JPH0325494B2 - - Google Patents

Info

Publication number
JPH0325494B2
JPH0325494B2 JP62078885A JP7888587A JPH0325494B2 JP H0325494 B2 JPH0325494 B2 JP H0325494B2 JP 62078885 A JP62078885 A JP 62078885A JP 7888587 A JP7888587 A JP 7888587A JP H0325494 B2 JPH0325494 B2 JP H0325494B2
Authority
JP
Japan
Prior art keywords
weight
copper alloy
strength
wire
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62078885A
Other languages
Japanese (ja)
Other versions
JPS63243239A (en
Inventor
Masanori Kato
Sakya Nishiura
Kanji Tanaka
Takatoki Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Tatsuta Electric Wire and Cable Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP7888587A priority Critical patent/JPS63243239A/en
Publication of JPS63243239A publication Critical patent/JPS63243239A/en
Publication of JPH0325494B2 publication Critical patent/JPH0325494B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、優れた耐屈曲性と引張強度とを有す
る高強度、高導電性銅合金導線に関する。本発明
の導線は、電子機器内配線用導線及び産業ロボツ
ト用ケーブルの導線に利用するのに適している。 従来技術 従来、広い温度範囲にわたつて導電性、引張強
度などの機械特性の点で優れた性質を示す銅合
金、例えばマグネシウムとリンを特定範囲量含有
する銅合金が知られている(特公昭49−10894
号)。 而して、近年、電子機器の発達とともに益々軽
薄短小化が進み、それに伴い電子機器内配線用導
線も細径化の傾向にあるため、従来の導電用高力
銅合金では十分な機能を発揮できなくなつてきて
いる。例えば上記の特公昭49−10894号による
MgとPを含有する銅合金では0.3mmφ〜0.01mmφ
程度の細径の導線にした場合、電子機器製作工程
中に加わる熱に対して十分な強度を維持できな
い。 すなわち、耐熱性が十分でないため、ロウ付け
時などに加熱を受けた箇所が機械的弱点部となつ
て断線を生じ易くなる。例えば、ジルコニウム銅
においては、繰返し曲げ強さが不足しているた
め、前記導線の端子圧着接続箇所などで断線を生
じ易い欠点がある。因に、この場合ジルコニウム
含有量を多くして高力化しようとしても該含有量
にバラツキが起るので安定した品質の合金が得ら
れない。 また、産業ロボツトにおいても、教示位置まで
繰返し動作を行うため、これに使用されるロボツ
ト用ケーブル導線では、繰返し曲げや引張りを常
に受けることになつて断線を生じ易い条件に置か
れるようになり、加うるに、高温雰囲気で使用さ
れる産業ロボツト用ケーブル導線では加熱下での
繰返し曲げや引張を受けることになる。 したがつて、このような条件下では導線の繰返
し曲げ強度や引張強度は一そう低下するようにな
る。 叙上のごとく、電子機器内配線用電線の導線の
細径下と産業ロボツト用ケーブル導線の一そうの
荷酷条件下での使用に伴い、これら導線に対して
は、従来の優れた耐熱性と良好な導電性に加え
て、繰返し曲げ強度及び引張強度の一そう向上し
た導線の提供が要望されている。 発明が解決しようとする課題 本発明は、叙上の状況に鑑みなされたものであ
つて、小型化の各種電子機器内配線用電線の細径
導線並びに高温雰囲気下で使用される産業ロボツ
ト用ケーブル導線としても有効に利用し得る、優
れた繰返し曲げ強度を呈する高導電性、耐熱性銅
合金導線を提供することを課題とする。 以下本発明を詳しく説明する。 発明の構成 本発明の特徴は、マグネシウムを0.02〜0.5重
量%、リンをマグネシウムに対して35〜100重量
%と、インジウム、スズ、鉛及びアンチモンから
なる群から選択されるものの少くとも2種を合計
で0.01〜0.5重量%含有し、残部が実質的に銅か
ら成る銅合金導線にある。 課題を解決するための手段 本発明に係る高導電性銅合金は、主としてその
機械的強度の向上のために、基材としての電気銅
にMgを0.02〜0.5重量%と、更にその強度を高め
るためにPをMgに対して35〜100重量%それぞ
れ添加し、In、Sn、Pb及びSbの各金属の少くと
も2種を合計で0.01〜0.5重量%添加することに
より、特に、繰返し曲げ強度と引張強度を一そう
向上させたものである。 銅合金における上記各金属の添加量について
は、Mgの添加量が0.5重量%を超えると導電性の
低下が大きくなり、加うるにMgの銅合金におけ
る含有量の制御が難しいので、銅合金の品質が不
安定になり、一方0.02重量%未満では繰返し曲げ
強度及び引張強度の改善効果が少くなる。また、
Pの添加量が上記範囲の下限未満ではMgとの化
合物析出が進まずPの添加効果が発揮されず、一
方上限を超えると銅合金の導電性を却つて損うよ
うになる。 次に、本発明において上記MgとPを含有する
銅合金に添加、含有させるためのIn、Sn、Pb及
びSbは、上述のとおり、該銅合金導線の繰返し
曲げ強度と引張強度を一そう向上させる効果を呈
するものであつて、そのためには、これらの各金
属の少くとも2種を合計で0.01〜0.5重量%添加、
含有させることが必要である。この場合、それら
の2種以上の添加合計量が0.01重量%未満でも所
望の効果は得られない。また、上記添加合計量が
0.5重量%を超えると銅合金導線の高導電性が維
持できなくなる。 本発明に従つて、Mgを0.02〜0.5重量%とPを
Mgに対して35〜100重量%含有する高導電性銅
合金に、In、Sn、Pb及びSb各金属の2種を種々
の合計量で添加含有させた銅合金導線の導電性、
曲げ強度、伸び及び引張強度を常法により測定し
た結果を示すと表1のとおりである。 なお、比較としてMg、P及びIn、Sn、Pb、
Sbの各金属を本発明で特定する範囲外の量で添
加した銅合金導線について上記同様に測定した結
果を表1に併せて示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a high-strength, high-conductivity copper alloy conducting wire having excellent bending resistance and tensile strength. The conductive wire of the present invention is suitable for use as a conductive wire for wiring in electronic equipment and a conductive wire for cables for industrial robots. Conventional technology Copper alloys that exhibit excellent mechanical properties such as electrical conductivity and tensile strength over a wide temperature range are known, for example, copper alloys that contain magnesium and phosphorus in specific amounts. 49−10894
issue). In recent years, with the development of electronic devices, they have become increasingly lighter, thinner, and shorter, and as a result, the conductor wires for wiring inside electronic devices are also becoming smaller in diameter. I'm getting to the point where I can't do it anymore. For example, according to the above-mentioned Special Publication No. 49-10894
0.3mmφ to 0.01mmφ for copper alloys containing Mg and P
If the conductor wire is made to have a small diameter, it will not be able to maintain sufficient strength against the heat applied during the manufacturing process of electronic devices. That is, since the heat resistance is not sufficient, the portions that are heated during brazing become mechanical weak points and are likely to break. For example, zirconium copper lacks repeated bending strength, so it has the drawback of being prone to breakage at terminal crimp connections of the conducting wire. Incidentally, in this case, even if an attempt is made to increase the strength by increasing the zirconium content, the content will vary, making it impossible to obtain an alloy of stable quality. Furthermore, since industrial robots repeatedly operate up to the taught position, the robot cable conductors used in these robots are constantly subjected to repeated bending and tension, making them susceptible to wire breakage. In addition, cable conductors for industrial robots used in high-temperature environments are subjected to repeated bending and tension under heating. Therefore, under such conditions, the cyclic bending strength and tensile strength of the conducting wire are considerably reduced. As mentioned above, due to the use of small-diameter conductors for wiring in electronic devices and under severe load conditions such as cable conductors for industrial robots, these conductors have a higher heat resistance than conventional ones. In addition to good conductivity, there is a desire to provide a conductor wire that has significantly improved cyclic bending strength and tensile strength. Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned circumstances, and is directed to small-diameter conductors for wiring in various miniaturized electronic devices and cables for industrial robots used in high-temperature atmospheres. It is an object of the present invention to provide a highly conductive, heat-resistant copper alloy conductive wire that exhibits excellent repeated bending strength and can be effectively used as a conductive wire. The present invention will be explained in detail below. Structure of the Invention The present invention is characterized by containing 0.02 to 0.5% by weight of magnesium, 35 to 100% by weight of phosphorus relative to magnesium, and at least two members selected from the group consisting of indium, tin, lead, and antimony. The copper alloy conductive wire contains a total of 0.01 to 0.5% by weight, with the balance essentially consisting of copper. Means for Solving the Problems The highly conductive copper alloy according to the present invention further increases its strength by adding 0.02 to 0.5% by weight of Mg to electrolytic copper as a base material, mainly to improve its mechanical strength. In particular, by adding 35 to 100% by weight of P to Mg and adding a total of 0.01 to 0.5% by weight of at least two of the metals In, Sn, Pb, and Sb, the cyclic bending strength can be improved. This has significantly improved tensile strength. Regarding the amount of each of the above metals added to the copper alloy, if the amount of Mg added exceeds 0.5% by weight, the conductivity will decrease significantly, and in addition, it is difficult to control the Mg content in the copper alloy. The quality becomes unstable, and on the other hand, if it is less than 0.02% by weight, the effect of improving cyclic bending strength and tensile strength will be reduced. Also,
If the amount of P added is less than the lower limit of the above range, precipitation of a compound with Mg will not proceed and the effect of adding P will not be exhibited, while if it exceeds the upper limit, the conductivity of the copper alloy will be impaired. Next, in the present invention, In, Sn, Pb, and Sb, which are added to the copper alloy containing Mg and P, are used to further improve the cyclic bending strength and tensile strength of the copper alloy conductor wire, as described above. For this purpose, at least two of these metals should be added in a total of 0.01 to 0.5% by weight,
It is necessary to contain it. In this case, even if the total amount of the two or more types added is less than 0.01% by weight, the desired effect cannot be obtained. Also, if the total amount added above is
If it exceeds 0.5% by weight, the high conductivity of the copper alloy conducting wire cannot be maintained. According to the present invention, Mg is 0.02-0.5 wt% and P is
The conductivity of a copper alloy conductive wire made by adding two types of metals In, Sn, Pb and Sb in various total amounts to a highly conductive copper alloy containing 35 to 100% by weight relative to Mg,
Table 1 shows the results of measurements of bending strength, elongation and tensile strength using conventional methods. For comparison, Mg, P and In, Sn, Pb,
Table 1 also shows the results of measurements made in the same manner as above for copper alloy conductive wires to which each metal, Sb, was added in an amount outside the range specified in the present invention.

【表】 表1にみられるとおり、本発明による組成の銅
合金導線では、高導電性を保持していると共に、
曲げ強度及び引張強度が平均して良好であるに対
し、各金属を本発明の組成範囲外の量で含有する
比較例では、引張強度や曲げ強度等の機械的強度
が良好である場合でも、導電性が損なわれ、ま
た、導電性が良好であつても曲げ強度が劣ること
が理解し得る。したがつて、本発明による銅合金
導線は、従来の電子機器内配線用導線や産業ロボ
ツト用ケーブル導線として好適であるのみなら
ず、電子機器の小型化に伴う0.3mmφ〜0.01mmφ
程度の極めて細い導線及び繰返し動作を行うロボ
ツト用ケーブル導線としても有効に利用し得る性
能を有する。 以下実施例により、本発明を具体的に説明す
る。 実施例 電気銅を高周波溶解炉でアルゴン雰囲気下に溶
解したものに、Mgを0.31重量%、Pを0.22重量
%、Inを0.21重量%及びSbを0.11重量%の組成に
なるようにCu−Mg及びCu−Pの各母合金及び
In、Sbの各メタル15mm角×200mm長の鋳塊を溶製
した。 得られた鋳塊を面削した後、850℃で熱間延伸
を行つて6mmφ線となし、850℃で1時間溶体化
処理を行つた。次いで、上述のように処理した線
を更に0.08mmφまで冷間伸線し、450℃で1時間
焼鈍してCu−Mg−P−In−Sb銅合金を得た。得
られた銅合金導線の引張強度、伸び、導電率及び
繰返し曲げ強度を常法により測定した。 結果は下記のとおりである。
[Table] As shown in Table 1, the copper alloy conductor wire with the composition according to the present invention maintains high conductivity and
While the bending strength and tensile strength are good on average, in the comparative example containing each metal in an amount outside the composition range of the present invention, even if the mechanical strength such as tensile strength and bending strength is good, It can be understood that the conductivity is impaired, and even if the conductivity is good, the bending strength is poor. Therefore, the copper alloy conductive wire according to the present invention is not only suitable as a conductor for wiring inside conventional electronic equipment or a cable conductor for industrial robots, but also is suitable for wires of 0.3 mmφ to 0.01 mmφ due to the miniaturization of electronic devices.
It has the ability to be effectively used as an extremely thin conducting wire and as a cable conducting wire for robots that perform repetitive operations. The present invention will be specifically described below with reference to Examples. Example: Electrolytic copper was melted in an argon atmosphere in a high-frequency melting furnace, and Cu-Mg was added so that the composition was 0.31% by weight of Mg, 0.22% by weight of P, 0.21% by weight of In, and 0.11% by weight of Sb. and each mother alloy of Cu-P and
Ingots of In and Sb metals each measuring 15 mm square and 200 mm long were melted. After face cutting the obtained ingot, it was hot drawn at 850°C to form a 6 mmφ wire, and solution treatment was performed at 850°C for 1 hour. Next, the wire treated as described above was further cold drawn to a diameter of 0.08 mm and annealed at 450°C for 1 hour to obtain a Cu-Mg-P-In-Sb copper alloy. The tensile strength, elongation, electrical conductivity, and repeated bending strength of the obtained copper alloy conducting wire were measured by conventional methods. The results are as follows.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 マグネシウムを0.02〜0.5重量%、リンをマ
グネシウムに対して35〜100重量%と、インジウ
ム、スズ、鉛及びアンチモンからなる群から選択
されるものの少くとも2種を合計で0.01〜0.5重
量%含有し、残部が実質的に銅から成ることを特
徴とする優れた耐屈曲性と引張強度を有する高導
電性銅合金導線。
1 Contains 0.02 to 0.5% by weight of magnesium, 35 to 100% by weight of phosphorus relative to magnesium, and a total of 0.01 to 0.5% by weight of at least two selected from the group consisting of indium, tin, lead, and antimony. A highly conductive copper alloy conductive wire having excellent bending resistance and tensile strength, characterized in that the remainder is substantially made of copper.
JP7888587A 1987-03-31 1987-03-31 High electroconductive copper alloy having excellent bending resistance and tensile strength Granted JPS63243239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7888587A JPS63243239A (en) 1987-03-31 1987-03-31 High electroconductive copper alloy having excellent bending resistance and tensile strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7888587A JPS63243239A (en) 1987-03-31 1987-03-31 High electroconductive copper alloy having excellent bending resistance and tensile strength

Publications (2)

Publication Number Publication Date
JPS63243239A JPS63243239A (en) 1988-10-11
JPH0325494B2 true JPH0325494B2 (en) 1991-04-08

Family

ID=13674265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7888587A Granted JPS63243239A (en) 1987-03-31 1987-03-31 High electroconductive copper alloy having excellent bending resistance and tensile strength

Country Status (1)

Country Link
JP (1) JPS63243239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078780A1 (en) 2006-12-26 2008-07-03 Asahi Kasei Fibers Corporation Expandable electric wire and its manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262435A (en) * 1987-04-21 1988-10-28 Nippon Mining Co Ltd High strength high electroconductive copper alloy
JPH04290285A (en) * 1991-03-19 1992-10-14 Tatsuta Electric Wire & Cable Co Ltd Flexible printed circuit board with electromagnetic wave shield
JPH0523340U (en) * 1991-09-09 1993-03-26 タツタ電線株式会社 Heat-resistant / flexible / wear-resistant coated robot cable
DE112014005905T5 (en) * 2013-12-19 2016-10-13 Autonetworks Technologies, Ltd. Copper alloy wire, copper alloy strand, electric wire, electric wire clamped and method for producing copper alloy wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103316A (en) * 1976-02-27 1977-08-30 Furukawa Electric Co Ltd:The Heat-resisting copper alloy having excellent electrical conductivity a nd thermal conductivity
JPS6075541A (en) * 1983-09-30 1985-04-27 Tatsuta Electric Wire & Cable Co Ltd Copper alloy having superior heat resistance, mechanical characteristic and electric conductivity
JPS62116742A (en) * 1985-11-14 1987-05-28 Furukawa Electric Co Ltd:The Highly flexible conductive copper alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103316A (en) * 1976-02-27 1977-08-30 Furukawa Electric Co Ltd:The Heat-resisting copper alloy having excellent electrical conductivity a nd thermal conductivity
JPS6075541A (en) * 1983-09-30 1985-04-27 Tatsuta Electric Wire & Cable Co Ltd Copper alloy having superior heat resistance, mechanical characteristic and electric conductivity
JPS62116742A (en) * 1985-11-14 1987-05-28 Furukawa Electric Co Ltd:The Highly flexible conductive copper alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078780A1 (en) 2006-12-26 2008-07-03 Asahi Kasei Fibers Corporation Expandable electric wire and its manufacturing method

Also Published As

Publication number Publication date
JPS63243239A (en) 1988-10-11

Similar Documents

Publication Publication Date Title
JP4609866B2 (en) Aluminum alloy wire
JPS633936B2 (en)
JP4288844B2 (en) Extra fine copper alloy wire
JPH0325494B2 (en)
JPH0352523B2 (en)
JPH042655B2 (en)
JPH042653B2 (en)
JPH0355529B2 (en)
JPH042654B2 (en)
JPH0353374B2 (en)
JPH0355528B2 (en)
JP2813652B2 (en) High strength copper alloy for conductive
JPH0246656B2 (en) TAIKUTSUKYOKUKORYOKUKODODENSEIDOGOKIN
JPS62214145A (en) Bending resistant copper alloy having high strength and electric conductivity
CN113122753A (en) Micro-alloyed copper alloy cable material and preparation method thereof
JPS6256218B2 (en)
EP1608788A1 (en) Oxygen-free copper alloy and method for its manufacture and use of copper alloy
JPS6256217B2 (en)
JPS6047344B2 (en) Hot-dipped ultrafine copper alloy conductor
JPH0461055B2 (en)
JP3381817B2 (en) High strength copper alloy for electric wire conductor and method for producing electric wire conductor
JP2501290B2 (en) Lead material
JPH0348256B2 (en)
JPH06158201A (en) High strength and high electric conductivity copper alloy
JPS6218617B2 (en)