JPH042653B2 - - Google Patents

Info

Publication number
JPH042653B2
JPH042653B2 JP62078886A JP7888687A JPH042653B2 JP H042653 B2 JPH042653 B2 JP H042653B2 JP 62078886 A JP62078886 A JP 62078886A JP 7888687 A JP7888687 A JP 7888687A JP H042653 B2 JPH042653 B2 JP H042653B2
Authority
JP
Japan
Prior art keywords
weight
copper alloy
conductor
copper
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62078886A
Other languages
Japanese (ja)
Other versions
JPS63243240A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7888687A priority Critical patent/JPS63243240A/en
Publication of JPS63243240A publication Critical patent/JPS63243240A/en
Publication of JPH042653B2 publication Critical patent/JPH042653B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、電子機器内配線用電線の導体及び
産業ロボツト用ケーブルの導体に利用するのに
適した高い導電性を有するとともに、引張強度
及び耐屈曲性の優れた銅合金に関する。 従来技術 従来、広い温度範囲にわたつて導電性、引張
強度などの機械特性の点で優れた性質を示す銅
合金、例えばマグネシウムとリンを特定範囲量
含有する銅合金が知られている(特公昭49−
10894号)。 また、高導電性、耐熱性銅合金としてジルコ
ニウムを0.01〜0.15重量%含有する銅合金も知
られている。 而して、近年、電子機器の発達とともに益々
軽薄短小化が進み、それに伴い電子機器内配線
用電線の導体も細径化の傾向にあるため、従来
の導電用高力銅合金では十分な機能を発揮でき
なくなつてきている。例えば上記の特公昭49−
10894号によるMgとPを含有する銅合金では
0.3mmφ〜0.01.mmφ程度の細径の導体にした場
合、電子機器製作工程中に加わる熱に対して十
分な強度を維持できない。 すなわち、耐熱性が十分でないため、ロウ付
け時などに加熱を受けた箇所が機械的弱点部と
なつて断線を生じ易くなる。また、上記のジル
コニウム銅においては、繰返し曲げ強さが不足
しているため、前記導体の端子圧着接続箇所な
どで断線を生じ易い欠点がある。因に、この場
合ジルコニウム含有量を多くして高力化しよう
としても該含有量にバラツキが起るので安定し
た品質の合金が得られない。 また、産業ロボツトにおいても、教示位置ま
で繰返し動作を行うため、これに使用されるロ
ボツト用ケーブル導体では、繰返し曲げや引張
りを常に受けることになつて断線を生じ易い条
件に置かれるようになり、加うるに、高温雰囲
気で使用される産業ロボツト用ケーブル導体で
は加熱下での繰返し曲げや引張を受けることに
なる。 したがつて、このような条件下では導体の繰
返し曲げ強度や引張強度は一そう低下するよう
になる。 叙上のごとく、電子機器内配線用電線の導体
の細径下と産業ロボツト用ケーブル導体の一そ
うの苛酷条件下での使用に伴い、これら導体に
対しては、従来の優れた耐熱性と良好な導電性
に加えて、繰返し曲げ強度及び引張強度の一そ
う向上した導体の提供が要望されている。 発明が解決しようとする課題 本発明は、叙上の状況に鑑みなされたもので
あつて、小型化の各種電子機器内配線用電線の
細径導体並びに高温雰囲気下で使用される産業
ロボツト用ケーブルの導体としても有効に利用
し得る、優れた繰返し曲げ強度と引張強度を呈
する高導電性、耐熱性銅合金を提供することを
課題とする。 以下本発明を詳しく説明する。 発明の構成 本発明の特徴は、マグネシウムを0.02〜0.5
重量%、リンをマグネシウムに対して35〜100
重量%及びジルコニウムを0.01〜0.8重量%含
有し、残部が実質的に銅から成る高導電性銅合
金。 課題を解決するための手段 本発明に係る高導電性銅合金は、基材として
の電気銅にMg,P及びZrをそれぞれ所定量添
加して均一な溶湯にしたものを鋳型に鋳込むこ
とにより得られるものであつて、Mg,P及び
Zrをそれぞれ前記特定範囲の量添加する根拠
は下記理由に基づく。 Mgについては、その添加量が0.5重量%を超
えると、得られる銅合金の導電性の低下が大き
くなり、加うるにMgの銅合金における含有量
の制御が難しいので、銅合金の品質が不安定に
なり、一方0.02重量%未満では繰返し曲げ強度
及び引張強度の改善効果が少くなる。また、P
については、その添加量が特定範囲の下限未満
ではMgとの化合物析出が進まずPの添加効果
が発揮されず、一方上限を超えると銅合金の導
電性を却つて損なうようになる。 次に、Zrについては、その添加量が0.01重量
%未満では繰返し曲げ強度及び耐熱性が十分で
なく、0.8重量%を超えると含有量の変動が大
きくなり、品質上に難点が生じ、かつ導電率の
低下も著しい。 本発明に従つて、Mgを0.02〜0.5重量%、P
をMgの35〜100重量%及びZrを0.01〜0.8重量
%添加、含有させた銅合金の導電性、曲げ強
度、伸び及び引張強度を測定した結果を示すと
表1のとおりである。 なお、比較として上記各元素を上記の特定範
囲外の量で添加した銅合金についても同様に測
定した結果を併せて表1に示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a copper alloy having high electrical conductivity suitable for use as a conductor for wiring in electronic devices and a conductor for cables for industrial robots, as well as having excellent tensile strength and bending resistance. . Conventional technology Copper alloys that exhibit excellent mechanical properties such as electrical conductivity and tensile strength over a wide temperature range are known, for example, copper alloys that contain magnesium and phosphorus in specific amounts. 49−
No. 10894). Further, a copper alloy containing 0.01 to 0.15% by weight of zirconium is also known as a highly conductive and heat-resistant copper alloy. In recent years, with the development of electronic devices, they have become increasingly lighter, thinner, and shorter, and as a result, the conductors for wiring in electronic devices are also becoming smaller in diameter. I am becoming unable to fully demonstrate my abilities. For example, the above-mentioned special public service in 1978
In the copper alloy containing Mg and P according to No. 10894,
When a conductor has a small diameter of about 0.3 mmφ to 0.01 mmφ, it cannot maintain sufficient strength against the heat applied during the electronic device manufacturing process. That is, since the heat resistance is not sufficient, the portions that are heated during brazing become mechanical weak points and are likely to break. Furthermore, the above-mentioned zirconium copper has the disadvantage that it is prone to breakage at terminal crimping connection points of the conductor, since it lacks repeated bending strength. Incidentally, in this case, even if an attempt is made to increase the strength by increasing the zirconium content, the content will vary, making it impossible to obtain an alloy of stable quality. Furthermore, since industrial robots repeatedly operate up to the taught position, the robot cable conductors used in these robots are constantly subjected to repeated bending and tension, making them susceptible to wire breakage. In addition, cable conductors for industrial robots used in high-temperature environments are subjected to repeated bending and tension under heating. Therefore, under such conditions, the repeated bending strength and tensile strength of the conductor are considerably reduced. As mentioned above, due to the use under harsh conditions such as small-diameter conductors for wiring in electronic devices and cable conductors for industrial robots, these conductors are not as good as their conventional excellent heat resistance. In addition to good electrical conductivity, there is a desire to provide a conductor that has further improved cyclic bending strength and tensile strength. Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned circumstances, and is directed to small-diameter conductors for wiring in various miniaturized electronic devices and cables for industrial robots used in high-temperature atmospheres. An object of the present invention is to provide a highly conductive, heat-resistant copper alloy that exhibits excellent cyclic bending strength and tensile strength and can be effectively used as a conductor. The present invention will be explained in detail below. Structure of the Invention The feature of the present invention is that the magnesium content is 0.02 to 0.5
Weight %, Phosphorus to Magnesium 35-100
A highly conductive copper alloy containing 0.01 to 0.8% by weight of zirconium and the remainder substantially copper. Means for Solving the Problems The highly conductive copper alloy according to the present invention can be produced by adding predetermined amounts of Mg, P, and Zr to electrolytic copper as a base material to make a uniform molten metal, and then casting the molten metal into a mold. Mg, P and
The basis for adding Zr in the above specified ranges is based on the following reasons. Regarding Mg, if the amount added exceeds 0.5% by weight, the conductivity of the resulting copper alloy will decrease significantly, and in addition, it will be difficult to control the Mg content in the copper alloy, resulting in poor quality of the copper alloy. On the other hand, if it is less than 0.02% by weight, the effect of improving cyclic bending strength and tensile strength will be reduced. Also, P
If the amount added is less than the lower limit of the specific range, the compound precipitation with Mg will not proceed and the effect of adding P will not be exhibited, while if it exceeds the upper limit, the conductivity of the copper alloy will be impaired. Next, regarding Zr, if the amount added is less than 0.01% by weight, the repeated bending strength and heat resistance will not be sufficient, and if it exceeds 0.8% by weight, the content will fluctuate greatly, causing problems in terms of quality and conductivity. The decline in the rate is also significant. According to the present invention, 0.02-0.5% by weight of Mg, P
Table 1 shows the results of measuring the conductivity, bending strength, elongation, and tensile strength of copper alloys containing 35 to 100% by weight of Mg and 0.01 to 0.8% by weight of Zr. For comparison, the results of similar measurements on copper alloys to which each of the above elements was added in amounts outside the specified ranges are also shown in Table 1.

【表】【table】

【表】 での回数をいう。
表1にみられるとおり、本発明による銅合金
は、導電性は勿論のこと、繰返し強度及び引張
強度、さらには伸びの点でも平均して優れてい
るが、一方、本発明の合金組成範囲外の比較例
では、上記各物性のうちいずれかにおいて著し
く劣つていることが認められる。したがつて、
本発明による銅合金は、従来の電子機器内配線
用電線の導体や産業ロボツト用ケーブルの導体
として好適であるのみならず、電子機器の小型
化に伴う0.3mmφ〜0.01mmφ程度の極めて細線
な導体及び繰返し動作を行うロボツト用ケーブ
ル導体としても有効に利用し得る性能を有す
る。 以下実施例により、本発明を具体的に説明す
る。 実施例 電気銅を高周波溶解炉でアルゴン雰囲気下に
溶解したものに、Mgを0.3重量%、Pを0.26重
量%及びZrを0.24重量%の組成になるように
Cu−Mg、Cu−P及びCu−Zrの各母合金を添
加して、15mm角×200mm長の鋳塊を溶製した。 得られた鋳塊を面削した後、850℃で熱間圧
延を行つて6mmφ線となし、850℃で1時間溶
体化処理を行つた。次いで、上述のように処理
した線を更に0.08mmφまで冷間伸線し、400℃
で1時間焼鈍してCu−Mg−P−Zrの銅合金を
得た。 得られた銅合金の引張強度、伸び、導電率及
び繰返し曲げ強度を常法により測定した。 結果は下記のとおりである。
[Table] Refers to the number of times in the table.
As seen in Table 1, the copper alloy according to the present invention is excellent on average in terms of not only electrical conductivity but also cyclic strength, tensile strength, and elongation. In the comparative example, it is recognized that any one of the above-mentioned physical properties is significantly inferior. Therefore,
The copper alloy according to the present invention is not only suitable as a conductor for conventional wiring wires in electronic equipment or as a conductor for cables for industrial robots, but also as a conductor for extremely thin wires of about 0.3 mmφ to 0.01 mmφ due to the miniaturization of electronic devices. It also has the ability to be effectively used as a cable conductor for robots that perform repetitive operations. The present invention will be specifically described below with reference to Examples. Example Electrolytic copper was melted in an argon atmosphere in a high-frequency melting furnace, and the composition was made to have a composition of 0.3% by weight of Mg, 0.26% by weight of P, and 0.24% by weight of Zr.
Each master alloy of Cu-Mg, Cu-P, and Cu-Zr was added to produce an ingot of 15 mm square x 200 mm length. After face cutting the obtained ingot, it was hot rolled at 850°C to form a 6 mmφ wire, and solution treatment was performed at 850°C for 1 hour. Next, the wire treated as described above was further cold drawn to 0.08 mmφ and heated at 400°C.
After annealing for 1 hour, a Cu-Mg-P-Zr copper alloy was obtained. The tensile strength, elongation, electrical conductivity, and repeated bending strength of the obtained copper alloy were measured by conventional methods. The results are as follows.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 マグネシウムを0.02〜0.5重量%、リンを
マグネシウムに対して35〜100重量%及びジル
コニウムを0.01〜0.8重量%含有し、残部が実
質的に銅から成ることを特徴とする高導電性高
強度銅合金。
1. Highly conductive, high-strength copper containing 0.02 to 0.5% by weight of magnesium, 35 to 100% by weight of phosphorus relative to magnesium, and 0.01 to 0.8% by weight of zirconium, with the balance essentially consisting of copper. alloy.
JP7888687A 1987-03-31 1987-03-31 High electroconductive and high strength copper alloy Granted JPS63243240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7888687A JPS63243240A (en) 1987-03-31 1987-03-31 High electroconductive and high strength copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7888687A JPS63243240A (en) 1987-03-31 1987-03-31 High electroconductive and high strength copper alloy

Publications (2)

Publication Number Publication Date
JPS63243240A JPS63243240A (en) 1988-10-11
JPH042653B2 true JPH042653B2 (en) 1992-01-20

Family

ID=13674292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7888687A Granted JPS63243240A (en) 1987-03-31 1987-03-31 High electroconductive and high strength copper alloy

Country Status (1)

Country Link
JP (1) JPS63243240A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180930A (en) * 1988-01-12 1989-07-18 Mitsubishi Shindo Kk Cu alloy for terminal and connector
JPH04267390A (en) * 1991-02-22 1992-09-22 Tatsuta Electric Wire & Cable Co Ltd Flexible printed board
JPH04290285A (en) * 1991-03-19 1992-10-14 Tatsuta Electric Wire & Cable Co Ltd Flexible printed circuit board with electromagnetic wave shield
JPH0523340U (en) * 1991-09-09 1993-03-26 タツタ電線株式会社 Heat-resistant / flexible / wear-resistant coated robot cable
US11545277B2 (en) * 2018-08-30 2023-01-03 Hitachi Metals, Ltd. Copper alloy wire, cable, and method of manufacturing copper alloy wire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197242A (en) * 1982-05-12 1983-11-16 Sumitomo Electric Ind Ltd Alloy wire for electrode wire for wire-cut electric spark machining
JPS58199835A (en) * 1982-05-19 1983-11-21 Sumitomo Electric Ind Ltd Copper alloy for electric or electronic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197242A (en) * 1982-05-12 1983-11-16 Sumitomo Electric Ind Ltd Alloy wire for electrode wire for wire-cut electric spark machining
JPS58199835A (en) * 1982-05-19 1983-11-21 Sumitomo Electric Ind Ltd Copper alloy for electric or electronic apparatus

Also Published As

Publication number Publication date
JPS63243240A (en) 1988-10-11

Similar Documents

Publication Publication Date Title
WO2010082671A1 (en) Aluminum alloy wire
JPH0352523B2 (en)
JPH042653B2 (en)
JPS6160846A (en) Lead material of copper alloy for semiconductor device
JPH042655B2 (en)
JPS6328971B2 (en)
JPH0325494B2 (en)
JPH0355529B2 (en)
JP2813652B2 (en) High strength copper alloy for conductive
JPH0355528B2 (en)
JPH0353374B2 (en)
JPH042654B2 (en)
JPH0246656B2 (en) TAIKUTSUKYOKUKORYOKUKODODENSEIDOGOKIN
JPH05311364A (en) Manufacture of high strength and high conductivity copper alloy
JPS62214145A (en) Bending resistant copper alloy having high strength and electric conductivity
JPS6256218B2 (en)
JPS6047344B2 (en) Hot-dipped ultrafine copper alloy conductor
JPS6256217B2 (en)
JPH0461055B2 (en)
JPS6212295B2 (en)
JP2501290B2 (en) Lead material
JPS6164836A (en) Copper alloy having high strength, heat resistance and electric conductivity
JPS6218617B2 (en)
JPH06158201A (en) High strength and high electric conductivity copper alloy
JPH04214829A (en) High strength and high conductivity copper alloy thin wire and its manufacture