JPH0325202A - Burner for gasifying powder raw material and powder raw material gasifying device - Google Patents
Burner for gasifying powder raw material and powder raw material gasifying deviceInfo
- Publication number
- JPH0325202A JPH0325202A JP15582789A JP15582789A JPH0325202A JP H0325202 A JPH0325202 A JP H0325202A JP 15582789 A JP15582789 A JP 15582789A JP 15582789 A JP15582789 A JP 15582789A JP H0325202 A JPH0325202 A JP H0325202A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- gas
- powder raw
- carbon
- coal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002994 raw material Substances 0.000 title claims abstract description 122
- 239000000843 powder Substances 0.000 title claims description 42
- 239000007789 gas Substances 0.000 claims abstract description 117
- 239000003245 coal Substances 0.000 claims abstract description 90
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 53
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000007800 oxidant agent Substances 0.000 claims abstract description 23
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000001301 oxygen Substances 0.000 claims abstract description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 33
- 238000002309 gasification Methods 0.000 claims description 33
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 14
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 13
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 239000012159 carrier gas Substances 0.000 claims description 11
- 239000001569 carbon dioxide Substances 0.000 claims description 10
- 239000011261 inert gas Substances 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 25
- 239000000498 cooling water Substances 0.000 abstract description 5
- 239000001257 hydrogen Substances 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract description 2
- 238000009827 uniform distribution Methods 0.000 abstract 2
- 229910002090 carbon oxide Inorganic materials 0.000 abstract 1
- 238000002347 injection Methods 0.000 abstract 1
- 239000007924 injection Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000002893 slag Substances 0.000 description 19
- 230000000694 effects Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 235000013312 flour Nutrition 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 244000292604 Salvia columbariae Species 0.000 description 1
- 235000012377 Salvia columbariae var. columbariae Nutrition 0.000 description 1
- 235000001498 Salvia hispanica Nutrition 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 235000014167 chia Nutrition 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Abstract
Description
本発明は石炭、コークス、石炭液化残渣等の炭素微粉原
科ガス化炉に係わり、特に安定して連続運転でき、信頼
性の高いバーナを有する炭素微粉原料ガス化装置に関す
る.The present invention relates to a carbon powder raw material gasifier for coal, coke, coal liquefaction residue, etc., and particularly to a carbon powder raw material gasifier that can operate stably and continuously and has a highly reliable burner.
従来、石炭ガス化炉には、固定層、流動層、噴流層等を
用いる方式が種々提案されている.これらの方式の中で
、噴流層を用いる石炭ガス化炉は石炭等の原料を微粉に
して酸素、空気等の酸化剤と共に炭素微粉原料の灰の融
点以上(1300〜1600℃〉の温度の炉内に供給し
てガス化させるため、他の方式に比較し、ガス化効率が
高く、適用炭種が広く、また公害性の副産物が少ない等
の特徴を有していることから、合成ガス、複合発電、燃
料電池等の燃料製造に適している.噴流層方式のガス化
炉としては、微粉炭またはチヤー(ガスと共に飛散する
カーボン粒子〉とガス化剤(酸素、空気、スチーム等)
を同じバーナより吹き込む一段方式の装置と、前記のバ
ーナに加えて、微粉炭またはチャーだけを単独に吹き込
むバーナを設置する二段方式の装置がある.また、石炭
ガス化反応は大別すると以下の方式で表される.
石炭→チャー、H 2, C O , C 0 2.
C H 4・・(1〉
チ’r−+02−CCh.Co,H2 ・・・ (2
)石炭+02−Co,CO2,H2 ・・・ (
3)(1)式の反応は熱分解反応であり、前記した二段
方式において、微粉炭だけを単独に吹き込むバーナによ
って起こりやすい.(1〉式と(2)式の反応を明らか
に区別して併発させる方式の代表例としては公知のごと
く米国のB I−GASプロセスがある.またバーナか
ら石炭とガス化剤とを同時に供給し、意図的にく1)式
と(2〉式とを区別しない〈3〉式の反応式によるプロ
セスがあり、代表例としてはTexacoプロセス、S
he 1 1−Koppersプロセス等がある.また
本発明者らは、例えば特願昭58−47162号および
特願昭58−50496号に示すように、炉内に酸化剤
の配分量の異なるバーナを二段にして、これらを複数設
置した二段方式のプロセスを提案している。第10図に
、その方法を示すが、微粉炭等の炭素微粉原料1および
炭素微粉原料搬送ガス6と酸化剤16を供給するバーナ
17a.17bをガス化炉本体1oのガス化室1lの上
段および下段にそれぞれ設置し、酸化剤16を上段バー
ナ17aには少なく、下段バーナ17bには多く投入す
るものである.微粉炭1はホッパ2、3、ロータリフイ
ーダ4を経て原料搬送ライン7に供給され、原料搬送ラ
イン7の途中で搬送ガス6と合流し、分配器8に供給さ
れる。微粉炭1は分配器8により分流されバーナ17a
,17bに供給される.llr熱材13で囲まれたガス
化炉10内で微粉炭1をガス化し、生或ガス12を炉1
0の頂部から排出され、スラグ18は炉10底部の冷却
水l5中に降下し、炉外へ排出される。
なお、石炭ガス化炉10の底部側壁にはスラグタップ1
9にスラグが滞留しないように加熱用のスラグタップ加
熱用バーナ14を設けている。酸化剤16を上述のごと
く配分することによって、下段バーナ17bでは特に、
石炭十〇,−CO2+820 − − −
(4)上段バーナ17aでは特に、
+ヤ−+COz→2CO ・・・ (
5 )チャー+H20→H2+CO ・・
・ (6〉の反応を起こりやすくするものである。本方
法では、酸化剤16を下段バーナ17bに多く配分し、
スラグ18を流下させる孔(スラグタップ)1つの付近
を高温にし、かつ上段バーナ17aでは活性なチャーを
生威させようとするものである。
また第11図に、ガス化炉に設置する従来のバーナの一
例を示す。これは、バーナ30の中央部の原料出口部3
5の周りに酸化剤噴出ノズル36を股it一たものであ
る。いずれのプロセスにおいても、ガス化に用いられる
バーナは、(1)弐〜(6)式に示すような反応を速や
かに起こさせようとして、石炭と酸化剤とが速やかにか
つ良好に混合させようとするものである.Conventionally, various methods have been proposed for coal gasifiers using fixed bed, fluidized bed, spouted bed, etc. Among these methods, a coal gasifier using a spouted bed pulverizes a raw material such as coal and uses an oxidizing agent such as oxygen or air in a furnace at a temperature above the melting point of the ash of the pulverized carbon raw material (1300 to 1600°C). Compared to other methods, synthetic gas, Suitable for producing fuel for combined cycle power generation, fuel cells, etc.A spouted bed gasifier uses pulverized coal or chia (carbon particles that scatter with gas) and a gasifying agent (oxygen, air, steam, etc.)
There is a one-stage system in which pulverized coal or char is blown into the same burner, and a two-stage system in which, in addition to the burner described above, a burner is installed to inject only pulverized coal or char. In addition, coal gasification reactions can be broadly classified and expressed using the following methods. Coal → Char, H 2, C O, C 0 2.
C H 4...(1>Chi'r-+02-CCh.Co,H2...(2
) Coal +02-Co, CO2, H2 ... (
3) The reaction in equation (1) is a thermal decomposition reaction, and in the two-stage system described above, it is likely to occur in the burner that blows only pulverized coal alone. A typical example of a system in which the reactions of equations (1) and (2) are clearly distinguished and occur simultaneously is the well-known BI-GAS process in the United States.Also, coal and gasifying agent are supplied from a burner at the same time. , there is a process based on the reaction equation (3) that intentionally does not distinguish between equation (1) and equation (2); typical examples include the Texaco process, S
There are he 1 1-Koppers processes, etc. In addition, the present inventors installed a plurality of burners with different amounts of oxidizing agent in the furnace, as shown in Japanese Patent Application Nos. 58-47162 and 58-50496, for example. A two-stage process is proposed. The method is shown in FIG. 10, in which a burner 17a. 17b are installed in the upper and lower stages of the gasification chamber 1l of the gasifier main body 1o, respectively, and a small amount of the oxidizing agent 16 is introduced into the upper stage burner 17a and a large amount is introduced into the lower stage burner 17b. Pulverized coal 1 is supplied to a raw material conveyance line 7 via hoppers 2 and 3 and a rotary feeder 4, joins with a carrier gas 6 in the middle of the raw material conveyance line 7, and is supplied to a distributor 8. Pulverized coal 1 is divided by distributor 8 and sent to burner 17a.
, 17b. Pulverized coal 1 is gasified in a gasification furnace 10 surrounded by llr heating materials 13, and the raw gas 12 is fed into the furnace 1.
The slag 18 is discharged from the top of the furnace 10, falls into the cooling water l5 at the bottom of the furnace 10, and is discharged out of the furnace. Note that a slag tap 1 is installed on the bottom side wall of the coal gasifier 10.
A slag tap heating burner 14 for heating is provided at 9 to prevent slag from accumulating. By distributing the oxidizing agent 16 as described above, especially in the lower burner 17b, coal 10, -CO2 + 820 - - -
(4) Especially in the upper burner 17a, +ya-+COz→2CO... (
5) Char+H20→H2+CO...
- It makes it easier for the reaction (6>) to occur. In this method, a large amount of the oxidizing agent 16 is distributed to the lower burner 17b,
The purpose is to raise the temperature near one hole (slag tap) through which the slag 18 flows down, and to make active char survive in the upper burner 17a. Further, FIG. 11 shows an example of a conventional burner installed in a gasifier. This is the raw material outlet section 3 in the center of the burner 30.
An oxidizing agent jetting nozzle 36 is placed around the cylinder 5. In either process, the burner used for gasification tries to cause the reactions shown in equations (1) 2 to (6) to occur quickly, so that the coal and oxidizer are mixed quickly and well. This is what we mean.
特にガス1ヒ反応を二段で行わせる方法では、通常複数
のバーナをガス化炉の炉壁に設置するが、炉内の各段の
バーナで均一の反応を起こさせたとき、一段で行わせる
方法に比較し、当然高いガス化効率が得られる。酸化剤
はガスであり流Ig定および流量制御は、従来技術によ
って、容易に各段のバーナに均等に配分することができ
る。しかし微粉炭のような粉体については、例えばロー
タリーフィーダのごとく供給機を各バーナに対して設置
すると、イニシャルコストが非常にかかるので不経済で
ある。また一般に炭素微粉原料ガス化法では、粉体原料
を搬送するガスの使用量を減少させるため、また、生成
ガス中の該搬送ガスの割合を減少させるため、一般には
、管の内径が5關から20M程度の細い配管を用いる。
従って、粉体原f4を各バーナで均一に分配しようとし
て、バルブあるいはオリフィスのごとき配管の内径を減
少させる抵抗体を各バーナ配管に設置すれば、バルブ等
の狭くなった部分で原料の粉体が閉塞するため、バルブ
のような抵抗体を使用することはできない。したがって
、−mには絞り部の無いY型の分配器が設置されている
が、均等分配の調整が難しく、さらに、配分に対し制御
性を備えられないのが現状である.したがって、試運転
のコールド状態の時に、分配器からバーナまでの原料搬
送ラインの長さを試行紹誤で変化させ、各バーナに均等
に原料が配分されるようにしているのが現状である.
また、上述のようなバーナを炉内に設置したとき、各ノ
ズルより噴出する噴流によって、いわゆるノズルの周り
には二次流れが生じる.従って、例えば、粘結性の高い
石炭あるいは石炭液化残渣のごとき軟化点が約200℃
の原料では、炉内の頼射熱等の熟によって軟化した原料
が、前述の二次流れによってバーナ出口に戻り、原料噴
出部の周囲に11着し、カーボンフラヮが生威しゃすい
ため、各バーナに通ずる搬送ライン中で原料がたとえ均
等に分配されていたとしても、原料出口部の抵抗が大き
くなるので、各バーナ間における7!! *x+配分が
不均等になり、効率の低下を招くことになる。また、噴
流層ガス化法では、スラグが生成する部分にバーナを設
置するため、バーナの上方がらスラグが流下してバーナ
出口を覆うようになる.バーナでは原料および酸化剤が
高速で噴出しているため、粘度が低く、濃度の薄いスラ
グであれば抵抗もなく吹き飛ぶが,炉内の温度が低下し
粘度が高くなったり、あるいは石炭の処理量が非常に多
くなりスラグの流下量が多くなると、バーナ出口に付着
したスラグの抵抗が大きくなるため、原料の配分が各バ
ーナ間で不均等になる.この不均等が酷くなると、ある
バーナには原料が全く供給されなくなるため、そのバー
ナは酸化剤のみが噴出するようになり、ガス化効率が低
下するのみならず炉内耐火材の焼損、炉内の爆発等の重
大な事故につながる場合もある。
本発明の目的は、上記した従来技術の欠点を無くし、更
にバーナ先端部の付着物を除去し、石炭等の原料を各バ
ーナに均等に分配することができる微粉原料ガス化用バ
ーナおよび微粉原料ガス化装置を提供するにある。In particular, in the method of performing a gas-1-heat reaction in two stages, multiple burners are usually installed on the wall of the gasification furnace, but when a uniform reaction is caused in each stage of burners in the furnace, it is possible to perform the reaction in one stage. Naturally, higher gasification efficiency can be obtained compared to the method of The oxidizing agent is a gas, and the flow rate Ig can be easily and evenly distributed to each stage of burners using conventional techniques. However, for powder such as pulverized coal, installing a feeder, such as a rotary feeder, for each burner is uneconomical because the initial cost is very high. In addition, in general, in the carbon powder raw material gasification method, in order to reduce the amount of gas used to transport the powder raw material and to reduce the proportion of the carrier gas in the generated gas, the inner diameter of the pipe is generally A thin pipe of about 20M is used. Therefore, in order to uniformly distribute the raw powder f4 to each burner, if a resistor such as a valve or orifice that reduces the inner diameter of the pipe is installed in each burner pipe, the powder of the raw material will be distributed at the narrow part of the valve etc. It is not possible to use a resistor such as a valve because the Therefore, although a Y-shaped distributor without a constriction part is installed in -m, it is difficult to adjust the equal distribution, and furthermore, it is not possible to control the distribution. Therefore, the current practice is to change the length of the raw material transport line from the distributor to the burners during the cold trial run to ensure that the raw materials are evenly distributed to each burner. Furthermore, when the burner described above is installed in a furnace, the jets ejected from each nozzle create what is called a secondary flow around the nozzles. Therefore, for example, highly caking coal or coal liquefaction residue with a softening point of about 200°C
In the case of raw materials, the raw materials softened by the radiation heat in the furnace return to the burner outlet by the secondary flow mentioned above and land around the raw material spouting part, creating a carbon flame, so each burner Even if the raw material is evenly distributed in the conveying line leading to the 7. ! *x+ distribution will become uneven, leading to a decrease in efficiency. In addition, in the spouted bed gasification method, the burner is installed in the area where slag is generated, so the slag flows down from above the burner and covers the burner outlet. Since the raw materials and oxidizing agent are spouted out at high speed in the burner, if the slag is low in viscosity and concentration, it will be blown away without any resistance, but the temperature inside the furnace will drop and the viscosity will increase, or the amount of coal to be processed will increase. When the amount of slag becomes extremely large and the amount of slag flowing down increases, the resistance of the slag adhering to the burner outlet increases, resulting in uneven distribution of raw materials between burners. When this unevenness becomes severe, no raw material is supplied to a certain burner, and only oxidizing agent is ejected from that burner, which not only reduces the gasification efficiency but also causes burnout of the refractory material inside the furnace. This may lead to serious accidents such as explosions. The object of the present invention is to provide a burner for gasifying fine powder raw materials and a fine powder raw material that eliminates the drawbacks of the prior art described above, and further removes deposits from the tip of the burner and can evenly distribute raw materials such as coal to each burner. To provide gasification equipment.
上記した目的は、以下に記した横成により達成される。
石炭等の炭素微粉原料をガス化原料とし、窒素ガス、炭
酸ガス等のガスを炭素微粉原料の搬送ガスとして、更に
酸素、空気等を酸化剤として用いて、炭素微粉原料灰の
溶融点以上の温度で炭素微粉原料をガス化する噴流層方
式の微粉原料ガス化装置において、炭素微粉原料の搬送
ラインのガス化装置内への出口部近傍の上流側に、窒素
ガス、炭酸ガス、不活性ガスのガスを該出口部に向かっ
て噴出し、炭素微粉原料と合流させるためのガス噴出ノ
ズルを設置した微粉原料ガス化装置用バーナである.
また、上記微粉原料ガス化用バーナはその炭素微粉原料
出口部の圧力損失を検出する手段と、該検出手段の検出
信号に基づき該検出値が予め設定した範囲内に入るよう
に炭素微粉原料搬送ラインに設置しているガス噴出ノズ
ルより噴出するガス量を制御する手段とを炭素微粉原料
搬送ラインに設けてもよい。
また、本発明の上記目的は次の構成によっても達戒でき
る。
すなわち、搬送ガスと炭素微粉原料との固気混相流を複
数のバーナに分配するlfilllを備え、分配機構よ
り各バーナの原料出口部にいたる各原料搬送ラインの途
中に、窒素ガス、炭酸ガス、不活性ガス等のガスを、原
料を搬送する方向に向かって噴出するノズルを設置した
噴流層方式の微粉原料ガス化装置であり、その分配機構
と各バーナ原料出口部との間の各原料搬送ラインに、圧
力損失検出手段および原料流量検出手段とを設け、いず
れか一方の検出手段の検出信号に基づき、該検出信号の
値が予め設定した範囲値に入るように原料搬送ラインに
設置したガス噴出ノズルの噴出ガス量を制御する手段と
を原料搬送ラインに設けてもよい.また、炭素微粉原料
搬送ラインに注入するガスとして微粉原料ガス化装置で
生成したガスを用いてもよい。
炭素微粉原料の搬送ラインのガス化装置内への出口部近
傍の上流側に、窒素ガス、炭酸ガス、不活性ガス等のガ
スを該出口部に向かって噴出し、炭素微粉原料と合流さ
せるためのガスは乾燥したガスを用いることが望ましい
。
炭素微粉原料としては石炭が最も好ましいガス化原料で
あるが、石油コークス、石炭液化残渣等のガス化装置と
しても用いることができる。The above purpose is achieved by the following steps. Carbon powder raw materials such as coal are used as gasification raw materials, gases such as nitrogen gas and carbon dioxide gas are used as carrier gases for the carbon powder raw materials, and oxygen, air, etc. are used as oxidizing agents, and the carbon powder raw material ash is heated to a temperature higher than the melting point. In a spouted bed type fine powder raw material gasifier that gasifies carbon fine powder raw material at high temperature, nitrogen gas, carbon dioxide gas, and inert gas are placed on the upstream side near the outlet of the carbon fine powder raw material conveyance line into the gasifier. This is a burner for a powder raw material gasifier equipped with a gas ejection nozzle for spouting the gas toward the outlet section and making it merge with the carbon fine powder raw material. Further, the burner for gasifying fine powder raw material includes a means for detecting pressure loss at the outlet part of the fine carbon powder raw material, and a means for transporting the fine carbon powder raw material so that the detected value falls within a preset range based on a detection signal of the detection means. The carbon fine powder raw material conveyance line may be provided with means for controlling the amount of gas ejected from a gas ejection nozzle installed in the line. Further, the above object of the present invention can also be achieved by the following configuration. That is, it is equipped with an lfill that distributes a solid-gas mixed phase flow of carrier gas and carbon fine powder raw material to a plurality of burners, and in the middle of each raw material conveyance line from the distribution mechanism to the raw material outlet of each burner, nitrogen gas, carbon dioxide gas, This is a spouted bed type fine powder raw material gasifier equipped with a nozzle that spouts gas such as inert gas in the direction in which the raw material is conveyed, and each raw material is conveyed between the distribution mechanism and each burner raw material outlet. The line is equipped with pressure loss detection means and raw material flow rate detection means, and based on the detection signal of either of the detection means, the gas installed in the raw material conveyance line is set so that the value of the detection signal falls within a preset range value. A means for controlling the amount of gas ejected from the ejection nozzle may be provided in the raw material conveyance line. Further, as the gas injected into the carbon fine powder raw material conveyance line, a gas generated by a fine powder raw material gasifier may be used. In order to blow gas such as nitrogen gas, carbon dioxide gas, inert gas, etc. toward the upstream side near the outlet of the carbon fine powder raw material conveyance line into the gasification device toward the outlet to merge with the carbon fine powder raw material. It is desirable to use dry gas. Although coal is the most preferred gasification raw material as the carbon fine powder raw material, it can also be used as a gasification device for petroleum coke, coal liquefaction residue, etc.
炭素微粉原料搬送ラインの炉内出口部近傍の該ライン中
に、炭素微粉原料が流れる方向に向かってガスを噴出す
るようにノズルが設置してあるので、原料搬送ラインの
出口部はスラグあるいは炭素微粉原料が付着し、原料搬
送ラインの出口部の圧力損失が増加することが少なくな
り、たとえ該圧力損失が増加しても該ノズルよりガスを
噴出し、バーナ出口部の付着物を吹き飛ばすように制御
する。したがって、バーナ出口部には常に付着物がない
状態を保つことができるのである.さらに、バーナでは
該ガスの噴出方向を原料の流れる方向に傾斜して向けて
おり、該ガスを高速で噴出したとき、該ノズル噴出孔付
近の原料搬送ラインは減圧になる。したがって、該ガス
噴出量を変えることによって、原料搬送ラインの圧力を
変(ヒさせることができるので、複数のバーナに原料を
配分するような微粉原料ガス化装置では、各バーナに供
給する炭素微粉原料量を検出する手段を設け各バーナの
炭素微粉原料流量に基づき、該ガス量を制御することで
、各バーナの炭素微粉原料供給量をそれぞれ一定値にす
ることができるのである.A nozzle is installed in the fine carbon powder raw material conveyance line near the outlet in the furnace so as to eject gas in the direction in which the carbon fine powder raw material flows. The increase in pressure loss at the outlet of the raw material conveyance line due to the attachment of fine powder raw materials is reduced, and even if the pressure loss increases, gas is ejected from the nozzle to blow away the deposits at the burner outlet. Control. Therefore, the burner outlet can always be kept free of deposits. Further, in the burner, the direction in which the gas is ejected is inclined to the direction in which the raw material flows, and when the gas is ejected at high speed, the pressure in the raw material conveying line near the nozzle ejection hole becomes reduced. Therefore, by changing the amount of gas ejected, it is possible to change the pressure in the raw material conveyance line, so in a fine raw material gasifier that distributes raw materials to multiple burners, the fine carbon powder supplied to each burner is By providing a means for detecting the amount of raw material and controlling the amount of gas based on the flow rate of carbon fine powder raw material for each burner, the amount of carbon fine powder raw material supplied to each burner can be kept at a constant value.
以下、本発明の実施例を図面に基づいて説明する.本実
施例において炭素微粉原料として、石炭を用いた場合を
記載する。
実施例1
第1図は、本発明の石炭ガス化用バーナの断面図を示す
.バーナ40の中心孔は石炭搬送ライン9の一部を構成
し、微粉炭のごとく粉体炭素微粉原料が窒素ガス、炭酸
ガスあるいは空気等のガスを搬送ガスとして共に流れ、
高温のガス化炉のガス化室11に供給される。バーナ4
0の石炭搬送ライン9のガス化炉内側出口部35付近に
は冷却水32用のライン33が並行して設けられており
該冷却水32で、該出口部35が冷却され、ガス化炉の
ガス化室11内の輻射熱等の熱により、石炭が搬送ライ
ン9内部で溶融し、該搬送ライン9の内壁に付着するの
を防止している。該搬送ライン9を囲うようにして、ガ
ス52の供給ライン56の出口端部を形或する複数のノ
ズル41が設置してある。そのノズル41は石炭搬送ラ
イン9の出口部35方向にガス52が噴出するような傾
きをもっている。バーナ40の冷却水ライン33の外側
には酸素、空気等の酸化剤16の供給ライン38が設け
られており、石炭ガス化室11へ酸素または空気等の酸
化剤16を噴出するため、ノズル36が設けられている
。噴流層式のガス化炉内では石炭と酸化剤とを反応させ
一酸化炭素および水素に富むガスに変換し、更に石炭中
の灰分を溶融させてスラグとして排出するものである。
したがって、搬送ライン9の出口部35のあるバーナ端
面43にスラグが流下する場合もあり、このスラグによ
って、特に石炭搬送ライン9の出口部35を閉塞する危
険性がある.石炭を乾式(気体)供給する場合、一般に
搬送ガスは価格面および安全性を考慮して、不活性ガス
である窒素ガスが用いられる。このガスは反応には全く
寄与せず生成ガス中の顕然損失を増加させるので、でき
る限り少量で搬送するのが好ましく、さらに、石炭搬送
ライン9の圧力損失を低減するためには石炭搬送ライン
9中のガス《および原料)の流速はできる限り低い方が
好ましい。一方、酸化剤16はガスであるので低圧力損
失であり圧力損失は余り考慮する必要はなく、むしろ原
料との混合を促進させるため、ノズル36から噴出する
酸化剤ガスの流速を大きい値に設定する方が好ましい。
したがって、ノズル36から噴出する酸化剤16は流速
が大きい(一般には100〜200m/s)ため、バー
ナ端面43を流下するスラグを吹き飛ばすことができ、
出口部35を閉塞することはない。しかし、石炭搬送ラ
イン9中の搬送ガス含有原料の流速が小さい(一般には
10m/s以下)のでスラグを吹き飛ばすのは困難であ
る。さらに、搬送ライン出口部35、酸化剤出口ノズル
36等、ガス単体あるいは固体粒子を含む固気混相流を
噴出するノズルではノズル出口の周囲には二次流れが生
じるため、例えば粘結性の高い石炭あるいは石炭液化残
渣のごとき粘着性の強い原料では搬送ライン出口部35
の周囲にカーボンフラワが生代しやすい.本発明では石
炭搬送ライン9中に該出口部35に向かって窒素等のガ
ス52を噴出させるノズル41を有しているので定期的
に該ノズル41よりガスを噴出させることによって、ス
ラグあるいはカーボンフラワのごとき付着物を吹き飛ば
すことができる。したがって、複数のバーナ40に石炭
を配分する装置では、石炭の配分が均等になるので、ガ
ス化効率が低下することもなく、さ゛らに不均等分配に
よって酸化剤16のみがガス化室11内に噴出すること
が無いので、ガス化室11内で爆発等の重大な事故につ
ながることもなく安全に運転ができるのである.また、
第2図および第3図に、第1図に示す本発明のバーナ4
0のa−a線断面゜図を示す。第2図は、ノズル41の
中心線がバーナ40の中心軸に向かっており、ガス52
の旋回の無い場合で、第3図は、ノズル41の中心線を
バーナ40の中心軸線からずらし、ガス52の旋回を付
加できる構造を示す。ノズル41から噴出するガス52
によって、搬送ライン出口部35における付着物を除去
するためには、ノズル41からのガス噴出速度はできる
限り大きいほうが良いが、本発明者等の試験によれば、
ガスとして窒素ガスを用いた場合に搬送ライン出口部3
5におけるガス流速が15m/s以上であれば付着物を
除去する効果はある。また、ノズル41のガス噴出方向
については、出口部35#A部に付着する付着物の除去
効果を高めるため、第1図に示すように該ノズル41の
中心軸線42を石炭搬送ライン9の出口部35の端部に
むけるのが最良である。さらに第2図および第3図に示
すように、旋回の有無については、旋回を付加した第3
図に示した方がノズル41から噴出したガス52が石炭
搬送ライン9の中心部に集まらず石炭搬送ライン9の管
壁に沿って流れるため、石炭搬送に与える影響が少ない
ので、有利である。
実施例2
第4図は本発明の石炭ガス化装置を示す。
本実施例の石炭ガス装置において第10図に示したもの
と同一部材については説明を省略する。ガス52は各バ
ーナ40にガスライン56を通って供給される。ガス供
給量はガスライン56に介設された制御弁53で行う。
その制御弁53は制御器50に信号線55を介1,て接
続し、また、制御器50には石炭ガス化炉10内の圧力
と石炭供給ライン9内の圧力との差を測定する差圧計5
1と信号線54で接続している。バーナ40の石炭搬送
ノズル出口部35《第1図)の圧力損失を測定する手段
51の検出値によって、ノズル41(第1図〉より噴出
するガス量を制御するものである.ガス52として、例
えば、窒素ガス、炭酸ガス、不活性ガス等のガスを用い
るときには、運転費を低減するため、当然該ガス52は
少量である方が望ましい.そこで、本実施例はスラグあ
るいはカーボンフラワ等が石炭搬送ノズル出口部35(
第1図)に付着し、石炭の搬送に影響するようになった
ときに該ガス52を噴出させようとするものである。
第5図に、その制御方法の一例を示す。
まず、石炭搬送ライン出口部35の圧力損失を測定する
.ここで図中の圧力損失を測定する個数nは、石炭ガス
化炉10に設置している全てのバーナ40の数もしくは
、上下段の二段のバーナ40をもつ石炭ガス化装置の場
合、上段あるいは下段にそれぞれ設置しているバーナ4
0の数である.なお、バーナを一本しか設置していない
ときにはiは1である.石炭ガス化炉10内と石炭搬送
ライン9内の圧力差ΔPを測定したのち、圧力差の平均
値Δ丁及び標準偏差δを求める.標準偏差δを平均値Δ
Pで除算した無次元値、すなわち変動係数(δ/Δ下)
が予め設定した値Kはりも小ならば、再び圧力差ΔPを
測定する。圧力差ΔPが設定値K1より大ならば、n個
あるバーナ40の内とれかのバーナ40の出口部35の
抵抗が大きくなり、出口部35が閉塞しかけていること
を示しているので、ガス噴出ノズル41(第1図)より
ガスを噴出させるものである.このように制御すること
によって、常に石炭搬送ライン9の出口部35を閉塞さ
せることが無くなる。
なお、第5図に示す制御では変動係数と設定値K1とを
比較するものであり、変動係数は無次元の値であるので
炭素原料供給量、あるいは炉内10圧力が変化しても設
定値を変える必要はない。
圧力損失として設定値を組み込む場合、原料である石炭
供給量と炉内圧力との関係も予め制御器50に組み込ん
でおけば、本実施例と同一の効果が得られる.また本制
御方法では全てのバーナ40のノズル41からガスを噴
出してもよいし、圧力差が大きくなったバーナ40のみ
にガスを噴出してもよい.前者の全てのバーナ40にガ
スを噴出する場合は制御系が簡単であるが、ガス量が当
然多く必要とする.後者の圧力差が大きくなったバーナ
40のみにガスを噴出させる場合はガス量が少なくて良
いが制御系が複雑になる。第6図に示す制御方法は、標
準偏差の代わりに平均値とのずれ1Δ丁一ΔPilを平
均値Δ下で除算した値を用いたもので、この値も無次元
数であるので第5図と同じように原料供給量、炉内圧力
等に関係なく設定値K2を定めることができる.なお、
ノズル41より噴出させるガスとしてガス化炉10で生
成するガスを使用すれば、窒素ガス等の使用量を増加さ
せる事なくバーナ40先端の付着物を除去することがで
きる.
実施例3
第7図に本発明の他の実施例であるガス化装置を示す.
第7図では、石炭搬送ガス6と石炭1との固気混相流を
複数のバーナ40に分配する分配機構8を石炭搬送ライ
ン9中に備えた石炭ガス化炉である.該分配機構8より
各バーナ40に供給する石炭搬送ライン9中に原料流量
の検出手段である原料流量測定器60を設け、さらに該
測定器60の検出信号を信号線54゛を介して制御器5
0゜に接続し制御器50′からの出力信号を信号線55
゜を介してガス52の制御弁53゛に送り、ガスの噴出
量を制御する手段とを設けている。
第8′rf!Uに、第7図に示すガス化装置における制
御方法の一例を示す。第7図に示す本実施例のバーナ4
0のガス噴出ノズル41の噴出方向は第1図に示すよう
に石炭の流れる方向に向いており、該ガス52を高速で
噴出したとき、該ノズル41噴出孔付近の石炭搬送ライ
ン9は減圧になる.すなわち、ガス52を噴出すること
によって石炭1と搬送ガス6を引き寄せることができる
。したがって、該ガス量を変化させることによって、石
炭搬送ライン9の圧力を変化できるので、複数のバーナ
40に石炭1を分配するようなガス化装置では各バーナ
40に供給する石炭量を検出する手段、例えばインパク
ト型の粉体流量計、あるいは一定距離間の圧力損失を検
出する機器からなる原料流量測定器60を設け、これか
らの検出値が一定になるようにノズル41から噴出する
ガス量を制御するものである。このように制御すること
によって、各バーナ40の原料供給量を一定にすること
ができるのである. なお、本実施例では第1図に示す
バーナ40を用いることにより目的は達或できるが、第
9図に示すような構造のものを石炭搬送ライン9の出口
35部近傍に設けてもよい。
第9図では制御に用いるガス52をノズル45より炭素
原料の流れ方向31に噴出させようとするものである。
第8図に示すように、各バーナ40に供給する炭素原料
流量をQiとし、その流量を測定し、第5図に示す例と
同じように平均値Qおよび標準偏差δを求め、さらに標
準偏差を平均錬で除算した変動係数(δ/頁〉が設定値
K3よりも小ならば再び流量の測定を行い、変動係数《
δ/Q)が設定値K,よりも大ならば不均等に石炭が配
分されていることになるので、原料石炭流量が大きいバ
一ナ40に対してはノズル41より噴出するガス量を減
少させて石炭供給量を減少させ、石炭流量が少ないバー
ナ40に対してはノズル4lより噴出するガス量を増加
させて石炭供給量を増加させるように制御するものであ
る。従って、各バーナ40に常時、均等に微粉石炭を配
分できるので、不均等分配によって、効率が低下するこ
とが無い。
また、それと同時にバーナ40の出口部35における付
着物の生成を防ぐこともできる。
なお、本制御については検出千段60で検出される石炭
流量Qiあるいは石炭搬送ライン9の一定長さの圧力損
失ΔPiの単に大小だけで、しきい値を特に設けず最大
あるいは最小のバーナ40に対してだけノズル41のガ
ス流量を制御しても良い。
また、本実施例では原料をガスで搬送するいわゆる乾式
供給法について説明したが、本発明は炭素原料を水ある
いは油等のいわゆる湿式供給法(スラリ)による方法に
ついても有効である。待にスラリの場合、本発明のノズ
ルよりガスを噴出させることによって原料出口でスラリ
が微粒化するので炉内でのガス化反応が促進される.Embodiments of the present invention will be described below based on the drawings. In this example, a case will be described in which coal is used as the carbon fine powder raw material. Example 1 Figure 1 shows a sectional view of a coal gasification burner of the present invention. The center hole of the burner 40 constitutes a part of the coal conveyance line 9, in which powdered carbon powder raw material such as pulverized coal flows together with a gas such as nitrogen gas, carbon dioxide gas, or air as a carrier gas.
It is supplied to the gasification chamber 11 of the high temperature gasification furnace. Burner 4
A line 33 for cooling water 32 is provided in parallel near the outlet 35 inside the gasifier of the coal conveyance line 9 of No. 0, and the outlet 35 is cooled by the cooling water 32, and the gasifier Heat such as radiant heat in the gasification chamber 11 prevents coal from melting inside the transport line 9 and adhering to the inner wall of the transport line 9. A plurality of nozzles 41 forming an outlet end of a supply line 56 for gas 52 are installed so as to surround the conveying line 9 . The nozzle 41 has an inclination such that the gas 52 is ejected in the direction of the outlet portion 35 of the coal conveying line 9. A supply line 38 for an oxidizing agent 16 such as oxygen or air is provided outside the cooling water line 33 of the burner 40 . is provided. In a spouted bed gasifier, coal and an oxidizing agent are reacted to convert it into a gas rich in carbon monoxide and hydrogen, and the ash in the coal is melted and discharged as slag. Therefore, slag may flow down to the burner end face 43 where the outlet section 35 of the coal conveying line 9 is located, and there is a danger that the outlet section 35 of the coal conveying line 9 will be blocked by this slag. When coal is supplied dry (gaseous), nitrogen gas, which is an inert gas, is generally used as the carrier gas in consideration of cost and safety. Since this gas does not contribute to the reaction at all and increases the obvious loss in the generated gas, it is preferable to transport it in as small a quantity as possible.Furthermore, in order to reduce the pressure loss in the coal transport line 9, it is necessary to The flow rate of the gas (and raw materials) in 9 is preferably as low as possible. On the other hand, since the oxidizing agent 16 is a gas, the pressure loss is low and there is no need to take pressure loss into consideration.In fact, in order to promote mixing with the raw material, the flow rate of the oxidizing agent gas ejected from the nozzle 36 is set to a large value. It is preferable to do so. Therefore, since the oxidizing agent 16 ejected from the nozzle 36 has a high flow velocity (generally 100 to 200 m/s), it can blow away the slag flowing down the burner end face 43.
The outlet portion 35 is not blocked. However, since the flow velocity of the raw material containing the carrier gas in the coal conveying line 9 is low (generally 10 m/s or less), it is difficult to blow away the slag. Furthermore, in the case of nozzles such as the conveyance line outlet 35 and the oxidizer outlet nozzle 36 that eject a single gas or a solid-gas mixed-phase flow containing solid particles, a secondary flow occurs around the nozzle outlet. For highly sticky raw materials such as coal or coal liquefaction residue, the conveyor line exit section 35
Carbon flowers tend to grow around the area. In the present invention, since the coal conveying line 9 has a nozzle 41 that spouts a gas 52 such as nitrogen toward the outlet portion 35, by periodically spouting the gas from the nozzle 41, slag or carbon flour can be removed. It can blow away deposits such as Therefore, in a device that distributes coal to a plurality of burners 40, the coal is distributed evenly, so that the gasification efficiency does not decrease, and furthermore, due to the uneven distribution, only the oxidizer 16 enters the gasification chamber 11. Since there is no spouting, the gasification chamber 11 can be operated safely without causing serious accidents such as explosions. Also,
2 and 3 show the burner 4 of the present invention shown in FIG.
A cross-sectional view taken along the a-a line of 0 is shown. In FIG. 2, the center line of the nozzle 41 is directed toward the center axis of the burner 40, and the gas 52
FIG. 3 shows a structure in which the center line of the nozzle 41 is shifted from the center axis of the burner 40 to add swirl to the gas 52. Gas 52 ejected from nozzle 41
Accordingly, in order to remove deposits at the conveyance line exit section 35, it is better to have the gas ejection speed from the nozzle 41 as high as possible; however, according to the tests conducted by the present inventors,
When nitrogen gas is used as the gas, the conveyor line exit section 3
If the gas flow velocity in step 5 is 15 m/s or more, there is an effect of removing deposits. Regarding the direction of gas ejection from the nozzle 41, in order to enhance the effect of removing deposits adhering to the outlet section 35#A, the center axis 42 of the nozzle 41 is aligned with the exit of the coal conveying line 9 as shown in FIG. It is best towards the end of section 35. Furthermore, as shown in Fig. 2 and Fig. 3, the presence or absence of turning is determined by the third
The arrangement shown in the figure is advantageous because the gas 52 ejected from the nozzle 41 does not collect at the center of the coal transport line 9 but flows along the pipe wall of the coal transport line 9, which has less influence on coal transport. Example 2 FIG. 4 shows a coal gasification apparatus of the present invention. Description of the same members as shown in FIG. 10 in the coal gas apparatus of this embodiment will be omitted. Gas 52 is supplied to each burner 40 through a gas line 56. The amount of gas supplied is determined by a control valve 53 interposed in a gas line 56. The control valve 53 is connected to a controller 50 via a signal line 55, and the controller 50 is also connected to a valve 53 for measuring the difference between the pressure in the coal gasifier 10 and the pressure in the coal supply line 9. Pressure gauge 5
1 through a signal line 54. The amount of gas ejected from the nozzle 41 (Fig. 1) is controlled based on the detected value of the means 51 for measuring the pressure loss at the coal conveying nozzle outlet 35 (Fig. 1) of the burner 40.The gas 52 includes: For example, when using a gas such as nitrogen gas, carbon dioxide gas, or inert gas, it is naturally desirable that the gas 52 be in a small amount in order to reduce operating costs.Therefore, in this embodiment, slag or carbon flour, etc. Conveyance nozzle outlet section 35 (
The purpose is to blow out the gas 52 when it adheres to coal (Fig. 1) and affects the conveyance of coal.
FIG. 5 shows an example of the control method. First, the pressure loss at the coal conveyance line outlet section 35 is measured. Here, the number n for which pressure loss is measured in the figure is the number of all burners 40 installed in the coal gasifier 10, or in the case of a coal gasifier having two burners 40 in upper and lower stages, the number n in the upper stage Or burner 4 installed in each lower row.
It is the number of 0. Note that i is 1 when only one burner is installed. After measuring the pressure difference ΔP between the coal gasifier 10 and the coal conveyance line 9, the average value ΔP and standard deviation δ of the pressure difference are determined. The standard deviation δ is the average value Δ
Dimensionless value divided by P, i.e. coefficient of variation (under δ/Δ)
If the preset value K is also small, the pressure difference ΔP is measured again. If the pressure difference ΔP is larger than the set value K1, the resistance of the outlet section 35 of one of the n burners 40 becomes large, indicating that the outlet section 35 is about to be blocked. Gas is ejected from the ejection nozzle 41 (Fig. 1). By controlling in this manner, the outlet portion 35 of the coal conveyance line 9 is not always blocked. In addition, in the control shown in Fig. 5, the coefficient of variation is compared with the set value K1, and since the coefficient of variation is a dimensionless value, even if the amount of carbon feedstock supplied or the pressure inside the furnace changes, the set value will not change. There is no need to change. When a set value is incorporated as the pressure loss, the same effect as in this embodiment can be obtained by incorporating the relationship between the feed rate of coal, which is a raw material, and the pressure inside the furnace in advance into the controller 50. Further, in this control method, gas may be ejected from the nozzles 41 of all the burners 40, or may be ejected only to the burner 40 where the pressure difference is large. In the former case where gas is ejected to all burners 40, the control system is simple, but naturally a large amount of gas is required. In the latter case where gas is ejected only to the burner 40 where the pressure difference is large, the amount of gas may be small, but the control system becomes complicated. The control method shown in Fig. 6 uses a value obtained by dividing the deviation from the average value by 1 Δ<i>ΔPil by the average value Δ in place of the standard deviation, and since this value is also a dimensionless number, Fig. 5 In the same way, the set value K2 can be determined regardless of the raw material supply amount, furnace pressure, etc. In addition,
If the gas generated in the gasifier 10 is used as the gas ejected from the nozzle 41, deposits on the tip of the burner 40 can be removed without increasing the amount of nitrogen gas or the like used. Embodiment 3 Fig. 7 shows a gasifier according to another embodiment of the present invention.
FIG. 7 shows a coal gasifier equipped with a distribution mechanism 8 in a coal transport line 9 for distributing a solid-gas mixed phase flow of coal transport gas 6 and coal 1 to a plurality of burners 40. A raw material flow rate measuring device 60, which is a means for detecting the raw material flow rate, is provided in the coal conveying line 9 that supplies the coal from the distribution mechanism 8 to each burner 40, and the detection signal of the measuring device 60 is sent to a controller via a signal line 54. 5
0° and connect the output signal from the controller 50' to the signal line 55.
A means is provided for sending the gas 52 to the control valve 53' through the gas valve 53' and controlling the amount of gas ejected. 8th rf! An example of a control method in the gasifier shown in FIG. 7 is shown in FIG. Burner 4 of this embodiment shown in FIG.
As shown in FIG. 1, the ejection direction of the gas ejection nozzle 41 of No. 0 is oriented in the direction in which coal flows, and when the gas 52 is ejected at high speed, the coal conveyance line 9 near the ejection hole of the nozzle 41 is depressurized. Become. That is, by jetting out the gas 52, the coal 1 and the carrier gas 6 can be drawn together. Therefore, by changing the amount of gas, the pressure in the coal conveying line 9 can be changed, so in a gasifier that distributes coal 1 to a plurality of burners 40, there is a means for detecting the amount of coal supplied to each burner 40. For example, a raw material flow measuring device 60 consisting of an impact type powder flow meter or a device that detects pressure loss over a certain distance is provided, and the amount of gas ejected from the nozzle 41 is controlled so that the detected value is constant from now on. It is something to do. By controlling in this manner, the amount of raw material supplied to each burner 40 can be made constant. In this embodiment, the purpose can be achieved by using the burner 40 shown in FIG. 1, but a burner having a structure as shown in FIG. 9 may be provided near the outlet 35 of the coal conveyance line 9. In FIG. 9, a gas 52 used for control is ejected from a nozzle 45 in the flow direction 31 of the carbon raw material. As shown in FIG. 8, the flow rate of carbon material supplied to each burner 40 is Qi, the flow rate is measured, the average value Q and the standard deviation δ are determined in the same way as the example shown in FIG. 5, and the standard deviation If the coefficient of variation (δ/page) divided by the average flow rate is smaller than the set value K3, measure the flow rate again and set the coefficient of variation
If δ/Q) is larger than the set value K, it means that the coal is distributed unevenly, so the amount of gas ejected from the nozzle 41 is reduced for the burner 40 where the raw material coal flow rate is large. Control is performed to increase the amount of gas ejected from the nozzle 4l to increase the amount of coal supplied to the burner 40 where the coal flow rate is small. Therefore, the pulverized coal can be distributed evenly to each burner 40 at all times, so there is no reduction in efficiency due to uneven distribution. At the same time, it is also possible to prevent the formation of deposits at the outlet portion 35 of the burner 40. Note that this control is based only on the magnitude of the coal flow rate Qi detected by the detection stage 60 or the pressure loss ΔPi over a certain length of the coal conveyance line 9, and the maximum or minimum burner 40 is set without setting a threshold value. The gas flow rate of the nozzle 41 may be controlled only for this purpose. Further, in this embodiment, a so-called dry supply method in which the raw material is conveyed by gas has been described, but the present invention is also effective for a so-called wet supply method (slurry) in which the carbon raw material is supplied with water or oil. First of all, in the case of slurry, by ejecting gas from the nozzle of the present invention, the slurry becomes atomized at the raw material outlet, promoting the gasification reaction in the furnace.
本発明によれば、炭素原料のガス化装置への搬送ライン
出口部に付着物が生或することがなく、さらに、炭素原
料の供給量の制御を炭素原料流量および/または炭素原
料搬送ラインのガス化装置出口部の圧力損失によりガス
の噴出量を制御することで不必要なガスを使用すること
なく確実に搬送ライン出口部の付着物が除かれ、また、
各バーナに均等に原料が配分されるので、ガス化効率が
低下することもなく、また安全に連続運転することがで
きる。また、ガスとして炭素原料ガス化装置で生成した
ガスを用いることでコストの節減もできる。According to the present invention, deposits are not formed at the exit of the conveyance line to the carbon raw material gasification device, and furthermore, the supply amount of the carbon raw material can be controlled by controlling the carbon raw material flow rate and/or the carbon raw material conveyance line. By controlling the amount of gas ejected based on the pressure loss at the outlet of the gasifier, deposits at the outlet of the conveyor line can be reliably removed without using unnecessary gas, and
Since the raw material is evenly distributed to each burner, the gasification efficiency does not decrease and continuous operation can be performed safely. Further, by using gas produced by a carbon raw material gasifier as the gas, cost can be reduced.
第1図は本発明のガス化用バーナの断面図、第2図およ
び第3図は、第1図に示すバーナのa −a線断面を示
す.第4図は、本発明の一実施例のバーナを設置したガ
ス化装置、第5図および第6図は第4図のガス化装置に
置ける制御方法を示すフローチャート、第7図は本発明
の池の実施例のガス化装置、第8図は第7図のガス化装
置に置ける制御方法を示すフローチャート、第9図は本
発明の他の実施例のノズル、第10図は従来のガス化装
置、第11図は従来のガス化用バーナをそれぞれ示す。
9・・・石炭搬送ライン、16・・・酸化剤、40・・
・バーナ、41・・・ガス噴出ノズル、56・・・ガス
供給ライン、FIG. 1 is a sectional view of the gasification burner of the present invention, and FIGS. 2 and 3 are sectional views taken along the line a-a of the burner shown in FIG. 1. FIG. 4 shows a gasifier equipped with a burner according to an embodiment of the present invention, FIGS. 5 and 6 are flowcharts showing a control method that can be installed in the gasifier of FIG. 4, and FIG. 8 is a flowchart showing a control method that can be installed in the gasifier of FIG. 7, FIG. 9 is a nozzle of another embodiment of the present invention, and FIG. 10 is a conventional gasifier. FIG. 11 shows a conventional gasification burner. 9... Coal conveyance line, 16... Oxidizing agent, 40...
・Burner, 41... Gas jet nozzle, 56... Gas supply line,
Claims (5)
ス、炭酸ガス等のガスを炭素微粉原料の搬送ガスとして
、更に酸素、空気等を酸化剤として用いて、炭素微粉原
料灰の溶融点以上の温度で炭素微粉原料をガス化する噴
流層方式の微粉原料ガス化装置において、炭素微粉原料
の搬送ラインのガス化装置内への出口部近傍の上流側に
、窒素ガス、炭酸ガス、不活性ガス等のガスを該出口部
に向かつて噴出し、炭素微粉原料と合流させるためのガ
ス噴出ノズルを設けたことを特徴とする微粉原料ガス化
用バーナ。(1) Melting carbon powder raw material ash using carbon powder raw material such as coal as a gasification raw material, gas such as nitrogen gas or carbon dioxide gas as a carrier gas for carbon powder raw material, and further using oxygen, air, etc. as an oxidizing agent. In a spouted bed type fine powder raw material gasification device that gasifies carbon fine powder raw material at a temperature higher than 100°C, nitrogen gas, carbon dioxide gas, A burner for gasifying fine raw material, characterized in that it is provided with a gas ejection nozzle for jetting gas such as an inert gas toward the outlet portion and making it merge with the fine carbon powder raw material.
粉原料出口部の圧力損失を検出する手段と、該検出手段
の検出信号に基づき該検出値が予め設定した範囲内に入
るように炭素微粉原料搬送ラインに設置しているガス噴
出ノズルより噴出するガス量を制御する手段とを炭素微
粉原料搬送ラインに設けたことを特徴とする微粉原料ガ
ス化装置。(2) means for detecting the pressure loss at the carbon powder raw material outlet of the burner for gasifying fine powder raw material according to claim 1; A fine powder raw material gasification apparatus characterized in that a carbon fine powder raw material conveyance line is provided with means for controlling the amount of gas ejected from a gas jet nozzle installed in the carbon fine powder raw material conveyance line.
酸ガス、空気等のガスを炭素微粉原料の搬送ガスとして
用い、更に搬送ガスと炭素微粉原料との固気混相流を複
数のバーナに分配する機構を備えた噴流層方式の微粉原
料ガス化装置において、分配機構より各バーナの原料出
口部にいたる各原料搬送ラインの途中に、窒素ガス、炭
酸ガス、不活性ガス等のガスを、原料を搬送する方向に
向かって噴出するノズルを設置したことを特徴とする微
粉原料ガス化装置。(3) Pulverize a carbon powder raw material such as coal, use gas such as nitrogen gas, carbon dioxide gas, or air as a carrier gas for the carbon powder raw material, and then transfer the solid-gas mixed phase flow of the carrier gas and the carbon powder raw material to multiple burners. In a spouted bed type fine powder raw material gasifier equipped with a mechanism for distributing gases, gases such as nitrogen gas, carbon dioxide gas, inert gas, etc. , a fine powder raw material gasification apparatus characterized in that a nozzle is installed that ejects the raw material in a direction in which the raw material is conveyed.
原料搬送ラインに、圧力損失検出手段および原料流量検
出手段とを設け、いずれか一方の検出手段の検出信号に
基づき、該検出信号の値が予め設定した範囲値に入るよ
うに原料搬送ラインに設置したガス噴出ノズルの噴出ガ
ス量を制御する手段とを原料搬送ラインに設けたことを
特徴とする請求項3記載の微粉原料ガス化装置。(4) A pressure loss detection means and a raw material flow rate detection means are provided in the carbon fine powder raw material conveyance line between the distribution mechanism and each burner raw material outlet, and the detection signal is detected based on the detection signal of either one of the detection means. The fine powder raw material gas according to claim 3, characterized in that the raw material conveyance line is provided with means for controlling the amount of gas ejected from a gas jet nozzle installed in the raw material conveyance line so that the value of the fine powder raw material gas falls within a preset range value. conversion device.
料ガス化装置で生成したガスであることを特徴とする請
求項3または4記載の微粉原料ガス化装置。(5) The fine powder raw material gasification apparatus according to claim 3 or 4, wherein the gas injected into the carbon fine powder raw material conveyance line is gas generated by the fine powder raw material gasification apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15582789A JPH083361B2 (en) | 1989-06-20 | 1989-06-20 | Fine powder raw material gasification burner and fine powder raw material gasifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15582789A JPH083361B2 (en) | 1989-06-20 | 1989-06-20 | Fine powder raw material gasification burner and fine powder raw material gasifier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0325202A true JPH0325202A (en) | 1991-02-04 |
JPH083361B2 JPH083361B2 (en) | 1996-01-17 |
Family
ID=15614361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15582789A Expired - Lifetime JPH083361B2 (en) | 1989-06-20 | 1989-06-20 | Fine powder raw material gasification burner and fine powder raw material gasifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH083361B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003193067A (en) * | 2001-11-21 | 2003-07-09 | Lurgi Ag | Method for producing synthesis gas |
JP2008088804A (en) * | 2007-11-19 | 2008-04-17 | Kawanogumi:Kk | Ledger plate displacement prevention fixture |
JP2008231294A (en) * | 2007-03-22 | 2008-10-02 | Electric Power Dev Co Ltd | Two-stage gasification furnace |
WO2009069336A1 (en) * | 2007-11-26 | 2009-06-04 | Mitsubishi Heavy Industries, Ltd. | Burner for highly caking coal and gasification furnace |
WO2009069330A1 (en) * | 2007-11-27 | 2009-06-04 | Mitsubishi Heavy Industries, Ltd. | Burner for highly caking coal and gasification furnace |
JP2010255892A (en) * | 2009-04-22 | 2010-11-11 | Electric Power Dev Co Ltd | Gasification burner, and method of supplying fuel for gasification burner |
JP2012021090A (en) * | 2010-07-15 | 2012-02-02 | Electric Power Dev Co Ltd | Gasification furnace |
WO2019159873A1 (en) * | 2018-02-19 | 2019-08-22 | 三菱日立パワーシステムズ株式会社 | Powder fuel supply device, gasification furnace facility, gasification compound power generation facility, and control method for powder fuel supply device |
-
1989
- 1989-06-20 JP JP15582789A patent/JPH083361B2/en not_active Expired - Lifetime
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003193067A (en) * | 2001-11-21 | 2003-07-09 | Lurgi Ag | Method for producing synthesis gas |
JP2008231294A (en) * | 2007-03-22 | 2008-10-02 | Electric Power Dev Co Ltd | Two-stage gasification furnace |
JP2008088804A (en) * | 2007-11-19 | 2008-04-17 | Kawanogumi:Kk | Ledger plate displacement prevention fixture |
AU2008330933B2 (en) * | 2007-11-26 | 2013-05-02 | Mitsubishi Hitachi Power Systems, Ltd. | Burner for highly caking coal, and gasifier |
WO2009069336A1 (en) * | 2007-11-26 | 2009-06-04 | Mitsubishi Heavy Industries, Ltd. | Burner for highly caking coal and gasification furnace |
JP2009126976A (en) * | 2007-11-26 | 2009-06-11 | Mitsubishi Heavy Ind Ltd | Burner for high caking charcoal and gasification furnace |
US8667912B2 (en) | 2007-11-26 | 2014-03-11 | Mitsubishi Heavy Industries, Ltd. | Burner for highly caking coal, and gasifier |
WO2009069330A1 (en) * | 2007-11-27 | 2009-06-04 | Mitsubishi Heavy Industries, Ltd. | Burner for highly caking coal and gasification furnace |
AU2008330927B2 (en) * | 2007-11-27 | 2012-08-02 | Mitsubishi Hitachi Power Systems, Ltd. | Burner for highly caking coal, and gasifier |
US8607716B2 (en) | 2007-11-27 | 2013-12-17 | Mitsubishi Heavy Industries, Ltd. | Burner for highly caking coal, and gasifier |
JP2009127972A (en) * | 2007-11-27 | 2009-06-11 | Mitsubishi Heavy Ind Ltd | Highly caking coal burner and gasifying furnace |
JP2010255892A (en) * | 2009-04-22 | 2010-11-11 | Electric Power Dev Co Ltd | Gasification burner, and method of supplying fuel for gasification burner |
JP2012021090A (en) * | 2010-07-15 | 2012-02-02 | Electric Power Dev Co Ltd | Gasification furnace |
WO2019159873A1 (en) * | 2018-02-19 | 2019-08-22 | 三菱日立パワーシステムズ株式会社 | Powder fuel supply device, gasification furnace facility, gasification compound power generation facility, and control method for powder fuel supply device |
JP2019143011A (en) * | 2018-02-19 | 2019-08-29 | 三菱日立パワーシステムズ株式会社 | Powder fuel supply system, gasification furnace facility, gasification combined power generating installation and method for controlling powder fuel supply system |
CN111684049A (en) * | 2018-02-19 | 2020-09-18 | 三菱日立电力系统株式会社 | Pulverized fuel supply device, gasification furnace facility, gasification combined power generation facility, and method for controlling pulverized fuel supply device |
US11292975B2 (en) | 2018-02-19 | 2022-04-05 | Mitsubishi Power, Ltd. | Powder fuel supply apparatus, gasfier unit, integrated gasification combined cycle, and control method of powder fuel supply apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH083361B2 (en) | 1996-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2544584B2 (en) | Coal gasifier and method of using coal gasifier | |
US20150090938A1 (en) | Method and Device for the Entrained Flow Gasification of Solid Fuels under Pressure | |
US4531949A (en) | Entrained flow coal gasification process | |
KR101191954B1 (en) | Apparatus for manufacturing molten irons provided with an improved a fluidized-bed reduction reactor | |
JP3118630B2 (en) | Coal gasifier | |
US5089031A (en) | Coal gasification apparatus using coal powder | |
EP2845893B1 (en) | Entrained flow bed gasifier and method for gasiying pulverised coal | |
KR850000823B1 (en) | Method for producing molten iron from iron oxide with coal & oxygen | |
JPH0325202A (en) | Burner for gasifying powder raw material and powder raw material gasifying device | |
US8545726B2 (en) | Burner for the gasification of a solid fuel | |
WO2011129192A1 (en) | Coal gasification system and coal gasification method | |
JP3371692B2 (en) | Coal gasifier | |
EP2834327B1 (en) | A burner and a process for the gasification of a solid fuel | |
KR20010072468A (en) | Method for producing liquid pig iron | |
JP2006322004A (en) | Two-step gasification system of waste material | |
KR100431863B1 (en) | Apparatus for cleaning dispersion plate in fluid-bed reducing furnace | |
KR20170120602A (en) | Stand pipes for charcoal collection, transfer, and flow control Fluid bed hybrid systems | |
KR101865029B1 (en) | Gasification reactor and process | |
JPH03134093A (en) | Entrained bed gasifier | |
US4456546A (en) | Process and reactor for the preparation of synthesis gas | |
JPH08134472A (en) | Entrained-bed gasifier | |
JP2001059092A (en) | Gas flow bed coal gasifier | |
JP2540284B2 (en) | Coal gasifier | |
JPH086100B2 (en) | Slag adhesion prevention method for coal gasifier | |
JPH1081886A (en) | Char conveying equipment |