plating film by sputtering,
In Example 1, magnetic disks with different adhesion amounts were prepared.
A CSS test was conducted by applying lubricant in the same process as above. The amount of metal atoms on the surface of the protective film was measured using Auger electron spectroscopy in the same manner as in Example 1 above. The results are shown in Table 1, in all cases a CSS life of 30k cycles or more was achieved, and the increase in friction coefficient during the test was also small. [Comparative Example 1] When a lubricant was applied on the carbon without sputtering metal in Example 1 and the same test as in Example 1 was conducted, the CSS life was 15k times, and the friction coefficient increased with the number of CSSs. did. Furthermore, when a magnetic disk drive was assembled using eight such magnetic disks and actually operated, the disks stopped moving after 500 hours because the coefficient of friction increased. [Comparative Example 2] In Example 1, Ni was sputtered to a thickness of 10 nm to completely cover the surface of the protective film, and then a lubricant was applied in the same manner and a CSS test was conducted. ,
Both the magnetic head and magnetic disk were scratched. In particular, the scratches on the magnetic disk had reached the magnetic layer. Table 1 below shows Examples 16 to 20. In the carbon sputtering of Example 1, a mixture of Graphdate and a predetermined amount of metal elements was used as a target instead of graphite, and sputtering was performed to form a carbon film mixed with metal elements. A lubricant was applied to this in the same manner as in Example 1, and the CSS life as a magnetic disk was examined. The results are shown in Table 2, and in all cases, a CSS life of 30k cycles or more was achieved, and the increase in friction coefficient during the test was also small. Table 2 However, M1 in the table represents the composition ratio of the metal elements contained in the target. Examples 21-25. A Ni-P plating film is preliminarily applied to a magnetic disk substrate manufactured by AQ. Cr underlayer, Co-N
The i-alloy magnetic layer was formed in this order by sputtering. Then, in a methane gas atmosphere, high-frequency power was applied so that a negative bias voltage was applied to the disk side, generating plasma and forming a hard, non-quality hydrogenated carbon film.
Next, after sputtering the metal atoms in the same manner as in Example 1, a lubricant is applied, and as in Example 1, C
I did the SS test. As shown in Table 3, the results show that the CSS lifespan is 7.
More than 0k cycles were achieved, and no increase in the friction coefficient was observed. Examples 26-30. In Example 21, a mixture of methane gas and the vapor of the organometallic compound shown in Table 4 was used as the raw material, and plasma CVD was performed in the same manner as in Example 21 to reduce the metal atoms to 1 to 1.
A hard carbon film containing 0% carbon was formed. A lubricant was applied to this substrate and a CSS test was conducted in the same manner as in Example 1. As shown in Table 4, no increase in the coefficient of friction was observed over a CSS life of 70k cycles or more. . Table 3 Table 4 Example 31. A thin film of Co-Ni alloy with a thickness of 500 mm was formed on the surface of a polyester film with a thickness of 10 mm using a vacuum evaporation method, and a thin film of Co-Ni alloy with a thickness of 500 mm was formed on the surface of a polyester film with a thickness of 10 mm. , containing 5% Fe and having a thickness of 0.
A hard carbon film of 0.02 μm was formed. This was coated with the same lubricant as used in Example 1, and cut into 8 mm width to create a magnetic tape. Using this, still images of a VTR were played back, and the time until the playback output decreased by 10% (still life) was measured. As a result, as shown in Table 5, the still life was approximately three times longer than that of [Comparative Example 3] which did not contain Fe, and the damage to the tape surface after the test was slight. Table 5 Example 32. A permalloy film is applied on both sides of a polyimide film with a thickness of 0.2 mm. A recording film for perpendicular magnetization was formed by sputtering a Co-Cr alloy to a thickness of 0.1 μm on top of the perpendicular magnetization film. On top of this, a thickness of 0 containing 5% Fe was formed using the plasma CVD method in the same manner as in Example 3l.
.. A non-quality carbon protective film of 02Ilm was formed. Meanwhile, the same lubricant used in Example 1 was added to 0.2% Freon.
A lubricant solution was prepared in advance at a concentration of 1, and the lubricant was passed through the solution to adhere to the surface. Then, a 3.5-inch diameter disc was cut out from this film.
A slider made of sapphire and having a spherical surface with a diameter of R 30 mm was pressed onto this with a load of 20 g, and this disc was
The state of wear was examined by rotating at 0 rpm. the result,
No wear to the magnetic layer occurred even after sliding for 30 min. [Comparative Example 4] In the same process as in Example 32, a permalloy film, a Co-Cr alloy, and an amorphous carbon protective film were sequentially provided on a polyimide film. However, the raw material gas for the non-quality carbon protective film was methane only, resulting in a protective film that does not contain metal atoms. A disk was cut out from this film in the same manner as in Example 32, and a sliding test was performed to examine the state of wear. As a result, abrasion reached the magnetic layer due to sliding for 8 minutes, and the magnetic layer was destroyed.

【発明の効果】【Effect of the invention】

上述のごとく本発明によれば、磁気記録媒体の潤滑剤を
保護膜に強固に吸着させることが出来,磁気記録媒体の
長寿命化、信頼性向」二に大きな効果がある。更に、保
護膜厚を薄くしたり磁気ヘッドの浮上高さを低くしても
十分な潤滑性が得られることから機械特性上の問題を低
減出来るので高記録密度化にも大きな効果がある。
As described above, according to the present invention, the lubricant of the magnetic recording medium can be firmly adsorbed to the protective film, which has a great effect on extending the life of the magnetic recording medium and improving its reliability. Furthermore, sufficient lubricity can be obtained even if the thickness of the protective film is made thinner or the flying height of the magnetic head is lowered, so problems with mechanical properties can be reduced, and this has a great effect on increasing recording density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の磁気記録媒体の構造を示す断面図、
第2図は本発明における金属原子またはその化合物の存
在状態の例を模式的に示す断面図、また,第3図は,本
発明の一実施例となる金属またはその化合物を保護膜表
面に分散させた保護膜の最表面におけるオージェ電子ス
ペクトル曲線図である。 スペクトルオ目ラ寸5会膚 図において、 1・・・基板 ; 4・・・保護層; の化合物 ; 分子   ・ 集合体 2・・・下地層 ;3・・・磁性層 5・・・潤滑層 ;6・・・金属またはそ7・・・金属
原子またはその化合物の 8・・・金属またはその化合物分子の
FIG. 1 is a sectional view showing the structure of the magnetic recording medium of the present invention;
Figure 2 is a cross-sectional view schematically showing an example of the state of existence of metal atoms or their compounds in the present invention, and Figure 3 is an embodiment of the present invention in which metals or their compounds are dispersed on the surface of the protective film. FIG. 4 is an Auger electron spectrum curve diagram at the outermost surface of the protective film. In the spectrum diagram, 1...substrate; 4...protective layer; compound; molecule/aggregate 2...underlayer; 3...magnetic layer 5...lubricating layer ; 6...Metal or its 7...Metal atom or its compound 8...Metal or its compound molecule

Claims (1)

【特許請求の範囲】 1、非磁性基体上に、少なくとも強磁性体からなる磁気
記録層と保護層と潤滑層とを順次積層してなる磁気記録
媒体において、前記少なくとも保護層表面に、金属原子
およびその化合物の少なくとも1種からなる付着力強化
介在物質を前記保護層の全面を覆い隠すことなくその一
部を露出させつつ均一に分散、付着せしめて配し、前記
保護層に対する潤滑層の付着力を強化せしめて成る磁気
記録媒体。 2、上記保護層表面に付着せしめる上記付着力強化介在
物質の表面原子占有率を0.5〜80%として成る請求
項1記載の磁気記録媒体。 3、上記付着力強化介在物質を構成する金属原子は、水
素よりイオン化エネルギーの低い金属元素から成り、か
つその化合物としては、水酸化物、塩及び酸化物の群か
ら選択される少なくとも1種から成る請求項1もしくは
2記載の磁気記録媒体。 4、上記付着力強化介在物質は、上記保護層内に分散、
混在し、その一部が保護層表面に露出することにより実
質的に前記保護層表面に散在せしめて成る請求項1、2
もしくは3記載の磁気記録媒体。 5、上記保護層は、炭素、炭化物、窒化物及び酸化物の
少なくとも1種から成る請求項1、2、3もしくは4記
載の磁気記録媒体。 6、上記潤滑剤は、少なくとも一方の末端に不対電子を
有する原子を含む末端基を保持し、主鎖にフッ素を含む
鎖状有機化合物から成る請求項1、2、3、4もしくは
5記載の磁気記録媒体。 7、非磁性基体上に磁気記録層を形成する工程と、その
上に保護層を形成する工程と、さらにその上に潤滑剤を
塗布する工程とを有する磁気記録媒体の製造工程におい
て、前記保護層を形成する工程と、前記潤滑剤を塗布す
る工程との間に、金属原子及び金属化合物の少なくとも
1種からなる付着力強化介在物質を前記保護層の全面を
覆い隠さないようその一部を露出させつつ均一に分散付
着させる工程を有して成る磁気記録媒体の製造方法。 8、非磁性基体上に磁気記録層を形成する工程と、その
上に保護層を形成する工程と、さらにその上に潤滑剤を
塗布する工程とを有する磁気記録媒体の製造工程におい
て、前記保護層を形成する工程として保護層を炭素系材
料で構成すると共に、この保護層形成時に金属原子及び
金属化合物の少なくとも1種からなる付着力強化介在物
質を前記保護層中に分散混在せしめその一部が保護層表
面に露出することにより前記付着力強化介在物質を実質
的に前記保護層表面に散在せしめて形成する工程を有し
て成る磁気記録媒体の製造方法。 9、上記付着力強化介在物質を混在する保護層を形成す
る工程として、前記付着力強化介在物質を含む炭素系タ
ーゲットを用いてスパッタリングするか、もしくは付着
力強化介在物質からなるターゲットと炭素系ターゲット
とを個別に準備し、これらを同時にもしくは交互にスパ
ッタリングする工程とした請求項8記載の磁気記録媒体
の製造方法。 10、上記保護層を形成する工程として、原料ガスに上
記付着力強化介在物質の一つである金属元素を含む有機
化合物蒸気もしくは金属元素を含む化合物と有機化合物
との混合蒸気をプラズマ中で分解する化学気相法により
形成する工程とした請求項8記載の磁気記録媒体の製造
方法。 11、上記保護層を形成する工程として、炭素原料とし
ての有機化合物と不活性ガスとの混合ガスでプラズマを
発生させプラズマCVDを行うと同時に、上記付着力強
化介在物質をスパッタリングする工程とした請求項8記
載の磁気記録媒体の製造方法。 12、上記付着力強化介在物質を構成する金属原子は、
水素よりイオン化エネルギーの低い金属元素から成り、
かつその化合物としては、水酸化物、塩及び酸化物の群
から選択される少なくとも1種から成る請求項7、8、
9、10もしくは11記載の磁気記録媒体の製造方法。 13、上記保護層中に混在させる上記付着力強化介在物
質の量を、層の内部に比べ表面に多く分布するよう濃度
勾配をもたせて形成して成る請求項7、8、9、10、
11もしくは12記載の磁気記録媒体の製造方法。 14、上記保護層表面に付着せしめる上記付着力強化介
在物質の表面原子占有率が0.5〜80%となるよう形
成して成る請求項7、8、9、10、11、12もしく
は13記載の磁気記録媒体の製造方法。 15、上記潤滑剤を塗布する工程において、潤滑剤とし
て、少なくとも一方の末端に不対電子を有する原子を含
む末端基を保持し、主鎖にフッ素を含む鎖状有機化合物
を用いて成る請求項7、8、9、10、11、12、1
3もしくは14記載の磁気記録媒体の製造方法。 16、請求項1、2、3、4、5もしくは6記載の磁気
記録媒体における非磁性基体として、非磁性ディスク基
板を用いて成る磁気ディスク。 17、同一回転軸上に所定間隔をおいて複数枚装着され
た磁気ディスクと、回転するこれら磁気ディスク上をそ
の半径方向に往復移動する磁気ヘッド及びそれを駆動す
る磁気ヘッド駆動手段とを備えた磁気ディスク装置にお
いて、前記磁気ディスクを請求項16記載の磁気ディス
クで構成して成る磁気ディスク装置。
[Claims] 1. A magnetic recording medium comprising a magnetic recording layer made of at least a ferromagnetic material, a protective layer, and a lubricating layer sequentially laminated on a nonmagnetic substrate, wherein metal atoms are formed on the surface of at least the protective layer. A lubricating layer is applied to the protective layer by uniformly dispersing and adhering an adhesion-strengthening intervening material consisting of at least one of the following: A magnetic recording medium with strengthened adhesive strength. 2. The magnetic recording medium according to claim 1, wherein the adhesion-strengthening intervening substance adhered to the surface of the protective layer has a surface atomic occupancy of 0.5 to 80%. 3. The metal atoms constituting the adhesion-strengthening intervening substance are made of a metal element with lower ionization energy than hydrogen, and the compound thereof is at least one selected from the group of hydroxides, salts, and oxides. 3. The magnetic recording medium according to claim 1 or 2. 4. The adhesion-strengthening intervening substance is dispersed within the protective layer,
Claims 1 and 2, wherein the protective layer is mixed with the protective layer, and a portion thereof is exposed on the surface of the protective layer so that the protective layer is substantially scattered on the surface of the protective layer.
Or the magnetic recording medium described in 3. 5. The magnetic recording medium according to claim 1, 2, 3, or 4, wherein the protective layer is made of at least one of carbon, carbide, nitride, and oxide. 6. The lubricant according to claim 1, 2, 3, 4 or 5, comprising a chain organic compound having a terminal group containing an atom having an unpaired electron at at least one end and containing fluorine in the main chain. magnetic recording media. 7. In the manufacturing process of a magnetic recording medium, which includes a step of forming a magnetic recording layer on a non-magnetic substrate, a step of forming a protective layer thereon, and a step of applying a lubricant thereon, the protective layer is Between the step of forming the layer and the step of applying the lubricant, part of the protective layer is partially covered with an adhesion-strengthening intervening substance made of at least one of metal atoms and metal compounds so as not to cover the entire surface of the protective layer. A method of manufacturing a magnetic recording medium, comprising a step of uniformly dispersing and adhering it while exposing it. 8. In the manufacturing process of a magnetic recording medium, which includes the steps of forming a magnetic recording layer on a non-magnetic substrate, forming a protective layer thereon, and further applying a lubricant thereon, the protective layer In the step of forming the layer, the protective layer is composed of a carbon-based material, and at the time of forming the protective layer, an adhesion-strengthening intervening substance consisting of at least one of metal atoms and metal compounds is dispersed and mixed in the protective layer. A method for manufacturing a magnetic recording medium, comprising the step of forming the adhesion-strengthening intervening substance substantially scattered on the surface of the protective layer by exposing the intervening substance on the surface of the protective layer. 9. In the step of forming a protective layer containing the adhesion-strengthening intervening substance, sputtering is performed using a carbon-based target containing the adhesion-strengthening intervening substance, or sputtering is performed using a carbon-based target containing the adhesion-strengthening intervening substance and a carbon-based target. 9. The method of manufacturing a magnetic recording medium according to claim 8, wherein the step of preparing separately and sputtering these simultaneously or alternately. 10. As a step of forming the above-mentioned protective layer, an organic compound vapor containing a metal element, which is one of the above-mentioned adhesion-strengthening intervening substances, or a mixed vapor of a compound containing a metal element and an organic compound is decomposed in plasma in the raw material gas. 9. The method of manufacturing a magnetic recording medium according to claim 8, wherein the step of forming the magnetic recording medium is by a chemical vapor phase method. 11. A claim in which the step of forming the protective layer is a step of generating plasma with a mixed gas of an organic compound as a carbon raw material and an inert gas and performing plasma CVD, and at the same time sputtering the adhesion-strengthening intervening substance. Item 8. A method for manufacturing a magnetic recording medium according to item 8. 12. The metal atoms constituting the adhesion-strengthening intervening substance are:
Consists of metal elements with lower ionization energy than hydrogen,
and the compound is at least one selected from the group of hydroxides, salts and oxides.
9, 10 or 11. The method for manufacturing a magnetic recording medium according to 11. 13. Claims 7, 8, 9, 10, wherein the protective layer is formed with a concentration gradient such that the amount of the adhesion-strengthening intervening substance is more distributed on the surface than inside the layer.
13. The method for manufacturing a magnetic recording medium according to 11 or 12. 14. The protective layer according to claim 7, 8, 9, 10, 11, 12, or 13, wherein the adhesion-strengthening intervening substance is formed to have a surface atomic occupancy of 0.5 to 80%. A method for manufacturing a magnetic recording medium. 15. In the step of applying the lubricant, a chain organic compound having a terminal group containing an atom having an unpaired electron at at least one end and containing fluorine in the main chain is used as the lubricant. 7, 8, 9, 10, 11, 12, 1
15. The method for manufacturing a magnetic recording medium according to 3 or 14. 16. A magnetic disk comprising a non-magnetic disk substrate as the non-magnetic substrate in the magnetic recording medium according to claim 1, 2, 3, 4, 5 or 6. 17. Equipped with a plurality of magnetic disks mounted on the same rotating shaft at predetermined intervals, a magnetic head that reciprocates in the radial direction on these rotating magnetic disks, and a magnetic head drive means for driving the magnetic disk. 17. A magnetic disk device, wherein the magnetic disk is the magnetic disk according to claim 16.
JP1158191A 1989-06-22 1989-06-22 Magnetic recording medium and method of manufacturing the same Expired - Lifetime JP2774149B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1158191A JP2774149B2 (en) 1989-06-22 1989-06-22 Magnetic recording medium and method of manufacturing the same
US07/540,187 US5104709A (en) 1989-06-22 1990-06-19 Magnetic recording medium which includes a protective layer, an adhesion strengthening substance and a lubricant layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1158191A JP2774149B2 (en) 1989-06-22 1989-06-22 Magnetic recording medium and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0325723A true JPH0325723A (en) 1991-02-04
JP2774149B2 JP2774149B2 (en) 1998-07-09

Family

ID=15666257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1158191A Expired - Lifetime JP2774149B2 (en) 1989-06-22 1989-06-22 Magnetic recording medium and method of manufacturing the same

Country Status (2)

Country Link
US (1) US5104709A (en)
JP (1) JP2774149B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317594B2 (en) 2004-08-31 2008-01-08 Fujitsu Limited Magnetic recording medium, head slider and manufacturing methods therefor

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2781656B2 (en) * 1990-11-21 1998-07-30 株式会社日立製作所 recoding media
US5486276A (en) * 1992-09-10 1996-01-23 Fujitsu Limited Method for manufacturing small magnetic disks from a large disk
US5665251A (en) * 1994-11-23 1997-09-09 International Business Machines Corporation RIE image transfer process for plating
JP3821878B2 (en) * 1996-04-23 2006-09-13 フジノン株式会社 Release film forming method
US5858182A (en) * 1997-03-20 1999-01-12 Headway Technoloies, Inc. Bilayer carbon overcoating for magnetic data storage disks and magnetic head/slider constructions
US6468947B1 (en) 1999-03-26 2002-10-22 Seagate Technology Llc Lubricants with improved stability for magnetic recording media
JP4199913B2 (en) * 2000-09-28 2008-12-24 株式会社日立グローバルストレージテクノロジーズ Method for manufacturing magnetic recording medium
ES2190345B1 (en) * 2001-07-17 2004-05-01 Industrias Ramon Soler, S.A. PROCEDURE FOR COATING CERAMIC DISCS AND CERAMIC DISK OBTAINED BY MEANS OF THIS PROCEDURE.
US20040172832A1 (en) * 2003-03-04 2004-09-09 Colin Clipstone Razor blade
JP2006216216A (en) * 2005-01-07 2006-08-17 Fujitsu Ltd Magnetic disk, manufacturing method therefor and magnetic storage device
JP5250937B2 (en) * 2006-02-28 2013-07-31 富士通株式会社 Lubricant, magnetic recording medium and head slider
US20070224452A1 (en) * 2006-03-24 2007-09-27 Fujitsu Limited Lubricant, magnetic recording medium and head slider
JP2007284659A (en) * 2006-03-24 2007-11-01 Fujitsu Ltd Lubricant, magnetic recording medium and head slider

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217519A (en) * 1987-03-06 1988-09-09 Fuji Photo Film Co Ltd Magnetic recording medium
JPH01128225A (en) * 1987-11-12 1989-05-19 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPH01184722A (en) * 1988-01-19 1989-07-24 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
JPH02132624A (en) * 1988-11-11 1990-05-22 Matsushita Electric Ind Co Ltd Magnetic recording medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1174206B (en) * 1984-06-19 1987-07-01 Montedison Spa FLUOROPOLYETERS CONTAINING TERMINAL GROUPS EQUIPPED WITH ANCHORING CAPACITY
JP2633230B2 (en) * 1985-09-26 1997-07-23 日本電気株式会社 Magnetic storage
US4889767A (en) * 1986-04-23 1989-12-26 Tdk Corporation Magnetic recording medium
US4840843A (en) * 1986-10-17 1989-06-20 Fuji Photo Film Co., Ltd. Magnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217519A (en) * 1987-03-06 1988-09-09 Fuji Photo Film Co Ltd Magnetic recording medium
JPH01128225A (en) * 1987-11-12 1989-05-19 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPH01184722A (en) * 1988-01-19 1989-07-24 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
JPH02132624A (en) * 1988-11-11 1990-05-22 Matsushita Electric Ind Co Ltd Magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317594B2 (en) 2004-08-31 2008-01-08 Fujitsu Limited Magnetic recording medium, head slider and manufacturing methods therefor
US8018683B2 (en) 2004-08-31 2011-09-13 Fujitsu Limited Head slider and magnetic recording device therewith

Also Published As

Publication number Publication date
JP2774149B2 (en) 1998-07-09
US5104709A (en) 1992-04-14

Similar Documents

Publication Publication Date Title
US6998183B1 (en) Magnetic recording medium with multilayer carbon overcoat
JP2852077B2 (en) Magnetic recording media
JPH0325723A (en) Magnetic recording medium and production thereof
US7175926B2 (en) Dual-layer carbon-based protective overcoats for recording media by filtered cathodic ARC deposition
JP2002367153A (en) Thin-film magnetic recording disk having chromium nickel preseed layer
US6238780B1 (en) Magnetic recording medium comprising multilayered carbon-containing protective overcoats
US6136421A (en) Magneto-resistance recording media comprising multilayered protective overcoats
US6129981A (en) Magnetic recording medium and magnetic recording disk device
KR100639624B1 (en) Magnetic recording medium and magnetic storage apparatus
US6517956B1 (en) Magneto-resistance recording media comprising aluminum nitride corrosion barrier layer and a c-overcoat
US6322880B1 (en) Magneto-resistance recording media comprising a foundation layer and a C-overcoat
EP1136987A1 (en) Magnetic recording and reproducing device
JP3934697B2 (en) Magnetic recording medium
JP3336801B2 (en) Magnetic recording media
JPH06150299A (en) Magnetic recording medium and its manufacture
JPH0256723A (en) Magnetic recording medium and its production and magnetic disk device
JP2001291228A (en) Magnetic recording medium, cleaning tape and magnetic disk device
JP2003006837A (en) Magnetic disk medium having ultra-thin film protective film
JPH03108121A (en) Magnetic recording medium and magnetic recordor
JP2000113443A (en) Magnetic recording medium and magnetic disk device
JPS6246425A (en) Magnetic recording medium
JPH05182186A (en) Magnetic recording medium, its production and magnetic recording device
JPS63102023A (en) Magnetic recording medium
JPH0855322A (en) Magnetic recording medium
JPS6246427A (en) Magnetic recording medium