JPH03108121A - Magnetic recording medium and magnetic recordor - Google Patents

Magnetic recording medium and magnetic recordor

Info

Publication number
JPH03108121A
JPH03108121A JP24509589A JP24509589A JPH03108121A JP H03108121 A JPH03108121 A JP H03108121A JP 24509589 A JP24509589 A JP 24509589A JP 24509589 A JP24509589 A JP 24509589A JP H03108121 A JPH03108121 A JP H03108121A
Authority
JP
Japan
Prior art keywords
group
magnetic
recording medium
protective coating
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24509589A
Other languages
Japanese (ja)
Inventor
Shinan Yahisa
四男 屋久
Yoshihiro Shiroishi
芳博 城石
Sadao Hishiyama
菱山 定夫
Tomoyuki Oono
大野 徒之
Hiroyuki Suzuki
博之 鈴木
Yoshifumi Matsuda
松田 好文
Norikazu Tsumita
積田 則和
Masaki Oura
大浦 正樹
Noriyuki Shige
重 則幸
Tomoo Yamamoto
朋生 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24509589A priority Critical patent/JPH03108121A/en
Publication of JPH03108121A publication Critical patent/JPH03108121A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve sliding resistance, corrosion resistance and reliability and to realize high-density recording by forming a protective cover layer comprising at least three kinds of specified elements. CONSTITUTION:The protective cover layer on the magnetic layer consists of at least three elements: at least one element selected from a first group of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W, at least one element selected from a second group of Y, Mg, Ca, Sc, Fe, Co, Ni, Al, Si, Ru, Rh, Pd, Os, Ir, Pt, Mn, Cu, and Ag, and at least one element selected from a third group of C, N, O, and B. By providing a lubricating layer having at least one adsorptive end group on the protective cover layer, sliding resistance and corrosion resistance of the medium can be improved. The total amt. of elements of the third group is 1 - 99atm.%, and more preferably 20 - 90atm.% of the total amt. of elements of the first group. The total amt. of elements of the second group is 0.1 - 20wt.%, more preferably 0.2 - 10wt.% of the total amt. of other elements.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明はフレキシブル型磁気ディスク装置、ドラム型磁
気記憶装置、テープ磁気記憶装置、カード型磁気記憶装
置、リジッド型磁気ディスク装置などに用いる磁気記録
媒体および磁気記憶装置に関する。 [従来の技術] 磁気記録の高密度化に対応するため、酸化鉄薄膜、窒化
鉄薄膜、磁性合金薄膜などの薄膜磁性層を記録層とする
磁気記録媒体の研究開発が進められている。これら薄膜
媒体は非磁性基体上にスパッタリング法、真空蒸着法、
メツキ法、イオンブレーティング法等の手法により形成
されることが多い。これらは膜厚が小さいこと、保磁力
や磁化が大きいことなどの理由により高記録密度化に適
していると言える。しかしながら、上記磁性薄膜を用い
た磁気記録媒体は磁気ヘッドの摺動により損傷を受けや
すく、耐久性が悪いという欠点を持っている。磁気ファ
イルとして使用される磁気記録媒体等は、特に高度の信
頼性が要求されるため。 上記問題点を克服することは、高記録密度化を実現する
うえで極めて重要である。 従来の連続薄膜を用いた磁気記録媒体では、上記問題点
を解決するため、磁性膜上にC系保護被覆層を形成する
手法(特開昭61−54017号公報、特開昭61−5
4019号公報)、C系保護被覆層上にさらに有機系液
体潤滑剤を形成する手法(特開昭61−96512号公
報)、WC保護被覆層を形成する手法(特開昭49−2
0081号公報、特開昭53−21901号公報、特開
昭53−21902号公報) 、 S x g Z r
 r Hf eTi、Ta、Nb、Wの窒化物あるいは
炭化物保護被覆層を形成する手法(米国特許第Re、3
2464号公報)、Zr、Ti、Ta、Hfの酸化物、
窒化物、炭化物、硼化物保護被覆層を形成する手法(特
開昭63−66722号公報)等が提案されている。 [発明が解決しようとする課題1 しかしながら、本発明者らの検討によると、C系保護被
i層を用いた場合には、保護被覆層の硬度が低いこと、
カーボンが酸化され易いこと、および液体潤滑剤の付着
性が悪いことなどの理由により、特に保護被覆層を60
nm程度以下にした場合に磁気記録媒体の耐久性を充分
に保証するまでに至っていない。また、WCを保護液r
uiyとして用いた場合や、S i 、’−Z r 、
 Hf 、 T i 、 T a 。 Nb、Wの窒化物あるいは炭化物を保護液rIiWJと
して用いた場合には、保護被覆層の硬度はC系保m被r
IIMに比べ高いにもかかわらず、磁気ヘッドと保護被
覆居間の摩擦係数が高かったり、保護液rII層と磁性
Mの密着力が小さく、また相対的に材料自身がもろいた
め、磁気記録媒体に割れ、剥離等の急激な損傷が生じや
すく、装置に振動等が加えられた時の耐摺動性が不十分
であること、および保護耐食性が不十分であること等が
問題であった。 本発明は以上の点に鑑みてなされたものであって、金属
または酸化物、窒化物等の磁性層上に。 磁性層との密着性に優れ、高硬度、高靭性、低摩擦係数
を有し、しかも液体、固体等の各種吸着性潤滑剤の付着
性の良い保護被覆層を形成することにより、耐摺動性、
耐食性に優れ、高密度記録に適した磁気記録媒体おおよ
び信頼性の高い大容量磁気記憶装置を提供することを目
的とする。
The present invention relates to a magnetic recording medium and a magnetic storage device used in flexible magnetic disk devices, drum-type magnetic storage devices, tape magnetic storage devices, card-type magnetic storage devices, rigid magnetic disk devices, and the like. [Prior Art] In order to cope with the increase in the density of magnetic recording, research and development is underway on magnetic recording media that have thin magnetic layers such as iron oxide thin films, iron nitride thin films, and magnetic alloy thin films as recording layers. These thin film media are deposited on non-magnetic substrates by sputtering, vacuum evaporation,
It is often formed by a method such as a plating method or an ion blating method. These materials are suitable for high recording density because of their small film thickness, large coercive force, and large magnetization. However, magnetic recording media using the above-mentioned magnetic thin film have the disadvantage that they are easily damaged by sliding of the magnetic head and have poor durability. Magnetic recording media used as magnetic files require a particularly high level of reliability. Overcoming the above problems is extremely important in realizing high recording density. In conventional magnetic recording media using continuous thin films, in order to solve the above problems, a method of forming a C-based protective coating layer on the magnetic film (Japanese Patent Laid-Open No. 61-54017, Japanese Patent Laid-Open No. 61-5
4019), a method of further forming an organic liquid lubricant on a C-based protective coating layer (JP-A-61-96512), a method of forming a WC protective coating layer (JP-A-49-2)
0081, JP-A-53-21901, JP-A-53-21902), S x g Z r
r Hf eMethod of forming a nitride or carbide protective coating layer of Ti, Ta, Nb, W (U.S. Pat. No. Re, 3)
2464), oxides of Zr, Ti, Ta, Hf,
A method of forming a protective coating layer of nitride, carbide, or boride (Japanese Unexamined Patent Publication No. 63-66722) has been proposed. [Problem to be Solved by the Invention 1] However, according to the studies of the present inventors, when a C-based protective coating layer is used, the hardness of the protective coating layer is low;
Due to the fact that carbon is easily oxidized and the adhesion of liquid lubricants is poor, the protective coating layer is
It has not yet been possible to sufficiently guarantee the durability of the magnetic recording medium when the thickness is reduced to about nm or less. Also, add WC to the protective solution
When used as uiy, S i , '-Z r ,
Hf, Ti, Ta. When Nb and W nitrides or carbides are used as the protective liquid rIiWJ, the hardness of the protective coating layer is similar to that of the C-based protective coating.
Although it is higher than IIM, the coefficient of friction between the magnetic head and the protective coating is high, the adhesion between the protective liquid RII layer and the magnetic M is small, and the material itself is relatively brittle, so the magnetic recording medium may crack. Problems include that they are prone to rapid damage such as peeling, that they have insufficient sliding resistance when vibrations are applied to the device, and that their protective corrosion resistance is insufficient. The present invention has been made in view of the above points, and is based on a magnetic layer made of metal, oxide, nitride, or the like. By forming a protective coating layer that has excellent adhesion with the magnetic layer, high hardness, high toughness, and low coefficient of friction, and has good adhesion to various types of adsorbent lubricants such as liquids and solids, it has excellent sliding resistance. sex,
The purpose of the present invention is to provide a magnetic recording medium that has excellent corrosion resistance and is suitable for high-density recording, and a highly reliable large-capacity magnetic storage device.

【課題を解決するための手段1 本発明は上記目的を達成するために、磁性層上に少なく
とも一層の保護被覆層を設け、該保護被覆層をTi、Z
r、Hf、V、Nb、Ta、Cr。 Mo、Wから成る第1の群から選ばれた少なくとも1種
の元素と、Y、Mg、Ca、Sc、Fe。 Co、Ni、AI、Si、Ru、Rh、Pd、Os、I
 r、Pt、Mn、Cu、Agから成る第2の群から選
ばれた少なくとも1種の元素と、C2N、0.Bから成
る第3の群から選ばれた少なくとも1種の元素で形成し
たものである。 ここで上記保護被覆層上に少なくとも1つの吸着性末端
基を有する潤滑剤層を存在せしめると耐摺動性、耐食性
を著しく向上できるのでさらに好ましい。 上記第3の群の元素の総成分量は上記第1の群の元素の
総成分量に対してfat%以上99a t%以下、より
望ましくは20at%以上90a t%以下とし、さら
に上記第2の群の元素の総成分量はその他の元素の総成
分量に対して0.1wt%以上20wt%以下、より望
ましくは0.2wt%以上1以上1菌 組成の異なる材料を2種もしくは3種積層して保護被覆
層とすれば、耐食性、耐摺動性がより向上するので特に
望ましい。上記保護被覆層が上記第1の群の元素のうち
、WあるいはM o 、またはその両方を含み、さらに
上記第2の群の元素のうちCOを含み、さらに上記第3
の群の元素のうち少なくともCを含むことが特に望まし
い。さらに上記保護被覆層の膜厚を5nm以上60nm
以下、より望ましくは5nm以上40nm以下、さらに
望ましくは10nm以上30nm以下とすることで耐摺
動性、耐食性を高く保つと共に記録再生特性も良好にで
きるので特に望ましい。 【作用】 上記効果は以下の作用による。Ti,Zr,Hf,V,
Nb,Ta,Cr,Mo,Wから成る第1の群の炭化物
,窒化物,酸化物,および硼化物は一般に融点が高く、
高い硬度を示すため原理的には磁気記録媒体の薄膜保護
被覆層として使用可能である。ところが、上記第1群中
の元素の炭化物,窒化物,酸化物,および硼化物を保護
被覆層として形成した磁気記録媒体の耐摺動性に関して
検討した結果、これらの磁気記録媒体は充分な耐久性を
示さないことが明らかになった。これは。 保護液yINが脆く、磁性層との密着力も小さいため、
磁気ヘッドの摺動により機械的外力が加わった場合、保
護被覆層内および磁性層と保護被覆層の界面に亀裂を生
じ、剥離、破壊に至り易いためである。また、上記保護
被覆層は液体潤滑剤の付着性に乏しいため磁気ヘッド摺
動時の摩擦係数が大きく、磁気記録媒体の破壊を促進し
易いという問題もある。 これに対し、本発明者らの検討によれば、上記第1群の
元素から選ばれた少なくとも1種の元素と一上記第2群
の元素から選ばれた少なくとも1種の元素から成る合金
の炭化物,窒化物,酸化物。 硼化物,炭窒化物,酸炭化物,酸窒化物,酸硼化物,硼
炭化物,硼窒化物を磁気記録媒体の保護被覆層として用
いると、保護被覆層は約15nm以下の極めて微細な結
晶粒となるか、典型的な場合には非晶質状となる。これ
により、欠陥が少なく緻密な保護波iI層が磁性層を一
様に被覆し、かつ密着性も良いため、耐摺動性と耐食性
を同時に向上することができる。 また微細結晶粒、あるいは非晶質の場合1表面に不飽和
原子を多く有するため液体潤滑剤の付着性が良いという
特長もある。この場合使用可能な潤滑剤はCまたはSi
を含むもの、また吸着性の置換基を有する化合物等であ
る。特にアンカー機能を付与された末端基を含むフルオ
ロアルキルポリエーテル類であればより好ましい。この
ような潤滑剤として、例えばモンテジソン社製Fomb
1in  Z  DIAC,Fomblin  Z  
DEAL,Fomb l i n  Z  DOL,デ
ュポン社製Krytox  157FS、欧州特許公開
(EP  O165650A2)記載の化合物等が使用
できる。 さらに、耐食性の優れた材料と耐摺動性の優れた材料の
積層や、耐摺動性の優れた材料と耐食性の優れた材料と
密着性の優れた材料の積層により、多層構造の保護被覆
層を形成できるが、これにより個々の層の長所を有効に
生かせるので特に望ましい。 以上のように、保護被覆層をTi、Zr、Hf。 V、Nb、Ta、Cr、Mo、Wから成る第1の群から
選ばれた少なくとも1種の元素と、Y、Mg * Ca
 r S c t F e + Co p N ig 
A 1 g S x TRu、Rh、Pd、Os、I 
r、Pt、Mn、Cu、Agから成る第2の群から選ば
れた少なくとも1種の元素と、C,N、○、Bから成る
第3の群から選ばれた少なくとも1種の元素で形成する
ことにより、優れた性質を有する磁気記録媒体が得られ
ることが明らかになった。 上記保護被覆層の組成についてさらに詳しく説明する。 第1図に本発明の磁気記録媒体の基本的構造を示す。N
iPをメツキし、その表面に、円周方向に中心線平均面
粗さで10nmの凹凸を設けた130mmφのAl−M
g合金基板11上にRFマグネトロンスパッタ法で、基
板温度100℃、アルゴンガス圧15mT−orr、投
入電力I W/aIで膜厚350nmのCr非磁性下地
[12,12’、膜厚70nmのCo(1+5Nio、
1sZro+05磁性層13.13’ を形成した。そ
の後、(WalsC:o、、、) 、−XCX保護被[
514,14’ をDC?グネトロンスバッタ法で、基
板温度100℃、アルゴンガス圧10mTorr、投入
電力5 W/a+tで30nm形成し、末端に吸着性の
エステル基を有するパーフルオロアルキルポリエーテル
潤滑層を4nm設けて磁気ディスクとした。 上述のごとくして得たディスクについて対摩耗性の評価
を行なった。評価には、曲率30mmのサファイア球面
摺動子を荷重10gfで磁気ディスク表面に押し付け、
摺動子との相対速度10m/、sで磁気ディスクを回転
させて、摺動3600回時の磁気ディスク表面に生じた
錫類を測定する方法を採用した。Cをfat%以上99
at%以下添加すると、金mW a 、s Co o 
3、もしくはC単体に比べて摩耗速度は半分以下に減少
した。 このときの錫類をC含有量に対して表すと第2図のよう
になる。Cを20at%以上含有すると錫類が著しく小
さくなり、90a t%以上含有すると再び錫類が大き
くなることがわかる。すなわちC含有量は20at%以
上90a t%以下とすることがより望ましく、さらに
C含有量が40aL%以上70at%以下では錫類がほ
ぼ雰となり特に望ましい。 Y、Mg、Ca、Sc、Fe、Co、Ni、AI、Si
、Ru、Rh、Pd、Os、I r、Pt。 Mn、Cu、Agから成る第2の群から選ばれた少なく
とも1種の元素をその他の元素の総酸分量に対して0.
1wt%以上添加することで結晶粒が微細化し、膜構造
が均一になり、耐食性、耐摺動性が2倍以上向上した。 第3図は、同様の評価を、末端にベンゼン環を含む吸着
性極性基を有するパーフルオロアルキルポリエーテル系
潤滑剤を付着させた( w−、s −X/2M On、
s4/2CoX) o、*Co、s保護被覆層について
行なったもので、摺動によって傷が入るまでの時間をC
o含有量に対して示している。Coが0゜1wt%以上
含まれると、coを全く含まないときに比べ、耐摺動性
を2倍以上向上できる。COが0.1wt%よりも少な
いと耐摺動性向上の効果は少ない。20wt%以上添加
すると硬度が低下するため耐慴動性も劣化し好ましくな
い。0゜2wt%以上10wt%以下で結晶粒微細化の
効果が著しく、また同時に、吸着性極性基を有する潤滑
剤の付着性が向上できるため耐摺動性が5倍以上向上し
特に望ましい。 上記保護被覆層の膜厚は5nm以上60nm以下である
ことが望ましい。なぜならば、膜厚が5nmより小さい
保護被覆層では磁気記録媒体の耐久性向上に十分な寄与
をなし得す、逆に膜厚が60nmより大きい保護被覆層
では、磁性層と磁気ヘッドの距離を不必要に隔てること
になり、記録再生特性の低下を招くことになるからであ
る。記録再生特性を高め、実用上の耐久性を保つために
は、保護液yINの膜厚は5nm以上40nm以下、さ
らには10nm以上30nm以下とすることがより望ま
しい。
[Means for Solving the Problems 1] In order to achieve the above object, the present invention provides at least one protective coating layer on the magnetic layer, and the protective coating layer is made of Ti, Z
r, Hf, V, Nb, Ta, Cr. At least one element selected from the first group consisting of Mo and W, and Y, Mg, Ca, Sc, and Fe. Co, Ni, AI, Si, Ru, Rh, Pd, Os, I
r, Pt, Mn, Cu, and at least one element selected from the second group consisting of Ag; It is made of at least one element selected from the third group consisting of B. It is further preferable to provide a lubricant layer having at least one adsorbent end group on the protective coating layer, since this can significantly improve sliding resistance and corrosion resistance. The total content of the elements in the third group is set to be at least 99at% fat%, more preferably at least 20at% and not more than 90at%, with respect to the total content of the elements in the first group. The total amount of elements in the group is 0.1 wt% or more and 20 wt% or less, more preferably 0.2 wt% or more and 1 or more 1 material with different bacterial composition, based on the total amount of other elements. It is particularly desirable to stack them to form a protective coating layer, as this further improves corrosion resistance and sliding resistance. The protective coating layer contains W or M o , or both of the elements of the first group, further contains CO of the elements of the second group, and further contains the third group of elements.
It is particularly desirable to include at least C among the elements of the group. Furthermore, the thickness of the protective coating layer is set to 5 nm or more and 60 nm.
The thickness is more preferably 5 nm or more and 40 nm or less, and even more preferably 10 nm or more and 30 nm or less, as this is particularly desirable since it is possible to maintain high sliding resistance and corrosion resistance and also improve recording and reproducing characteristics. [Action] The above effect is due to the following action. Ti, Zr, Hf, V,
The first group of carbides, nitrides, oxides, and borides consisting of Nb, Ta, Cr, Mo, and W generally have high melting points;
Since it exhibits high hardness, it can in principle be used as a thin film protective coating layer for magnetic recording media. However, as a result of examining the sliding resistance of magnetic recording media formed with protective coating layers of carbides, nitrides, oxides, and borides of the elements in the first group, it was found that these magnetic recording media do not have sufficient durability. It became clear that he did not show any gender. this is. Because the protective liquid yIN is brittle and has low adhesion to the magnetic layer,
This is because when an external mechanical force is applied due to the sliding of the magnetic head, cracks occur in the protective coating layer and at the interface between the magnetic layer and the protective coating layer, easily resulting in peeling and destruction. Furthermore, since the protective coating layer has poor adhesion to the liquid lubricant, it has a large coefficient of friction when the magnetic head slides, and there is a problem in that it tends to promote destruction of the magnetic recording medium. On the other hand, according to the studies of the present inventors, an alloy consisting of at least one element selected from the elements of the first group and at least one element selected from the elements of the second group. Carbides, nitrides, oxides. When a boride, carbonitride, oxycarbide, oxynitride, oxyboride, borocarbide, or boronitride is used as a protective coating layer of a magnetic recording medium, the protective coating layer contains extremely fine crystal grains of about 15 nm or less. Or, in typical cases, it becomes amorphous. As a result, the dense protective wave iI layer with few defects uniformly covers the magnetic layer and has good adhesion, so that sliding resistance and corrosion resistance can be improved at the same time. In addition, fine crystal grains or amorphous materials have many unsaturated atoms on one surface, so they have the advantage of good adhesion to liquid lubricants. In this case, the lubricant that can be used is C or Si.
and compounds with adsorbent substituents. In particular, fluoroalkyl polyethers containing a terminal group endowed with an anchor function are more preferred. As such a lubricant, for example, Fomb manufactured by Montegisson
1in Z DIAC, Fomblin Z
DEAL, Fomblin Z DOL, Krytox 157FS manufactured by DuPont, compounds described in European Patent Publication (EP 0165650A2), etc. can be used. Furthermore, by laminating a material with excellent corrosion resistance and a material with excellent sliding resistance, or by laminating a material with excellent sliding resistance, a material with excellent corrosion resistance, and a material with excellent adhesion, a protective coating with a multilayer structure is created. This is particularly desirable since it allows the advantages of the individual layers to be exploited. As mentioned above, the protective coating layer is made of Ti, Zr, and Hf. At least one element selected from the first group consisting of V, Nb, Ta, Cr, Mo, and W, and Y, Mg*Ca
r S c t F e + Co p N ig
A 1 g S x TRu, Rh, Pd, Os, I
Formed with at least one element selected from the second group consisting of r, Pt, Mn, Cu, and Ag and at least one element selected from the third group consisting of C, N, ○, and B. It has become clear that by doing so, a magnetic recording medium with excellent properties can be obtained. The composition of the protective coating layer will be explained in more detail. FIG. 1 shows the basic structure of the magnetic recording medium of the present invention. N
Al-M plated with iP and having a diameter of 130 mm with unevenness of 10 nm in center line average surface roughness in the circumferential direction.
A Cr non-magnetic base layer [12,12', 70 nm thick Co, 350 nm thick Cr non-magnetic base] was deposited on the g alloy substrate 11 by RF magnetron sputtering at a substrate temperature of 100° C., an argon gas pressure of 15 mT-orr, and an input power of I W/aI. (1+5Nio,
A 1sZro+05 magnetic layer 13.13' was formed. Then, (WalsC:o,,,), -XCX protected [
514,14' to DC? A 30 nm thick perfluoroalkyl polyether lubricant layer having an adsorbent ester group at the end was formed using the gnetron scattering method at a substrate temperature of 100°C, an argon gas pressure of 10 mTorr, and an input power of 5 W/a+t. And so. The wear resistance of the disks obtained as described above was evaluated. For evaluation, a sapphire spherical slider with a curvature of 30 mm was pressed against the magnetic disk surface with a load of 10 gf.
A method was adopted in which the magnetic disk was rotated at a relative speed of 10 m/s with respect to the slider, and tin produced on the surface of the magnetic disk after 3600 sliding movements was measured. C fat% or more 99
When adding at% or less, gold mW a , s Co o
3 or C alone, the wear rate was reduced by more than half. Figure 2 shows the tin content in relation to the C content. It can be seen that when C is contained at 20 at % or more, tin becomes significantly smaller, and when C is contained at 90 at % or more, tin becomes larger again. That is, it is more desirable that the C content be 20 at % or more and 90 at % or less, and it is particularly desirable that the C content be 40 aL % or more and 70 at % or less, in which tin is almost the atmosphere. Y, Mg, Ca, Sc, Fe, Co, Ni, AI, Si
, Ru, Rh, Pd, Os, Ir, Pt. At least one element selected from the second group consisting of Mn, Cu, and Ag is added at a ratio of 0.0% to the total acid content of other elements.
By adding 1 wt% or more, the crystal grains became finer, the film structure became more uniform, and the corrosion resistance and sliding resistance were improved by more than twice. Figure 3 shows a similar evaluation in which a perfluoroalkyl polyether lubricant having an adsorptive polar group containing a benzene ring at the end was attached (w-, s-X/2M On,
s4/2CoX) o, *Co, s It was carried out on the protective coating layer, and the time until scratches appear due to sliding is C
It is shown relative to the o content. When 0.1 wt% or more of Co is contained, the sliding resistance can be improved by more than twice that of when no Co is contained at all. When CO is less than 0.1 wt%, the effect of improving sliding resistance is small. Adding more than 20 wt% is not preferable because the hardness decreases and the abrasion resistance also deteriorates. A content of 0°2 wt% or more and 10 wt% or less is particularly desirable because the effect of grain refinement is remarkable and at the same time, the adhesion of lubricants having adsorbent polar groups can be improved, so that the sliding resistance is improved by 5 times or more. The thickness of the protective coating layer is preferably 5 nm or more and 60 nm or less. This is because a protective coating layer with a thickness of less than 5 nm can make a sufficient contribution to improving the durability of a magnetic recording medium, whereas a protective coating layer with a thickness of more than 60 nm can reduce the distance between the magnetic layer and the magnetic head. This is because the separation becomes unnecessary, leading to a deterioration in recording and reproducing characteristics. In order to improve the recording and reproducing characteristics and maintain practical durability, it is more desirable that the film thickness of the protective liquid yIN be 5 nm or more and 40 nm or less, and more preferably 10 nm or more and 30 nm or less.

【実施例】【Example】

(実施例1) 第1図は本発明の実施例1の磁気記録媒体の構成図であ
る。第1図において、11は強化ガラス。 結晶化ガラス、プラスチック、セラミックス、表面ガラ
スコートセラミックス、NLPメツキA1合金等の非磁
性基板、12.12’はCr、Mo。 W、Cr−Ti、Cr−8i、Cr−W等の金属下地層
、13.13’はGo−Ni、Co−Ni−Zr、Co
−Cr、Co−Cr−Pt等の磁性層、14.14’は
Ti、Zr、Hf、V、Nb。 Ta、Cr、Mo、Wから成る第1の群から選ばれた少
なくとも1種の元素と、Y、Mg、Ca。 Sc、Fe、Co、Ni、Al、Si、Ru、Rh、P
d、○s、I r、Pt、Mn、Cu、Agから成る第
2の群から選ばれた少なくとも1種の元素と、C,N、
0.Bから成る第3の群から選ばれた少なくとも1種の
元素で構成された保護被覆層である。 吸着性の有機系潤滑剤層をさらにこの上に設けると耐摺
動性が著しく向上するので好ましい。 NiPをメツキし、その表面に1円周方向に中心線平均
面粗さで10nmの凹凸を設けた130mmφのAl−
Mg合金基板上にRFマグネトロンスパッタ法で、基板
温度100℃、アルゴンガス圧15 mTorr、投入
電力I W/aJで膜厚300nmのCr、膜厚70n
mのCool、Ni、g、sZr 、 2゜、を形成し
た後、第1表に示す保護被覆層をDCマグネトロンスパ
ッタ法で、基板温度100℃、アルゴンガス圧10 m
Torr、投入電力5W/dで30nm形成し、末端に
エステル基を有するパーフルオロアルキルポリエーテル
系潤滑層を4nm設けて磁気ディスクとした。 ここで該磁気ディスクをフレオン中に浸し、潤滑剤を除
去しようと試みたが、潤滑剤が強く吸着しており、吸着
した潤滑剤は除去できなかった。 第1表に、上記磁気ディスク上に1曲率30mmのサフ
ァイア球面摺動子を荷重10gfで押し付け、摺動子と
の相対速度10m/sで磁気ディスクを回転させて、摺
動3600回時の磁気ディスク表面に生じた錫類で磁気
ディスクの耐摺動性を評価した結果を示した。 このように本実施例の磁気ディスクは比較例に比べて2
倍以上の高い強度を示し、なかでもW。 MoまたはW、MOの両方を含む保護被覆層は、摺動後
の傷は全く認められなかった。 また、試料番号3においてCOの替わりにY。 Mg、Ca、Sc、Fe、Ni、AI、Si、Ru、R
h、Pd、Os、Ir、Pt、Mn、Cu。 Agのいずれか少なくとも1者を用いた場合にも同様の
効果が得られた。 ここで保護被覆層は炭化物合金ターゲットを用いて形成
したが、金属合金ターゲットを用い、AβにC,H,、
CH,等の炭化水素ガスを混入した混合ガス中でスパッ
タリングしても良い。 第1表 (実施例2) 次に、第1図に示す構造の磁気ディスクでさらに別の実
施例について説明する。 5mmφのAt−Mg合金基板上に、RFマグネトロン
スパッタ法で、基板温度150’C、アルゴンガス圧1
0 mTorr、投入電力3W/dで膜厚250nmの
Cr、膜厚70nmのc o、#、Crg”i、Pt1
l#、、を形成した。 その後、第2表に示す保護被覆層をRFマグネトロンに
よる反応性スパッタ法で、基板温度100℃、アルゴン
ガス50vo 1%、窒素ガス50vo1%の混合ガス
をガス圧10 mTorr、投入電力2 W/aJで2
0nm形成し、末端にOH基を有するパーフルオロアル
キルポリエーテル系潤滑層を5nm’Jけて磁気ディス
クとした。ここで該磁気ディスクをフレオン中に浸し、
潤滑剤を除去しようと試みたが、潤滑剤が強く吸着して
おり、吸着した潤滑剤は除去できなかった。 この磁気ディスク上に、曲率30mmのサファイア球面
慴動子を荷重10gfで押し付け、振幅500μmで1
秒間に30回の往復運動を1n分間行なった後の磁気デ
ィスク表面の錫類で磁気ディスクの耐摺動性を評価した
。 第2表に示すように本実施例の磁気ディスクの錫類は比
較例のそれに比べて格段に小さく、良好な耐摩耗性を示
した。特にZrとNbの両方を含む場合、およびWを含
む場合、摺動後の傷は全く認められなかった。 第2表 二二で保護液yIWIを形成するに際し、Arに窒素を
50vo 1%混合したが、窒素を10〜100vo1
%としても同様の結果が得られた。また、ターゲツト材
そのものを窒化ターゲットとしても同様の結果が得られ
た。第2表に示した実施例と同様の合金を用い、Arと
窒素の混合ガスにさらに酸素を0.1〜50vo 1%
含む混合ガス中でスパッタリングして酸窒化物を形成し
たが、この場合には耐!I撃性がさらに2倍以上向上し
、特に高い耐摺動性が得られた。 (実施例3) 次に、第1図に示す構造の磁気ディスクでさらに別の実
施例について説明する。 NiPをメツキし、その表面に、円周方向に中心線平均
面粗さで10nmの凹凸を設けた88゜9mmφのAl
−Mg合金基板上にRFマグネトロンスパッタ法で、基
板温度150℃、アルゴンガス圧10 mTorr、投
入電力3 W/Ciで膜厚250nmのCr、膜厚70
nmのG o、、、zCr、、、。 Ta0.。、を形成した後、第3表に示す保護被覆層を
RFマグネトロンによる反応性スパッタ法で、基板温度
100℃、アルゴンガス50vo 1%。 酸素ガス50vo 1%の混合ガスをガス圧10mTo
rr、投入電力2W/dで20nm形成し、末端にベン
ゼン環を含む吸着基もしくはNH2基を有するパーフル
オロアルキルポリエーテル系潤滑層を5nm設けて磁気
ディスクとした。 ここで該磁気ディスクをフレオン中に浸し、潤滑剤を除
去しようと試みたが、潤滑剤が強く吸着しており、吸着
した潤滑剤は除去できなかった。 第3表 この磁気ディスク上に、曲率30mmのサファイア球面
摺動子を荷重10gfで押し付け、摺動子との相対速度
10 m / sで磁気ディスクを回転させ、摺動36
00回時の磁気ディスク表面に生じた錫類で磁気ディス
クの耐摺動性を評価した。 第3表に示すように本実施例の磁気ディスクの錫類は比
較例のそれに比べて格段に小さく、良好な耐摩耗性を示
した。特にZrとNbの両方を含む場合、摺動後の傷は
全く認められなかった。 マタ、コレラノ保護被[1ttc、 Rh 、 S i
 02といった従来の保護被覆層に比べ密着性も高く、
ダイヤモンド針によるひっかきテストでもほとんど剥離
しなかった。 (実施例4) 次に、第1図に示す構造の磁気ディスクでさらに別の実
施例について説明する。 NiPをメツキし、その表面を化学的エツチング処理に
より、中心線平均面粗さで5nmの凹凸を設けた89m
mφの強化ガラス基板上にDCマグネトロンスパッタ法
で、基板温度100℃、アルゴンガス圧10 mTor
r、投入電力IW/dで膜厚250nmのCr 、膜厚
60nmのCos、、、N10138 Z r On@
5 Cr 010Gを形成した後、第4表に示す保護被
覆層をRFマグネトロンによる反応性スパッタ法で、基
板温度150’C−アルゴンガス圧2mTorr、投入
電力5 W/aJで20nm形成し、CNを含む吸着性
極性基を有するパーフルオロアルキルポリエーテル系潤
滑層を7nm設けて磁気ディスクとした。ここで、該磁
気ディスクをフレオン中・に浸し、潤滑剤を除去しよう
と試みたが、潤滑剤が強く吸着しており、吸着した潤滑
剤lヨ除去できなかった。 第4表 この磁気ディスク上に、曲率30mmのサファイア球面
摺動子を荷重10gfで押し付け、摺動子との相対速度
10m/sで磁気ディスクを回転させて、摺動3600
回時の磁気ディスク表面に生じた錫類で磁気ディスクの
耐摺動性を評価した。 第4表に示すように本実施例の磁気ディスクの錫類は比
較例のそれに比べて格段に小さく、良好な耐摩耗性を示
した。特にW、Moを含む場合、摺動後の傷は全く認め
られなかった。 (実施例5) 次に、第1図に示す構造の磁気ディスクでさらに別の実
施例について説明する。 NiPをメツキし、その表面に、円周方向に中心線平均
面粗さで10nmの凹凸を設けた130mmφのAl−
Mg合金基板上にRFマグネトロンスパッタ法で、基板
温度100℃、アルゴンガス圧5mTorr、投入電力
3 W/aJで膜厚250nmのCr、膜厚50nmの
Coo、7.c rolllp t。、 1S 10+
。2を形成した後、第5表に示す保護被覆層を形成した
。 試料番号33から37は、炭化物合金ターゲットを用い
DCマグネトロンスパッタ法で基板温度100℃、アル
ゴンガス圧10m丁orr、投入電力5 W/aJで3
0nm形成し、磁気ディスクとした。 試料番号38から41は、RFマグネトロンによる反応
性スパッタ法で、基板温度100℃、アルゴンガス50
vo 1%、窒素ガス5Qvo 1%の混合ガスをガス
圧10 mTorr、投入電力5W/alで30nm形
成し、磁気ディスクとした。 試料番号42から44は、RFマグネトロンによる反応
性スパッタ法で、基板温度100’C、アルゴンガス5
0vo 1%、酸素ガス50vo 1%の混合ガスをガ
ス圧10 mTorr、投入電力5W/dで30nm形
成し、磁気ディスクとした。 試料番号45か647は、硼化物合金ターゲットを用い
、RFマグネトロンスパッタ法で基板温度100℃、ア
ルゴンガス圧I Q mTorr、投入電力5W/dで
30nm形成し、磁気ディスクとした。 この磁気ディスク上に、曲率30mmのサファイア球面
摺動子を荷重10gfで押し付け、振幅500Itmで
1秒間に30回往復運動をさせ、往第5表 後回数1800回時の磁気ディスクと摺動子間の摩擦係
数を測定したところ、第5表に示すように本実施例の磁
気ディスクの摩擦係数は比較例のそれに比べて格段に低
い値を示し、良好な耐摺動性を示した。 (実施例6) さらに別の実施例について説明する。 NiPをメツキし、その表面を化学的エツチング処理に
より、中心線平均面粗さで10nmの凹凸を設けた50
mmφの強化ガラス基板上にRFマグネトロンスパッタ
法で、基板温度100℃、アルゴンガス圧5mTorr
、投入電力3 W/cdで膜厚250nmのCr、、、
T io、z、膜厚50nmのCoo、、、Cr、、1
.P to、□2を形成した後、実施例5に示した材料
を10nmずつ同実施例と同じ条件で2層ないし3層積
層して第6表に示す保護被覆層を形成し、ベンゼン環を
含む吸着性極性基を有するパーフルオロアルキルポリエ
ーテル系潤滑層を5nm設けて磁気ディスクとした。 ここで該磁気ディスクをフレオン中に浸し、潤滑剤を除
去しようと試みたが、潤滑剤が強く吸着しており、吸着
した潤滑剤は除去できなかった。 該磁気ディスクを1規定NaC1水溶液を用いた塩水噴
霧試験を50℃で32時間行ないその耐食性を評価した
ところ、第6表に示すように本実施例の磁気ディスクの
飽和磁化(Ms)減少率が、比較例のそれより格段に小
さく、優れた耐食性がみとめられた。 また、耐摺動性についても2倍以上の寿命が確認された
。 第6表 (実施例7) 上記実施例1〜6の磁気ディスクを2,4ないし8枚用
い、CoTaZr、FeAlSi合金等をギャップ部に
設けたメタルインギャップ型磁気ヘッド、もしくはN 
i F e 、 Co F e 、 Co T aZr
合金等を磁極材とする薄膜磁気ヘッドと組み合わせて磁
気ディスク装置を作製した。エラーが生じるまでの平均
装置寿命を求めたが、いずれも従来の磁気ディスクを用
いた装置に比べ2〜10倍以上の寿命となり、窩い信頼
性が得られた。従来のM n −Z nフェライトリン
グヘッドと組み合わせた磁気ディスク装置に比べて、ト
ラック幅方向の余分な情報を消去する能力が高いため、
本発明より成る磁気ディスク装置は位相マージンが広く
、記憶容量を1.5倍以上高めることができた。
(Example 1) FIG. 1 is a block diagram of a magnetic recording medium according to Example 1 of the present invention. In Fig. 1, 11 is tempered glass. Non-magnetic substrate such as crystallized glass, plastic, ceramics, surface glass coated ceramics, NLP plating A1 alloy, etc. 12.12' is Cr, Mo. Metal underlayer such as W, Cr-Ti, Cr-8i, Cr-W, 13.13' is Go-Ni, Co-Ni-Zr, Co
-Magnetic layer of Cr, Co-Cr-Pt, etc., 14.14' is Ti, Zr, Hf, V, Nb. At least one element selected from the first group consisting of Ta, Cr, Mo, and W, and Y, Mg, and Ca. Sc, Fe, Co, Ni, Al, Si, Ru, Rh, P
At least one element selected from the second group consisting of d, ○s, Ir, Pt, Mn, Cu, and Ag, and C, N,
0. The protective coating layer is composed of at least one element selected from the third group consisting of B. It is preferable to further provide an adsorbent organic lubricant layer thereon, since this significantly improves the sliding resistance. A 130 mmφ Al- plated with NiP and provided with unevenness of 10 nm in the center line average surface roughness in the circumferential direction on the surface.
A Cr film with a thickness of 300 nm and a film thickness of 70 nm were formed on a Mg alloy substrate by RF magnetron sputtering at a substrate temperature of 100°C, an argon gas pressure of 15 mTorr, and an input power of I W/aJ.
After forming 2° of Cool, Ni, g, and sZr, a protective coating layer shown in Table 1 was formed by DC magnetron sputtering at a substrate temperature of 100°C and an argon gas pressure of 10 m.
Torr and an input power of 5 W/d to form a 30 nm thick layer, and a 4 nm perfluoroalkyl polyether lubricating layer having an ester group at the end to form a magnetic disk. An attempt was made to remove the lubricant by immersing the magnetic disk in Freon, but the lubricant was strongly adsorbed and the adsorbed lubricant could not be removed. Table 1 shows the magnetic properties of a sapphire spherical slider with a curvature of 30 mm pressed onto the magnetic disk with a load of 10 gf, and the magnetic disk rotated at a relative speed of 10 m/s to the slider for 3,600 sliding movements. This paper presents the results of evaluating the sliding resistance of magnetic disks based on tin particles formed on the disk surface. In this way, the magnetic disk of this example is 2 times larger than that of the comparative example.
It shows more than double the strength, especially W. No scratches were observed on the protective coating layer containing both Mo, W, and MO after sliding. Also, in sample number 3, Y was used instead of CO. Mg, Ca, Sc, Fe, Ni, AI, Si, Ru, R
h, Pd, Os, Ir, Pt, Mn, Cu. Similar effects were obtained when at least one of Ag was used. Here, the protective coating layer was formed using a carbide alloy target, but a metal alloy target was used to coat Aβ with C, H, .
Sputtering may be performed in a mixed gas containing a hydrocarbon gas such as CH. Table 1 (Example 2) Next, another example using the magnetic disk having the structure shown in FIG. 1 will be described. A 5 mmφ At-Mg alloy substrate was coated with RF magnetron sputtering at a substrate temperature of 150'C and an argon gas pressure of 1.
0 mTorr, input power 3 W/d, 250 nm thick Cr, 70 nm thick co, #, Crg"i, Pt1
l#, , was formed. Thereafter, the protective coating layer shown in Table 2 was formed by reactive sputtering using an RF magnetron at a substrate temperature of 100°C, a mixed gas of 50vo 1% argon gas and 50vo 1% nitrogen gas at a gas pressure of 10 mTorr and an input power of 2 W/aJ. So 2
A perfluoroalkyl polyether lubricant layer having a thickness of 0 nm and an OH group at the end was formed to a thickness of 5 nm to form a magnetic disk. Here, the magnetic disk is immersed in Freon,
An attempt was made to remove the lubricant, but the lubricant was strongly adsorbed, and the adsorbed lubricant could not be removed. A sapphire spherical actuator with a curvature of 30 mm was pressed onto this magnetic disk with a load of 10 gf, and an amplitude of 500 μm was applied.
The sliding resistance of the magnetic disk was evaluated by checking the tin on the surface of the magnetic disk after performing reciprocating motion 30 times per second for 1 nm. As shown in Table 2, the tin content of the magnetic disk of this example was much smaller than that of the comparative example, and showed good wear resistance. In particular, when both Zr and Nb were included, and when W was included, no scratches were observed after sliding. In forming the protective liquid yIWI in Table 2, 1% of nitrogen was mixed with Ar, but 10 to 100 vol of nitrogen was added.
Similar results were obtained for %. Similar results were also obtained when the target material itself was used as a nitriding target. Using the same alloy as in the example shown in Table 2, 0.1 to 50vo 1% oxygen was added to a mixed gas of Ar and nitrogen.
Oxynitride was formed by sputtering in a mixed gas containing I impact resistance was further improved by more than twice, and particularly high sliding resistance was obtained. (Embodiment 3) Next, still another embodiment using the magnetic disk having the structure shown in FIG. 1 will be described. Al plated with NiP and having an unevenness of 10 nm in center line average surface roughness in the circumferential direction on the surface.
- A Cr film with a thickness of 250 nm was formed on a Mg alloy substrate by RF magnetron sputtering at a substrate temperature of 150°C, an argon gas pressure of 10 mTorr, and an input power of 3 W/Ci, a film thickness of 70 nm.
nm of G o, , zCr, , . Ta0. . , and then the protective coating layer shown in Table 3 was formed by reactive sputtering using an RF magnetron at a substrate temperature of 100° C. and an argon gas of 50vo 1%. Oxygen gas 50vo 1% mixed gas at gas pressure 10mTo
A magnetic disk was prepared by forming a 20 nm thick perfluoroalkyl polyether lubricant layer having an adsorption group containing a benzene ring or an NH2 group at the end with an input power of 2 W/d. An attempt was made to remove the lubricant by immersing the magnetic disk in Freon, but the lubricant was strongly adsorbed and the adsorbed lubricant could not be removed. Table 3 A sapphire spherical slider with a curvature of 30 mm was pressed onto this magnetic disk with a load of 10 gf, and the magnetic disk was rotated at a relative speed of 10 m/s to the slider, resulting in a sliding speed of 36
The sliding resistance of the magnetic disk was evaluated based on the tin particles generated on the surface of the magnetic disk at the time of 00 cycles. As shown in Table 3, the tin content of the magnetic disk of this example was much smaller than that of the comparative example, and showed good wear resistance. In particular, when both Zr and Nb were included, no scratches were observed after sliding. mata, choleranoprotective [1ttc, Rh, Si
It also has higher adhesion than conventional protective coating layers such as 02.
Even in a scratch test with a diamond needle, there was almost no peeling. (Embodiment 4) Next, another embodiment using the magnetic disk having the structure shown in FIG. 1 will be described. 89m plated with NiP and chemically etched on its surface to create unevenness with a center line average surface roughness of 5nm.
mφ tempered glass substrate by DC magnetron sputtering at a substrate temperature of 100°C and an argon gas pressure of 10 mTorr.
r, Cr with a film thickness of 250 nm at input power IW/d, Cos with a film thickness of 60 nm,..., N10138 Z r On@
After forming 5Cr010G, a protective coating layer shown in Table 4 was formed to a thickness of 20 nm using a reactive sputtering method using an RF magnetron at a substrate temperature of 150'C, an argon gas pressure of 2 mTorr, and an input power of 5 W/aJ. A magnetic disk was prepared by providing a perfluoroalkyl polyether lubricant layer with a thickness of 7 nm having an adsorbent polar group. Here, an attempt was made to remove the lubricant by immersing the magnetic disk in Freon, but the lubricant was strongly adsorbed and the adsorbed lubricant could not be removed. Table 4 A sapphire spherical slider with a curvature of 30 mm was pressed onto this magnetic disk with a load of 10 gf, and the magnetic disk was rotated at a relative speed of 10 m/s to the slider, resulting in a sliding distance of 3600 mm.
The sliding resistance of the magnetic disk was evaluated based on the tin produced on the surface of the magnetic disk during rotation. As shown in Table 4, the tin content of the magnetic disk of this example was much smaller than that of the comparative example, and showed good wear resistance. In particular, when W and Mo were included, no scratches were observed after sliding. (Embodiment 5) Next, another embodiment using the magnetic disk having the structure shown in FIG. 1 will be described. A 130 mmφ Al- plated NiP plated with unevenness of 10 nm in center line average surface roughness in the circumferential direction.
7. A Cr film with a thickness of 250 nm and a Coo film with a film thickness of 50 nm were formed on an Mg alloy substrate by RF magnetron sputtering at a substrate temperature of 100° C., an argon gas pressure of 5 mTorr, and an input power of 3 W/aJ. c rollp t. , 1S 10+
. After forming No. 2, a protective coating layer shown in Table 5 was formed. Sample numbers 33 to 37 were processed using a DC magnetron sputtering method using a carbide alloy target at a substrate temperature of 100°C, an argon gas pressure of 10m orr, and an input power of 5 W/aJ.
A magnetic disk was formed with a thickness of 0 nm. Sample numbers 38 to 41 were made by reactive sputtering using an RF magnetron, with a substrate temperature of 100°C and argon gas of 50°C.
A magnetic disk was formed by using a mixed gas of 1% VO and 1% nitrogen gas at a gas pressure of 10 mTorr and an input power of 5 W/al to form a magnetic disk. Sample numbers 42 to 44 were made by reactive sputtering using an RF magnetron at a substrate temperature of 100'C and an argon gas of 5.
A magnetic disk was formed with a mixed gas of 0vo 1% and oxygen gas of 50vo 1% at a gas pressure of 10 mTorr and an input power of 5 W/d to a thickness of 30 nm. Sample No. 45 or 647 was formed to a thickness of 30 nm by RF magnetron sputtering using a boride alloy target at a substrate temperature of 100° C., an argon gas pressure of IQ mTorr, and an input power of 5 W/d to form a magnetic disk. A sapphire spherical slider with a curvature of 30 mm was pressed onto this magnetic disk with a load of 10 gf, and the slider was made to reciprocate 30 times per second with an amplitude of 500 Itm. As shown in Table 5, the friction coefficient of the magnetic disk of this example was much lower than that of the comparative example, indicating good sliding resistance. (Example 6) Yet another example will be described. 50 plated with NiP and chemically etched on its surface to create unevenness with a center line average surface roughness of 10 nm.
The substrate temperature was 100°C and the argon gas pressure was 5 mTorr by RF magnetron sputtering on a mmφ tempered glass substrate.
, Cr with a film thickness of 250 nm at an input power of 3 W/cd,...
T io,z, Coo with a film thickness of 50 nm, Cr, 1
.. After forming P to, □2, two or three layers of 10 nm each of the materials shown in Example 5 were laminated under the same conditions as in Example 5 to form the protective coating layer shown in Table 6, and the benzene ring was removed. A magnetic disk was prepared by providing a perfluoroalkyl polyether lubricant layer having a thickness of 5 nm and having an adsorptive polar group. An attempt was made to remove the lubricant by immersing the magnetic disk in Freon, but the lubricant was strongly adsorbed and the adsorbed lubricant could not be removed. The magnetic disk was subjected to a salt spray test using a 1N NaCl aqueous solution at 50°C for 32 hours to evaluate its corrosion resistance. As shown in Table 6, the saturation magnetization (Ms) reduction rate of the magnetic disk of this example was , which was significantly smaller than that of the comparative example, demonstrating excellent corrosion resistance. Furthermore, in terms of sliding resistance, it was confirmed that the lifespan was more than twice as long. Table 6 (Example 7) Metal-in-gap magnetic head using 2, 4 to 8 magnetic disks of Examples 1 to 6 above and providing CoTaZr, FeAlSi alloy, etc. in the gap part, or N
i Fe, Co Fe, Co TaZr
A magnetic disk device was fabricated by combining a thin film magnetic head with an alloy or the like as the magnetic pole material. The average lifespan of the devices until an error occurred was determined, and in all cases the lifespan was 2 to 10 times longer than that of devices using conventional magnetic disks, and a lack of reliability was obtained. Compared to a magnetic disk device combined with a conventional Mn-Zn ferrite ring head, it has a higher ability to erase unnecessary information in the track width direction.
The magnetic disk device according to the present invention has a wide phase margin and can increase storage capacity by more than 1.5 times.

【発明の効果】【Effect of the invention】

本発明の保護被覆層を設けた磁気記録媒体は耐食性、耐
摺動性に優れるため、高密度記録に適し、実用に十分な
耐久性を持つ磁気記録媒体および磁気記憶装置が得られ
る。
Since the magnetic recording medium provided with the protective coating layer of the present invention has excellent corrosion resistance and abrasion resistance, it is possible to obtain a magnetic recording medium and a magnetic storage device that are suitable for high-density recording and have sufficient durability for practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1における磁気ディスクの断面
図、第2図は(Wo、9COG、L) 1−XCX保護
被覆層においてC組成と磁気ディスクの耐摩耗性との関
係を示す図、第3図は(Wo9s−XへMO0゜、−X
へCoX) 。+、c、、保護被r!1層においてCO
組成と耐摺動性との関係を示す図である。 符号の説明 11・・・基板、12.12’・・・非磁性下地層、1
3゜13′・・・磁性層、14.14’・・・保護被覆
層第2図 C濃度χ 第3目 Cρ渠JE (vt%)
FIG. 1 is a cross-sectional view of the magnetic disk in Example 1 of the present invention, and FIG. 2 is a diagram showing the relationship between the C composition and the wear resistance of the magnetic disk in the (Wo, 9COG, L) 1-XCX protective coating layer. , Figure 3 is (MO0° to Wo9s-X, -X
to CoX). +, c,, protected r! CO in one layer
It is a figure showing the relationship between composition and sliding resistance. Explanation of symbols 11...Substrate, 12.12'...Nonmagnetic underlayer, 1
3゜13'...Magnetic layer, 14.14'...Protective coating layer Figure 2 C concentration χ 3rd layer Cρ channel JE (vt%)

Claims (1)

【特許請求の範囲】 1、磁性層上に少なくとも一層の保護被覆層を有する磁
気記録媒体において、該保護被覆層がTi、Zr、Hf
、V、Nb、Ta、Cr、Mo、Wから成る第1の群か
ら選ばれた少なくとも1種の元素と、Y、Mg、Ca、
Sc、Fe、Co、Ni、Al、Si、Ru、Rh、P
d、Os、Ir、Pt、Mn、Cu、Agから成る第2
の群から選ばれた少なくとも1種の元素と、C、N、O
、Bから成る第3の群から選ばれた少なくとも1種の元
素とから成ることを特徴とする磁気記録媒体。 2、上記保護被覆層上に少なくとも1つの吸着性末端基
を有する潤滑剤層が存在する特許請求の範囲第1項記載
の磁気記録媒体。 3、第3の群の元素の総成分量は第1の群の元素の総成
分量に対して1at%以上99at%以下である特許請
求の範囲第1項記載の磁気記録媒体。 4、第3の群の元素の総成分量は第1の群の元素の総成
分量に対して20at%以上90at%以下である特許
請求の範囲第1項記載の磁気記録媒体。 5、第3の群の元素の総成分量は第1の群の元素の総成
分量に対して40at%以上70at%以下である特許
請求の範囲第1項記載の磁気記録媒体。 6、第2の群の元素の総成分量はその他の元素の総成分
量に対して0.1wt%以上20wt%以下である特許
請求の範囲第1項記載の磁気記録媒体。 7、第2の群の元素の総成分量はその他の元素の総成分
量に対して0.2wt%以上10wt%以下である特許
請求の範囲第1項記載の磁気記録媒体。 8、上記保護被覆層が少なくともWあるいはMoを含む
特許請求の範囲第1項記載の磁気記録媒体。 9、上記保護被覆層が少なくともCoを含む特許請求の
範囲第1項記載の磁気記録媒体。10、上記保護被覆層
が少なくともCを含む特許請求の範囲第1項記載の磁気
記録媒体。11、上記保護被覆層の膜厚は5nm以上6
0nm以下である特許請求の範囲第1項記載の磁気記録
媒体。 12、上記保護被覆層の膜厚は5nm以上40nm以下
である特許請求の範囲第1項記載の磁気記録媒体。 13、上記保護被覆層の膜厚は10nm以上30nm以
下である特許請求の範囲第1項記載の磁気記録媒体。 14、特許請求の範囲第1項ないし第13項のいずれか
に記載の磁気記録媒体面を少なくとも一面有する磁気記
録媒体と金属磁性合金を少なくとも磁気コアの一部とし
て含む磁気ヘッドとを少なくとも有する磁気記憶装置。
[Claims] 1. A magnetic recording medium having at least one protective coating layer on a magnetic layer, in which the protective coating layer is composed of Ti, Zr, Hf.
, V, Nb, Ta, Cr, Mo, and at least one element selected from the first group consisting of W; Y, Mg, Ca,
Sc, Fe, Co, Ni, Al, Si, Ru, Rh, P
d, Os, Ir, Pt, Mn, Cu, Ag
at least one element selected from the group of C, N, O
, and at least one element selected from the third group consisting of B. 2. The magnetic recording medium according to claim 1, wherein a lubricant layer having at least one adsorbent end group is present on the protective coating layer. 3. The magnetic recording medium according to claim 1, wherein the total amount of elements in the third group is 1 at % or more and 99 at % or less with respect to the total amount of elements in the first group. 4. The magnetic recording medium according to claim 1, wherein the total amount of the elements in the third group is from 20 at% to 90 at% with respect to the total amount of the elements in the first group. 5. The magnetic recording medium according to claim 1, wherein the total content of the elements in the third group is 40 at% or more and 70 at% or less with respect to the total content of the elements in the first group. 6. The magnetic recording medium according to claim 1, wherein the total amount of the elements of the second group is 0.1 wt% or more and 20 wt% or less with respect to the total amount of other elements. 7. The magnetic recording medium according to claim 1, wherein the total amount of elements in the second group is 0.2 wt% or more and 10 wt% or less with respect to the total amount of other elements. 8. The magnetic recording medium according to claim 1, wherein the protective coating layer contains at least W or Mo. 9. The magnetic recording medium according to claim 1, wherein the protective coating layer contains at least Co. 10. The magnetic recording medium according to claim 1, wherein the protective coating layer contains at least C. 11. The thickness of the protective coating layer is 5 nm or more6
The magnetic recording medium according to claim 1, which has a particle diameter of 0 nm or less. 12. The magnetic recording medium according to claim 1, wherein the protective coating layer has a thickness of 5 nm or more and 40 nm or less. 13. The magnetic recording medium according to claim 1, wherein the protective coating layer has a thickness of 10 nm or more and 30 nm or less. 14. A magnetic device comprising at least a magnetic recording medium having at least one magnetic recording medium surface according to any one of claims 1 to 13 and a magnetic head containing a metal magnetic alloy as at least a part of the magnetic core. Storage device.
JP24509589A 1989-09-22 1989-09-22 Magnetic recording medium and magnetic recordor Pending JPH03108121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24509589A JPH03108121A (en) 1989-09-22 1989-09-22 Magnetic recording medium and magnetic recordor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24509589A JPH03108121A (en) 1989-09-22 1989-09-22 Magnetic recording medium and magnetic recordor

Publications (1)

Publication Number Publication Date
JPH03108121A true JPH03108121A (en) 1991-05-08

Family

ID=17128534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24509589A Pending JPH03108121A (en) 1989-09-22 1989-09-22 Magnetic recording medium and magnetic recordor

Country Status (1)

Country Link
JP (1) JPH03108121A (en)

Similar Documents

Publication Publication Date Title
JP2852077B2 (en) Magnetic recording media
KR0130768B1 (en) Magnetic recording media for longitudinal recording
JP5360894B2 (en) Method for manufacturing magnetic recording medium
US8043734B2 (en) Oxidized conformal capping layer
US6238780B1 (en) Magnetic recording medium comprising multilayered carbon-containing protective overcoats
US6572958B1 (en) Magnetic recording media comprising a silicon carbide corrosion barrier layer and a c-overcoat
US6537686B1 (en) Magneto-resistance recording media comprising a silicon nitride corrosion barrier layer and a C-overcoat
US6517956B1 (en) Magneto-resistance recording media comprising aluminum nitride corrosion barrier layer and a c-overcoat
JPH0210518A (en) Magnetic recording medium and magnetic recorder
JPH03108121A (en) Magnetic recording medium and magnetic recordor
JP2861081B2 (en) Magnetic recording media
JP2003099917A (en) Magnetic recording medium
JP2833025B2 (en) Magnetic recording medium
JP2861150B2 (en) Magnetic recording media
JP2761878B2 (en) Magnetic recording media
JPH065574B2 (en) Magnetic recording medium
JPH04109427A (en) Magnetic recording medium
JPH0464922A (en) Magnetic recording medium
JPH09282632A (en) Magnetic recording medium
JPH0855322A (en) Magnetic recording medium
JPH05258288A (en) Magnetic recording medium and magnetic recording device
JPH02273315A (en) Magnetic recording medium
JP2003099918A (en) Magnetic recording medium
JPH08180399A (en) Thin film type magnetic disk
JPH0346119A (en) Magnetic recording medium and production thereof