JPH042654B2 - - Google Patents

Info

Publication number
JPH042654B2
JPH042654B2 JP62078887A JP7888787A JPH042654B2 JP H042654 B2 JPH042654 B2 JP H042654B2 JP 62078887 A JP62078887 A JP 62078887A JP 7888787 A JP7888787 A JP 7888787A JP H042654 B2 JPH042654 B2 JP H042654B2
Authority
JP
Japan
Prior art keywords
weight
copper alloy
copper
strength
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62078887A
Other languages
Japanese (ja)
Other versions
JPS63243241A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7888787A priority Critical patent/JPS63243241A/en
Publication of JPS63243241A publication Critical patent/JPS63243241A/en
Publication of JPH042654B2 publication Critical patent/JPH042654B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、電子機器内配線用電線の導体及び
産業ロボツト用ケーブルの導体に利用するのに
適した高い導電性を有するとともに、引張強度
及び耐屈曲性の優れた銅合金に関する。 従来技術 従来、広い温度範囲にわたつて導電性、引張
強度などの機械特性の点で優れた性質を示す銅
合金、例えばマグネシウムとリンを特定範囲量
含有する銅合金が知られている(特公昭49−
10894号)。 また、高導電性耐熱性銅合金としてジルコニ
ウムを0.01〜0.15重量%含有する銅合金もしら
れている。 而して、近年、電子機器の発達とともに益々
軽薄短小化が進み、それに伴い電子機器内配線
用電線の導体も細径化の傾向にあるため、従来
の導電用高力導合金では十分な機能を発揮でき
なくなつてきている。例えば上記の特公昭49−
10894号によるMgとPを含有する銅合金では、
0.3mmφ〜0.01.mmφ程度の細径の導体にした場
合、電子機器製作工程中に加わる熱に対して十
分な強度を維持できない。 すなわち、耐熱性が十分でないため、ロウ付
け時などに加熱を受けた箇所が機械的弱点部と
なつて断線を生じ易くなる。また上記のジルコ
ニウム銅においては、繰返し曲げ強さが不足し
ているため、前記導体の端子圧着接続箇所など
で断線を生じ易い欠点がある。因に、この場合
ジルコニウム含有量を多くして高力化しようと
しても該含有量にバラツキが起るので安定した
品質の合金が得られない。 また、産業ロボツトにおいても、教示位置ま
で繰返し動作を行うため、これに使用されるロ
ボツト用ケーブル導体では、繰返し曲げや引張
りを常に受けることになつて断線を生じ易い条
件に置かれるようになり、加うるに、高温雰囲
気で使用される産業ロボツト用ケーブル導体で
は加熱下での繰返し曲げや引張を受けることに
なる。 したがつて、このような条件下では導体の繰
返し曲げ強度や引張強度は一そう低下するよう
になる。 叙上のごとく、電子機器内配線用電線の導体
の細径下と産業ロボツト用ケーブル導体の一そ
うの苛酷条件下での使用に伴い、これら導体に
対しては、従来の優れた耐熱性と良好な導電性
に加えて、繰返し曲げ強度及び引張強度の一そ
う向上した導体の提供が要望されている。 発明が解決しようとする課題 本発明は、叙上の状況に鑑みなされたもので
あつて、小型化の各種電子機器内配線用電線の
細径導体並びに高温雰囲気下で使用される産業
ロボツト用ケーブルの導体としても有効に利用
し得る、優れた繰返し曲げ強度と引張強度を呈
する高導電性、耐熱性銅合金を提供することを
課題とする。 以下本発明を詳しく説明する。 発明の構成 本発明の特徴は、マグネシウムを0.02〜0.5
重量%、リンをマグネシウムに対して35〜100
重量%、ジルコニウムを0.01〜0.8重量%及び
インジウム、スズ、鉛及びアンチモンからなる
群から選択されるものの1種を0.01〜0.5重量
%含有し、残部が実質的に銅から成る銅合金に
ある。 課題を解決するための手段 本発明に係る高導電性銅合金は、主としてそ
の機械的強度を高めるために、基材としての電
気銅にMgを0.02〜0.5重量%と、更にその強度
を高めるためにPをMgに対して35〜100重量
%と、導電性を向上させるためにZrを0.01〜
0.8重量%及びIn、Sn、PbもしくはSbのいずれ
かの1種を引張強度と繰返し曲げ強度を向上さ
せるために0.01〜0.5重量%添加する。 上記各元素を上記の各特定範囲で添加する根
拠は下記理由に基づく。 Mgについては、その添加量が0.5重量%を越
えると、得られる銅合金の銅電性の低下が大き
くなり、、加うるにMgの銅合金における含有
量の制御が難しいので、銅合金の品質が不安定
になり、一方0.02重量%未満では繰返し曲げ強
度及び引張強度の改善効果が少くなる。また、
Pについては、その添加量が特定範囲の下限未
満ではPの添加効果が発揮されず、一方上限を
超えると銅合金の導電性を卸つて損うようにな
る。Zrについては、その添加量が0.01重量%未
満では繰返し曲げ強度及び耐熱性が十分でな
く、0.8重量%を超えると含有量の変動が大き
くなり、品質上に難点が生じ、かつ導電率の低
下も著しい。 次に、In、Sn、Pb又はSbの添加量について
は、その添加量が0.01重量%未満では、引張強
度及び繰返し曲げ強度が改善されず、一方0.5
重量%を超えると銅合金の高導電性を維持でき
なくなる。 本発明に従つて、Mgを0.02〜0.5重量%、P
をMgに対して35〜100重量%、Zrを0.01〜0.8
重量%及びIn、Sn、Pb又はSbを0.01〜0.5重量
%添加、含有させた銅合金の導電性、引張強
度、伸び及び曲げ強度を常法により測定した結
果を示すと表1のとおりである。 なお、比較として上記各元素を上記範囲外の
量含有させた銅合金についても同様にして測定
した結果を表1に併せて示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a copper alloy having high electrical conductivity suitable for use as a conductor for wiring in electronic devices and a conductor for cables for industrial robots, as well as having excellent tensile strength and bending resistance. . Conventional technology Copper alloys that exhibit excellent mechanical properties such as electrical conductivity and tensile strength over a wide temperature range are known, for example, copper alloys that contain magnesium and phosphorus in specific amounts. 49−
No. 10894). In addition, a copper alloy containing 0.01 to 0.15% by weight of zirconium is also produced as a highly conductive and heat-resistant copper alloy. In recent years, with the development of electronic devices, they have become increasingly lighter, thinner, shorter, and smaller, and as a result, the conductors of wires for wiring inside electronic devices are also becoming smaller in diameter. It is becoming impossible for me to demonstrate my abilities. For example, the above-mentioned special public service in 1977-
In the copper alloy containing Mg and P according to No. 10894,
When a conductor has a small diameter of about 0.3 mmφ to 0.01 mmφ, it cannot maintain sufficient strength against the heat applied during the electronic device manufacturing process. That is, since the heat resistance is not sufficient, the portions that are heated during brazing become mechanical weak points and are likely to break. In addition, the above-mentioned zirconium copper has a drawback that it is prone to breakage at terminal crimp connection points of the conductor because of its insufficient repeated bending strength. Incidentally, in this case, even if an attempt is made to increase the strength by increasing the zirconium content, the content will vary, making it impossible to obtain an alloy of stable quality. Furthermore, since industrial robots repeatedly operate up to the taught position, the robot cable conductors used in these robots are constantly subjected to repeated bending and tension, making them susceptible to wire breakage. In addition, cable conductors for industrial robots used in high-temperature environments are subjected to repeated bending and tension under heating. Therefore, under such conditions, the repeated bending strength and tensile strength of the conductor are considerably reduced. As mentioned above, due to the use under harsh conditions such as small-diameter conductors for wiring in electronic devices and cable conductors for industrial robots, these conductors are not as good as their conventional excellent heat resistance. In addition to good electrical conductivity, there is a desire to provide a conductor that has further improved cyclic bending strength and tensile strength. Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned circumstances, and is directed to small-diameter conductors for wiring in various miniaturized electronic devices and cables for industrial robots used in high-temperature atmospheres. An object of the present invention is to provide a highly conductive, heat-resistant copper alloy that exhibits excellent cyclic bending strength and tensile strength and can be effectively used as a conductor. The present invention will be explained in detail below. Structure of the Invention The feature of the present invention is that the magnesium content is 0.02 to 0.5
Weight %, Phosphorus to Magnesium 35-100
% by weight, 0.01-0.8% by weight of zirconium and 0.01-0.5% by weight of one selected from the group consisting of indium, tin, lead and antimony, with the balance consisting essentially of copper. Means for Solving the Problems In the highly conductive copper alloy according to the present invention, 0.02 to 0.5% by weight of Mg is added to electrolytic copper as a base material, mainly to increase its mechanical strength, and to further increase its strength. Add 35 to 100% by weight of P to Mg and 0.01 to 100% of Zr to improve conductivity.
0.8% by weight and 0.01 to 0.5% by weight of any one of In, Sn, Pb or Sb to improve tensile strength and repeated bending strength. The basis for adding each of the above elements in the above specific ranges is based on the following reasons. Regarding Mg, if the amount added exceeds 0.5% by weight, the copper conductivity of the resulting copper alloy will decrease significantly, and in addition, it is difficult to control the Mg content in the copper alloy, so the quality of the copper alloy becomes unstable, and on the other hand, if it is less than 0.02% by weight, the effect of improving cyclic bending strength and tensile strength will be reduced. Also,
Regarding P, if the amount added is less than the lower limit of the specific range, the effect of adding P will not be exhibited, while if it exceeds the upper limit, the conductivity of the copper alloy will be completely impaired. Regarding Zr, if the amount added is less than 0.01% by weight, the repeated bending strength and heat resistance will not be sufficient, and if it exceeds 0.8% by weight, the content will fluctuate greatly, causing problems in quality and decreasing electrical conductivity. is also remarkable. Next, regarding the amount of In, Sn, Pb, or Sb added, if the amount added is less than 0.01% by weight, the tensile strength and cyclic bending strength will not be improved;
If it exceeds % by weight, the high conductivity of the copper alloy cannot be maintained. According to the present invention, 0.02-0.5% by weight of Mg, P
35-100% by weight for Mg, 0.01-0.8 for Zr
Table 1 shows the results of measuring the conductivity, tensile strength, elongation, and bending strength of copper alloys containing 0.01 to 0.5% by weight of In, Sn, Pb, or Sb using conventional methods. . For comparison, Table 1 also shows the results of similar measurements for copper alloys containing the above-mentioned elements in amounts outside the above-mentioned ranges.

【表】 表1にみられるとおり、本発明により組成の
銅合金では、上記各物性のいずれも平均良好で
あるのに対し、本発明の組成範囲外の比較例で
は、各物性のいずれかが劣つていることが認め
られる。 したがつて、本発明による銅合金は、従来の
電子機器内配線用電線の導体や産業ロボツト用
ケーブルの導体として好適であるのみならず、
電子機器の小型化に伴う0.3mmφ〜0.01mmφ程
度の極めて細線を導体及び繰返し動作を行うロ
ボツト用ケーブル導体としても有効に利用し得
る性能を有する。 以下実施例により、本発明を具体的に説明す
る。 実施例 電気銅を高周波溶解炉でアルゴン雰囲気下に
溶解したものに、Mgを0.3重量%、Pを0.26重
量%、Zrを0.24重量%及びInを0.11重量%の組
成になるようにCu−Mg、Cu−P及びCu−Zr
の各母合金及びInメタルを添加して、15mm角×
200mm長の鋳塊を溶製した。得られた鋳塊を面
削した後、850℃で熱間圧延を行つて6mmφ線
となし、850℃で1時間溶体化処理を行つた。
次いで、上述のように処理した線を更に0.08mm
φまで冷間伸線し、400℃で1時間焼鈍したCu
−Mg−P−Zr−Inの銅合金を得た。 得られた銅合金の引張強度、伸び、導電率及
び繰返し曲げ強度を常法により測定した。 結果は下記のとおりである。
[Table] As seen in Table 1, the copper alloy with the composition according to the present invention has good average properties in all of the above physical properties, while the comparative examples outside the composition range of the present invention have poor performance in any of the physical properties. recognized as inferior. Therefore, the copper alloy according to the present invention is not only suitable as a conductor for conventional wiring wires in electronic devices and as a conductor for cables for industrial robots, but also
With the miniaturization of electronic devices, extremely thin wires of about 0.3 mmφ to 0.01 mmφ can be effectively used as conductors and as cable conductors for robots that perform repetitive operations. The present invention will be specifically described below with reference to Examples. Example Electrolytic copper was melted in an argon atmosphere in a high-frequency melting furnace, and Cu-Mg was added so that the composition was 0.3% by weight of Mg, 0.26% by weight of P, 0.24% by weight of Zr, and 0.11% by weight of In. , Cu-P and Cu-Zr
By adding each mother alloy and In metal, 15mm square x
A 200mm long ingot was melted. After face cutting the obtained ingot, it was hot rolled at 850°C to form a 6 mmφ wire, and solution treatment was performed at 850°C for 1 hour.
Then, the wire treated as above was further cut by 0.08 mm.
Cu cold drawn to φ and annealed at 400℃ for 1 hour
-Mg-P-Zr-In copper alloy was obtained. The tensile strength, elongation, electrical conductivity, and repeated bending strength of the obtained copper alloy were measured by conventional methods. The results are as follows.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 マグネシウムを0.02〜0.5重量%、リンを
マグネシウムに対して35〜100重量%、ジルコ
ニウムを0.01〜0.8重量%及びインジウム、ス
ズ、鉛及びアンチモンからなる群から選択され
るものの1種を0.01〜0.5重量%含有し、残部
が実質的に銅から成ることを特徴とする高導電
性耐熱耐屈曲高力銅合金。
1 0.02 to 0.5% by weight of magnesium, 35 to 100% by weight of phosphorus relative to magnesium, 0.01 to 0.8% by weight of zirconium, and 0.01 to 0.5% of one selected from the group consisting of indium, tin, lead, and antimony. % by weight, with the balance essentially consisting of copper.
JP7888787A 1987-03-31 1987-03-31 High strength copper alloy having high electroconductivity, heat resistance and bending resistance Granted JPS63243241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7888787A JPS63243241A (en) 1987-03-31 1987-03-31 High strength copper alloy having high electroconductivity, heat resistance and bending resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7888787A JPS63243241A (en) 1987-03-31 1987-03-31 High strength copper alloy having high electroconductivity, heat resistance and bending resistance

Publications (2)

Publication Number Publication Date
JPS63243241A JPS63243241A (en) 1988-10-11
JPH042654B2 true JPH042654B2 (en) 1992-01-20

Family

ID=13674318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7888787A Granted JPS63243241A (en) 1987-03-31 1987-03-31 High strength copper alloy having high electroconductivity, heat resistance and bending resistance

Country Status (1)

Country Link
JP (1) JPS63243241A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267390A (en) * 1991-02-22 1992-09-22 Tatsuta Electric Wire & Cable Co Ltd Flexible printed board
JPH04290285A (en) * 1991-03-19 1992-10-14 Tatsuta Electric Wire & Cable Co Ltd Flexible printed circuit board with electromagnetic wave shield
JPH0523340U (en) * 1991-09-09 1993-03-26 タツタ電線株式会社 Heat-resistant / flexible / wear-resistant coated robot cable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197242A (en) * 1982-05-12 1983-11-16 Sumitomo Electric Ind Ltd Alloy wire for electrode wire for wire-cut electric spark machining
JPS58199835A (en) * 1982-05-19 1983-11-21 Sumitomo Electric Ind Ltd Copper alloy for electric or electronic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197242A (en) * 1982-05-12 1983-11-16 Sumitomo Electric Ind Ltd Alloy wire for electrode wire for wire-cut electric spark machining
JPS58199835A (en) * 1982-05-19 1983-11-21 Sumitomo Electric Ind Ltd Copper alloy for electric or electronic apparatus

Also Published As

Publication number Publication date
JPS63243241A (en) 1988-10-11

Similar Documents

Publication Publication Date Title
JP5760544B2 (en) Soft dilute copper alloy wire, soft dilute copper alloy stranded wire, insulated wire, coaxial cable and composite cable using them
JPH0372691B2 (en)
JPS633936B2 (en)
JP4288844B2 (en) Extra fine copper alloy wire
JPH0352523B2 (en)
JPH042655B2 (en)
JP4762701B2 (en) Electric wire conductor for wiring and electric wire for wiring using the same
JPS6160846A (en) Lead material of copper alloy for semiconductor device
JPH0325494B2 (en)
JPH042654B2 (en)
JPH042653B2 (en)
JPH0355529B2 (en)
JPH0353374B2 (en)
JPH0355528B2 (en)
JP2813652B2 (en) High strength copper alloy for conductive
JPH0246656B2 (en) TAIKUTSUKYOKUKORYOKUKODODENSEIDOGOKIN
JPS62214145A (en) Bending resistant copper alloy having high strength and electric conductivity
JPH0461055B2 (en)
JPS6256218B2 (en)
JPS6256217B2 (en)
JPS6047344B2 (en) Hot-dipped ultrafine copper alloy conductor
JPS6220265B2 (en)
JP5088450B2 (en) Soft dilute copper alloy material, soft dilute copper alloy plate, soft dilute copper alloy wire, soft dilute copper alloy twisted wire, and cable using these
JPS6245297B2 (en)
JPH0348256B2 (en)