JP3371692B2 - Coal gasifier - Google Patents

Coal gasifier

Info

Publication number
JP3371692B2
JP3371692B2 JP17328796A JP17328796A JP3371692B2 JP 3371692 B2 JP3371692 B2 JP 3371692B2 JP 17328796 A JP17328796 A JP 17328796A JP 17328796 A JP17328796 A JP 17328796A JP 3371692 B2 JP3371692 B2 JP 3371692B2
Authority
JP
Japan
Prior art keywords
gas
char
gasification
gasification furnace
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17328796A
Other languages
Japanese (ja)
Other versions
JPH1017873A (en
Inventor
秀和 藤村
克夫 和田
俊樹 古江
森原  淳
善助 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17328796A priority Critical patent/JP3371692B2/en
Publication of JPH1017873A publication Critical patent/JPH1017873A/en
Application granted granted Critical
Publication of JP3371692B2 publication Critical patent/JP3371692B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、石炭のガス化プラ
ントにおいて、石炭又はその他の炭化水素源をガス化剤
によりガス化を行わせ可燃性ガスを得るガス化炉に係わ
り、特に石炭を用いた噴流床ガス化炉に好適なガス化炉
構造,運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gasification furnace for coal and other hydrocarbon sources to obtain a combustible gas by gasifying a coal or other hydrocarbon source with a gasifying agent. The present invention relates to a gasification furnace structure and an operating method suitable for a spouted bed gasification furnace.

【0002】[0002]

【従来の技術】噴流床ガス化炉の構成は、反応形態(1
段/2段反応型),バーナ配置(単一/複数、対向/旋
回),全体炉構造(単一炉室/複数炉室)の組み合わせ
から種々の形態が考えられるが、適用炭種,運転操作範
囲の自由度が高く、比較的スケールアップが容易なこ
と、炉壁の信頼性等を考慮した結果、2段反応型/複数
旋回バーナ/単一炉室という組み合わせをベースとして
いる。特に、単一炉室内で2段反応を併発させるため、
構造が簡単で主として、ガス化率の向上が期待できる
(特開昭59−176391号,特願昭59−28552 号)。また、
炉の上部に位置する生成ガス排出口、及び炉の下部に位
置する石炭が溶融した高温溶融灰(以下スラグと呼ぶ)
の排出口の各断面積を、ガス化反応領域の断面積に比べ
て小さくした絞り構造のガス化炉構造となっている。旋
回バーナにより、高ガス化効率は達成しやすいが、逆に
旋回により微細なスラグが中央付近をそのまま周囲と混
合することなく流れるため、後流側で炉壁面に付着する
要因となっていた。
2. Description of the Related Art The construction of a spouted bed gasification furnace is of the reaction mode (1
Various forms are conceivable from the combination of two-stage / two-stage reaction type), burner arrangement (single / multiple, opposite / swirl), and overall furnace structure (single furnace chamber / multiple furnace chamber), but applicable coal type and operation The flexibility of the operating range is high, the scale-up is relatively easy, and the reliability of the furnace wall is taken into consideration. As a result, it is based on a combination of two-stage reaction type / swirl burner / single furnace chamber. In particular, in order to cause the two-stage reaction to occur simultaneously in the single furnace chamber,
The structure is simple and the improvement of gasification rate can be expected mainly (Japanese Patent Application Laid-Open No. 59-176391, Japanese Patent Application No. 59-28552). Also,
High-temperature molten ash (hereinafter referred to as slag) in which the produced gas exhaust port located in the upper part of the furnace and the coal located in the lower part of the furnace are melted
The cross-sectional area of each of the exhaust ports is smaller than the cross-sectional area of the gasification reaction region, which is a gasification furnace structure with a throttle structure. The swirling burner makes it easy to achieve high gasification efficiency, but conversely, the swirling causes fine slag to flow in the vicinity of the center without being mixed with the surroundings, which is a factor that adheres to the furnace wall surface on the downstream side.

【0003】第2の例として、やはり2段反応型で複数
バーナ(旋回,対向併用)を用い、2室構造としたガス
化炉もある。ガス化炉下部の第1室にて石炭を高空気比
で反応させ、高温にして灰を溶融排出させるとともに、
上部の第2室にて石炭のみ、あるいは低空気比で石炭を
供給し、主に下部の1室からの高温ガスの熱とその中に
含まれるH2O,CO2をガス化剤として利用する方式で
ある。
As a second example, there is also a gasification furnace having a two-chamber structure, which is also a two-stage reaction type and uses a plurality of burners (combined use of swirling and facing each other). In the first chamber at the bottom of the gasification furnace, the coal is reacted at a high air ratio to raise the temperature to melt and discharge the ash,
In the upper second chamber, only coal is supplied, or coal is supplied at a low air ratio, and the heat of the high temperature gas from the lower one chamber and H 2 O and CO 2 contained therein are mainly used as a gasifying agent. It is a method to do.

【0004】しかし、この方式の第2室では第1の従来
例とは異なり、直接、酸素と石炭を反応させるわけでは
ないためガス化反応自体が遅く、未反応カーボンを含む
チャーがかなり発生し、それを生成ガスと一緒にガス化
炉から排出するため、この大量のチャーを回収し、再び
ガス化炉へ戻すことがガス化効率を高めるうえで必要不
可欠となっていた、したがって、チャー循環のため構造
が複雑となり、また大量のチャーの発生により循環量も
多くなるため付帯設備も増大する問題があった。
However, unlike the first conventional example, the second chamber of this system does not directly react oxygen with coal, so the gasification reaction itself is slow, and char containing unreacted carbon is considerably generated. In order to increase the gasification efficiency, it was essential to collect this large amount of char and return it to the gasifier because it is discharged together with the produced gas from the gasifier. Therefore, the structure becomes complicated, and the amount of circulation increases due to the generation of a large amount of char, which causes a problem of increasing ancillary equipment.

【0005】[0005]

【発明が解決しようとする課題】上記、従来技術の特に
第1例では、カーボンガス化率の向上に視点がおかれて
おり、旋回型バーナ方式はその点から見れば、粒子滞留
時間がかせげ、温度むらもなくなるなど優れた方法であ
るが、逆に旋回力のため、密度が大きく異なるガスとチ
ャーのような固体粒子との混合は容易ではなくなる。
The above-mentioned prior art, particularly the first example, is aimed at improving the carbon gasification rate, and the swirling burner system is, in view of that point, a large particle retention time. Although it is an excellent method such as eliminating temperature unevenness, conversely, due to the swirling force, it is not easy to mix a gas having a large difference in density with solid particles such as char.

【0006】たとえば、上段バーナのすぐ下流側で径を
絞っているため、絞り部内側部分が低温になり、またガ
スの停滞領域にもなるため、特に上段バーナからの石炭
はこの温度の低い領域を通過するため、ガス化反応が進
みにくく、結果的にガス化炉から排出されるチャーが増
える問題があった。これは、チャーやスラグの付着に大
きな影響を及ぼすと考えられる上段バーナからのチャー
と下段からの高温ガスとの混合状態、すなわちその混合
分布によって決定されるところの炉内横断面内の温度分
布の不均一性、さらには後述するが、前記チャー中のカ
ーボン濃度に関しての配慮がなされておらず、このため
ガス化室出口における局所的な高温部,低温部の存在
や、付着しやすい微細な高温溶融スラグやカーボン比率
の低いチャーがそのまま飛散することにより、後流側で
の灰付着が避けられず、最悪の場合は従来のガス化室出
口の絞り部上方において、スラッギングにより閉塞して
しまう可能性があった。また、ガス化炉から出た灰分の
多いチャーがその後流に位置する熱回収ボイラ部への付
着によるトラブルの原因にもなりやすかった。
[0006] For example, since the diameter is narrowed just downstream of the upper burner, the inner portion of the narrowed portion has a low temperature and also becomes a gas stagnation region. Especially, coal from the upper burner has a low temperature region. Since it passes through the gasification reaction, it is difficult for the gasification reaction to proceed, resulting in the problem that the char discharged from the gasification furnace increases. This is due to the mixture of char from the upper burner and the hot gas from the lower stage, which is considered to have a great influence on the adhesion of char and slag, that is, the temperature distribution in the cross section of the furnace determined by the mixture distribution. However, since no consideration was given to the carbon concentration in the char, the presence of local hot and cold parts at the gasification chamber outlet and the presence of fine particles that tend to adhere As high-temperature molten slag and char with a low carbon ratio scatter as it is, ash adhesion on the wake side is unavoidable, and in the worst case, it will be blocked by slugging above the narrowed part of the conventional gasification chamber outlet. There was a possibility. Further, char with a large amount of ash discharged from the gasification furnace was liable to cause a trouble due to adhesion to the heat recovery boiler section located in the subsequent stream.

【0007】以上の点に鑑みて、本発明の目的は、高い
ガス化率を維持してチャー循環量を極力小さくすると同
時に、スラグの飛散量の低減と付着防止の観点から、高
スラグ化率を達成するとともに、下段で発生させた高温
ガスを所定の出口ガス温度すなわち灰の溶融点以下に出
来るだけ温度分布がつかないように冷却し、気流中の高
温微細スラグや低カーボン分のチャーが特に、ガス化室
上部側壁,出口のガス取出し口絞り部およびその後流側
で付着するのを防止するガス化炉構造,運転方法を提供
することにある。
In view of the above points, an object of the present invention is to maintain a high gasification rate and minimize the amount of char circulation, and at the same time, from the viewpoint of reducing the amount of slag scattered and preventing adhesion, a high slag rate. In addition to achieving the above, the high temperature gas generated in the lower stage is cooled so that there is no temperature distribution as much as possible below the predetermined outlet gas temperature, that is, the melting point of ash, and high temperature fine slag and low carbon content char in the air flow are generated. In particular, it is to provide a gasification furnace structure and an operating method for preventing adhesion on the upper side wall of the gasification chamber, the outlet gas outlet throttle portion and the downstream side.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
には、ガス化炉内の温度分布はスラグ流下部分は高温に
し、上段バーナより上方では、スラグが付着しにくい温
度に、また炉内での低温部をなくしチャーのガス化反応
を促進させなければならない。更に重要なことは、基礎
実験から得られた以下の知見である。それは、およそチ
ャー中のカーボン割合が重量割合にして10乃至15%
以上あればガス温度が1000〜1200℃でも灰分の付着はな
いという結果である。したがって、飛散するチャー中の
カーボン分割合が、チャーが付着しない、少なくとも1
0%より少なくならないよう、チャー中のカーボン分濃
度のムラを抑制することであり、できるだけ理想的な範
囲内におさめることである。
In order to solve the above-mentioned problems, the temperature distribution in the gasification furnace is set to a high temperature in the slag downflow portion, and above the upper burner, the temperature at which slag is hard to adhere and the inside of the furnace are high. The gasification reaction of char must be promoted by eliminating the low temperature part at. What is more important is the following findings obtained from basic experiments. It is about 10 to 15% by weight of carbon in char.
If it is above, it is a result that ash content does not adhere even if the gas temperature is 1000 to 1200 ° C. Therefore, the proportion of carbon in the scattered char is such that the char does not adhere to at least 1
It is to suppress the unevenness of the carbon concentration in the char so as not to become less than 0%, and to keep it within the ideal range as much as possible.

【0009】そのためには、1)高スラグ化率を達成す
ること、2)炉内で充分な高温ガスとチャーとの混合が
行われること、が必要である。また、付着防止の観点か
ら見れば、2)とも関連するが、3)微細スラグ,チャ
ーが構造物に接する前に気流中にて、少なくとも高温の
ものについては冷却されること、あるいはスラグ中のカ
ーボン濃度の低下を防ぐこと、以上の3点をふまえて、
本発明の1室2段反応型のガス化炉構造を以下のように
する。
To this end, it is necessary to 1) achieve a high slag conversion rate, and 2) sufficiently mix high-temperature gas and char in the furnace. Also, from the viewpoint of preventing adhesion, it is related to 2), but 3) the fine slag and char are cooled in the airflow before contacting the structure, at least those of high temperature are cooled, or the slag To prevent the decrease of carbon concentration, based on the above three points,
The one-chamber two-stage reaction type gasification furnace structure of the present invention is as follows.

【0010】1)ガス化室には上下2段のバーナを配置
し、それぞれのバーナは旋回型とする。そして、下段バ
ーナは化炉全体での平均の酸化剤/石炭流量比よりも大
きくする。
1) Upper and lower burners are arranged in the gasification chamber, and each burner is of a swirl type. Then, the lower burner is made larger than the average oxidizer / coal flow rate ratio in the entire conversion furnace.

【0011】2)循環チャーを供給するチャーバーナへ
の酸化剤量は、チャーの燃焼熱でリサイクルチャー中の
灰分を完全に溶融させるだけの充分な酸化剤量を供給す
る。 3)上段バーナは化炉全体での平均の酸化剤/石炭流量
比よりも小さくする。
2) The amount of the oxidizing agent supplied to the char burner for supplying the circulating char is such that the combustion heat of the char completely melts the ash content in the recycled char. 3) The upper burner should be smaller than the average oxidizer / coal flow rate ratio in the entire gasification furnace.

【0012】4)従来のように上段バーナ近傍の下流に
は絞り部を設けずに、上段バーナとガス化炉出口ガス取
出し口絞り部まで充分な距離をおき、またその間、絞り
部は設けず同一径とする。
4) Unlike the conventional case, without providing a throttle portion downstream of the upper burner, a sufficient distance is provided between the upper burner and the gasification furnace outlet gas outlet throttle portion, and no throttle portion is provided during that time. Have the same diameter.

【0013】5)前記4)のガス化炉出口取出し口絞り
部近傍の天蓋から側壁に沿って上から下に向かって生成
ガスであるリサイクルガスを噴出させる構造とする。
5) The recycle gas, which is the produced gas, is ejected from the top to the bottom along the side wall from the canopy in the vicinity of the narrowed portion of the outlet of the gasification furnace of the above 4).

【0014】6)前記4)のガス化炉出口のガス取出し
口絞り部近傍の下流側に水冷管をガス流れ方向に直交す
る形で配し、輻射による中央部の冷却を行う構造とす
る。
6) A water cooling pipe is arranged on the downstream side in the vicinity of the gas outlet narrowing portion of the gasification furnace outlet of the above 4) in a form orthogonal to the gas flow direction to cool the central portion by radiation.

【0015】具体的には以下の特徴を有するものであ
る。
Specifically, it has the following features.

【0016】具体的には、微粉炭ガス化反応領域である
ガス化室上部にこのガス化室の内径よりも小径のガス取
出し口絞り部を設けると共に、底部にはスラグ取出し口
を設けたガス化炉において、前記ガス化室を一室とし、
前記ガス化室に微粉炭と酸化剤の混合流体を供給するバ
ーナを上下二段に配置するとともに、上下バーナそれぞ
れが前記ガス化室に仮想した仮想円の接線方向に前記混
合流体を噴出するようにし、前記ガス化室上部とそれよ
り径の小さい前記ガス取出し口絞り部をつないでいる天
蓋部からガス化炉から出た生成ガスをリサイクルガスと
して導入することを特徴とするものである。
More specifically, a gas outlet narrowing portion having a diameter smaller than the inner diameter of the gasification chamber is provided at the upper part of the gasification chamber which is a pulverized coal gasification reaction region, and a gas having a slag outlet at the bottom is provided. In the gasification furnace, the gasification chamber is one chamber,
With placing the burner to supply a mixed fluid of the pulverized coal and the oxidant in the gasification chamber into upper and lower stages, so that the upper and lower burner for ejecting the mixed fluid in the tangential direction of the virtual circle and the virtual to the gasification chamber And above the gasification chamber
Heaven connecting the narrowed diameter of the gas outlet
The generated gas from the gasifier from the lid is used as recycled gas.
It is characterized by being introduced .

【0017】又、前記上段,下段バーナへの酸化剤投入
量は下段バーナの石炭に対する酸化剤割合を上下段の平
均値であるトータルの石炭に対する酸化剤割合より大き
くし、逆に上段は平均値より小さくなるよう制御される
ことを特徴とするものである。
In addition, the amount of the oxidizer added to the upper and lower burners is set so that the ratio of the oxidizer to the coal of the lower burner is larger than the ratio of the oxidizer to the total coal which is the average value of the upper and lower burners, and conversely the average value of the upper stage It is characterized in that it is controlled to be smaller.

【0018】又、前記ガス化室下部に前記石炭ガス化炉
から排出された循環チャーと酸化剤を供給するためのチ
ャーバーナを配置し、前記チャー中のカーボン分が燃焼
して、CO2 を生成する時に発生する熱量が、チャー中
の灰分を溶融できる熱量に相当するよう、チャー成分に
応じて酸化剤投入量が決定されることを特徴とするもの
である。
In addition, a circulation char discharged from the coal gasification furnace and a char burner for supplying an oxidant are arranged in the lower part of the gasification chamber, and carbon content in the char is burned to generate CO 2 . It is characterized in that the amount of oxidant input is determined according to the char component so that the amount of heat generated when it is generated corresponds to the amount of heat capable of melting the ash in the char.

【0019】又、上段バーナと前記ガス化炉ガス取出し
口絞り部の距離を上段バーナと前記スラグ取出し口間の
距離の少なくとも2倍以上離し、下段バーナで発生させ
た高温ガスと上段バーナの石炭から発生するチャーとの
混合面からと、側壁面への輻射、及び混合による冷却面
とから、充分な空間領域を上段バーナ上部に設けた構造
とするものである。又、前記ガス化室上部のガス取出し
口絞り部で灰の融点以下の温度となるようにする。さら
には、カーボン濃度が10%よりになるチャーを発生さ
せないようにする。
Further, the distance between the upper burner and the gas outlet narrowing portion of the gasifier is at least twice the distance between the upper burner and the slag outlet, and the high temperature gas generated in the lower burner and the coal of the upper burner are separated. The structure is such that a sufficient space region is provided in the upper burner from the mixing surface with the char generated from the cooling surface and the cooling surface by the radiation and mixing to the side wall surface. In addition, the temperature at the gas outlet narrowing portion in the upper part of the gasification chamber is set to be equal to or lower than the melting point of ash. Furthermore, it is necessary to prevent the generation of char having a carbon concentration of 10%.

【0020】[0020]

【0021】又、前記リサイクルガス用の噴射ノズルを
複数個に分割し、該ノズルを間欠的に切り替えながら噴
射させることを特徴とするものである。
Further, the invention is characterized in that the injection nozzle for the recycle gas is divided into a plurality of nozzles, and the nozzles are intermittently switched for injection.

【0022】又、ガス化炉とその下流側に位置する熱回
収ボイラとの間に前記ガス取出し口絞り部近傍の後流側
に新たに冷水管を設け、偏流防止とガス輻射により比較
的固形分の少ないガス化炉中央部の高温域を冷却するこ
とを特徴とするものである。上記1)によりスラグの流
動点以上の高温化が図れ、さらに発生スラグはバーナの
旋回力により側壁および下部のスラグタップに付着させ
流下させる。チャー中のカーボン分は酸素濃度が高いた
め殆どガス化され、全てCO,CO2 になる。但し微細
スラグは中央の上昇気流に乗り上方に流れる。
Further, a cold water pipe is newly provided between the gasification furnace and the heat recovery boiler located downstream of the gas recovery port on the downstream side near the narrowed portion of the gas outlet to prevent uneven flow and to radiate gas so that it is relatively solid. It is characterized by cooling the high temperature region in the central part of the gasification furnace, which consumes less gas. By the above 1), the temperature can be raised to a temperature higher than the pour point of the slag, and the generated slag is made to adhere to the side wall and the lower slag tap by the turning force of the burner and flow down. Since the carbon content in the char has a high oxygen concentration, it is almost gasified and becomes all CO and CO 2 . However, the fine slag rides in the central updraft and flows upward.

【0023】また、上記2)より循環チャー中に含まれ
ている灰分はその充分な燃焼熱により完全に溶融し、旋
回力により壁面をつたって流下させることにより、上記
下段バーナと合わせて高スラグ化を達成する。
Further, from the above 2), the ash contained in the circulating char is completely melted by its sufficient combustion heat, and the wall surface is made to flow down by the swirling force, so that the high slag is combined with the lower burner. Achieve

【0024】次に上記3)により石炭に対する酸化剤割
合が低い上段バーナからの石炭のうち一部は下段からの
高温上昇ガスと接触しガス化が進行する。また、残りの
石炭は、上記4)により、従来、上段バーナ上部近傍に
あった絞り部がなくなったことで、バーナ旋回力により
側壁に沿った上方流れとなるが、酸素濃度が低いため、
反応は進行しにくくなり、その結果、側壁に近い領域で
の温度が低くなることから、比較的大きな、そしてカー
ボン濃度の高いチャーが発生しやすく、それらを旋回力
により側壁に片寄らせる。したがって、下段及び上段石
炭の一部によって形成された微細スラグは周辺に近いも
のほど、また上記チャー量の方が多ければ、スラグの一
部がチャー中に取り込まれ、側壁への付着はしづらくな
り、また付着量が増えても自然落下する可能性が高くな
る。すなわち、この付近における壁面への下段バーナか
ら発生する高温スラグの付着が防止できる。但し、側壁
に沿って流れるチャーが反応しないでそのままガス取出
し口まで流れてしまうとガス化率が低下することになる
ので、CO2やH2Oなどの酸化剤を多く含んだ高温ガス
と反応させなければならない。
Next, according to the above 3), a part of the coal from the upper burner, which has a low oxidant ratio to the coal, comes into contact with the high temperature rising gas from the lower stage, and gasification proceeds. Further, the remaining coal becomes an upward flow along the side wall due to the burner swirling force due to the elimination of the throttling part that was conventionally near the upper burner in the above 4), but since the oxygen concentration is low,
The reaction becomes difficult to proceed, and as a result, the temperature in the region close to the side wall becomes low, so that relatively large char and carbon-rich char are likely to be generated, and they are biased to the side wall by the swirling force. Therefore, the finer the slag formed by part of the lower and upper coals, the closer to the periphery, and if the amount of char is larger, part of the slag will be taken into the char and it will be difficult to adhere to the side wall. In addition, even if the amount of adhesion increases, the possibility of spontaneous fall increases. That is, it is possible to prevent the high temperature slag generated from the lower burner from adhering to the wall surface in this vicinity. However, if the char flowing along the side wall does not react and flows to the gas outlet as it is, the gasification rate will decrease, so it will react with high-temperature gas containing a large amount of oxidizing agents such as CO 2 and H 2 O. I have to let you.

【0025】ところで上記4)により従来、上段バーナ
直上にあった絞り部が、かなり上側のガス取出し口まで
上段バーナから離されたことにより、絞り部近傍でのス
ラグ付着による閉塞といった可能性はなくなる。また上
段バーナから絞り部までの空間が長くなるため、高温微
細スラグを含むガスはその周囲に存在する未燃カーボン
を多く含むチャーと接触する機会は従来よりも改善され
る。しかし、下流側の上段バーナからガス化炉出口まで
の領域は旋回力が残っているため、どうしても混合は悪
く、そのまま出口に流れてしまい、炉中央付近は高温の
ままで壁面に近づくにつれ温度は低下する。また温度分
布とは逆に主として上段バーナの上方流れの石炭から発
生したチャー中のカーボン分は壁面に近づくほど増加す
る分布となる。
By the way, according to the above 4), since the throttle portion which has been located directly above the upper burner is separated from the upper burner to the gas outlet on the upper side, there is no possibility of clogging due to slag adhesion near the throttle portion. . Further, since the space from the upper burner to the narrowed portion becomes long, the gas containing the high temperature fine slag has a better chance of coming into contact with the chars containing a large amount of unburned carbon present around the gas. However, since the swirling force remains in the region from the upper burner on the downstream side to the gasifier outlet, mixing is inevitably bad and it flows to the outlet as it is, and the temperature near the center of the furnace remains high and the temperature approaches the wall surface. descend. Contrary to the temperature distribution, the carbon content in the char mainly generated from the coal flowing upward from the upper burner has a distribution that increases toward the wall surface.

【0026】したがって、何らかの手段でこの高温ガス
と上段バーナ発生チャーの混合を促進させることにより
周辺のチャーのガス化反応を生じさせ、また中央高温部
の冷却を同時に進めることが本発明の最も重要なポイン
トである。
Therefore, it is the most important of the present invention that the gasification reaction of the peripheral char is caused by promoting the mixing of the high temperature gas and the upper burner generating char by some means, and the central high temperature part is cooled at the same time. That's the point.

【0027】上記のような温度,濃度分布を改善するた
め、上記5)のリサイクガスブローにより、側壁に付着
したチャーを吹き飛ばし、あるいは側壁近傍を流れるチ
ャーを多く含むガスによる循環流を形成させる。吹き飛
ばされたチャーは中央の主流ガスと混合しながらガス化
反応(C+CO2=2CO)を進める。このため、ガス化
効率の向上と吸熱反応による微細スラグを含む高温ガス
の冷却が行われることになる。また、低温のリサイクル
ガス,チャーと主流ガスとの混合により主流ガスの温度
が下がり断面内の温度分布は均一化の方向に向かう。さ
らに吹き飛ばされた壁面付着チャーと微細スラグの混合
により高温微細スラグの付着防止につながる。
In order to improve the temperature and concentration distribution as described above, the char adhering to the side wall is blown off by the recycle gas blowing described in 5) above, or a circulating flow of gas containing a large amount of char flowing near the side wall is formed. The blown char advances the gasification reaction (C + CO 2 = 2CO) while mixing with the mainstream gas in the center. Therefore, the gasification efficiency is improved and the high temperature gas containing the fine slag is cooled by the endothermic reaction. Further, the temperature of the mainstream gas decreases due to the mixture of the low temperature recycled gas and char with the mainstream gas, and the temperature distribution in the cross section tends to be uniform. Furthermore, by mixing the blown-off wall-attached char and the fine slag, it is possible to prevent the high-temperature fine slag from adhering.

【0028】さらに上記6)の水冷管を設けることによ
り、ガス化炉中央部が比較的粒子濃度が低く、側壁より
も上下方向の輻射がより有効となるため、化炉中央部の
高温ガスの冷却に効果がある。また、冷却だけでなくガ
ス化室から飛散してきたチャーがこの水冷管に最も多く
付着することになるので、この水冷管の後流側に設けた
正規の水冷管への灰付着が低減することにより、正規の
水冷管の冷却効果を高めることになる。また化炉下部か
らの旋回バーナによる旋回流を弱める整流作用の役割も
果たし、後流側にある伝熱管の伝熱性能の向上が期待で
きる。
Further, by providing the water cooling pipe of the above 6), the particle concentration in the central part of the gasification furnace is relatively low, and the radiation in the vertical direction becomes more effective than in the side wall. Effective for cooling. In addition to cooling, the char that has been scattered from the gasification chamber will most often adhere to this water-cooled pipe, so ash adhesion to the regular water-cooled pipe installed on the downstream side of this water-cooled pipe will be reduced. This enhances the cooling effect of the regular water cooling pipe. It also plays a role of rectifying the swirl flow from the lower part of the furnace by the swirl burner, and can be expected to improve the heat transfer performance of the heat transfer tube on the downstream side.

【0029】[0029]

【発明の実施の形態】以下、本発明の一実施例を図面に
よって説明する。本発明のガス化炉は図1に示す石炭ガ
ス化フローにおいて用いられる。図1において、石炭1
は粉砕機2により微粉化され、しかるのち気体搬送さ
れ、サイクロン3,バグフィルター4により捕集され、
ホッパ5に蓄えられる。このようにして貯蔵された微粉
炭は供給用ガス20(窒素,二酸化炭素,空気,生成ガ
スの1部等)によりガス化炉6のガス化室70の上方,
下方に送り込まれる。ガス化室70において上段バーナ
8からは微粉炭21とガス化剤となる酸素22A,スチ
ーム22Bの混合流体が噴出され、同様に下段バーナ7
からも微粉炭と酸素,スチームの混合流体が噴出され
る。なお通常はスチームは用いないが、運転条件によっ
ては両段とも、あるいはいづれか片方の段のみスチーム
を供給する場合もありうる。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. The gasifier of the present invention is used in the coal gasification flow shown in FIG. In FIG. 1, coal 1
Is pulverized by a crusher 2, and then gas is conveyed, and is collected by a cyclone 3 and a bag filter 4,
Stored in hopper 5. The pulverized coal thus stored is supplied to the upper part of the gasification chamber 70 of the gasification furnace 6 by the supply gas 20 (nitrogen, carbon dioxide, air, part of the generated gas, etc.),
It is sent down. In the gasification chamber 70, a mixed fluid of pulverized coal 21 and oxygen 22A and steam 22B as a gasifying agent is ejected from the upper burner 8, and the lower burner 7 is also discharged.
Also, a mixed fluid of pulverized coal, oxygen, and steam is jetted. Normally, steam is not used, but steam may be supplied to both stages or only one of the stages depending on operating conditions.

【0030】ガス化室内70で微粉炭はガス化される
が、その詳細は図2に示す本発明のガス化炉の要部縦断
面図にて後述する。
The pulverized coal is gasified in the gasification chamber 70, the details of which will be described later with reference to the longitudinal sectional view of the main part of the gasification furnace of the present invention shown in FIG.

【0031】微粉炭21に含まれた石炭灰は溶融してス
ラグとなり、炉壁及びスラグ取出し口9を伝わって水槽
10に流下する。水槽ではポンプ30により加圧して送
られる冷却水23によりスラグ冷却部11において冷却
され、スラグホッパ12に蓄えられた後、スラグ分離機
13で分離廃棄される。スラグを冷却した冷却水23は
再循環用ポンプ31により再度利用される。水槽10は
水を循環させることにより低温に保たれ、炉からの輻射
伝熱、スラグの持ち込む顕熱による温度上昇で水が蒸発
することが防がれる。
The coal ash contained in the pulverized coal 21 is melted to form slag, which flows down through the furnace wall and the slag outlet 9 into the water tank 10. In the water tank, it is cooled in the slag cooling section 11 by the cooling water 23 pressurized and sent by the pump 30, stored in the slag hopper 12, and then separated and discarded by the slag separator 13. The cooling water 23 that has cooled the slag is reused by the recirculation pump 31. The water tank 10 is kept at a low temperature by circulating the water, and it is possible to prevent the water from evaporating due to the temperature rise due to the radiant heat transfer from the furnace and the sensible heat brought in by the slag.

【0032】生成ガス24は水冷管17により熱回収さ
れたあと、更に熱回収ボイラ13にて300〜400℃
まで冷却される。そのあと、生成ガス中のチャーはサイ
クロン14により捕集され、チャーホッパ15に蓄えら
れ、再びガス化室70の下部に配置された下段バーナ近
傍に設けたチャーバーナ33に供給され、ガス化炉内に
戻されて未反応カーボンがガス化される。サイクロン1
4を通過した生成ガス25はダストフィルターを通り
(図示せず)、ガス精製装置(図示せず)に通され、化
学原料,水素源,工業用の他、発電用であるガスタービ
ンなどの燃焼に供される。
After the heat of the produced gas 24 is recovered by the water cooling pipe 17, the heat is recovered by the heat recovery boiler 13 at 300 to 400 ° C.
Is cooled down. After that, the char in the produced gas is collected by the cyclone 14, stored in the char hopper 15, and again supplied to the char burner 33 provided near the lower burner arranged in the lower part of the gasification chamber 70, and the char in the gasification furnace. And the unreacted carbon is gasified. Cyclone 1
The produced gas 25 that has passed through 4 passes through a dust filter (not shown) and is passed through a gas purification device (not shown) to burn chemical raw materials, hydrogen sources, industrial gas generators, and other gas turbines. Be used for.

【0033】なお、前記ガス精製装置を出た精製ガスの
うち、望ましくは5%程度の精製ガス26を、ガス化炉
6のガス化室70,上部のガス取出し口絞り部16近傍
からガス化炉内に噴出させるようになっている。
Of the purified gas discharged from the gas refining apparatus, preferably about 5% of the purified gas 26 is gasified from the gasification chamber 70 of the gasification furnace 6 and the vicinity of the upper gas extraction port narrowing portion 16. It is designed to eject into the furnace.

【0034】ガス化炉内の水冷管17および熱回収ボイ
ラ13内で発生した高圧蒸気28は高圧ドラム18を介
し、蒸気配管27を通って、最終的には蒸気タービン
(図示せず)に送られ発電に寄与することになる。
The high-pressure steam 28 generated in the water cooling pipe 17 and the heat recovery boiler 13 in the gasification furnace is sent to the steam turbine (not shown) through the high-pressure drum 18, the steam pipe 27, and finally. Will contribute to power generation.

【0035】次に本発明のガス化炉内の詳細について図
2を用いて説明する。ガス化室70の上部は生成ガス取
出し口19を介して熱回収ボイラと連通し、下部はスラ
グ取出し口9を介してスラグ冷却部11と連通してい
る。それぞれの取出し口の断面積はガス化室断面積より
も小さい。ガス化室70の下部から上段バーナ8近傍ま
では全周を断熱材あるいは耐火材32で囲まれているが
炉内壁を高温ガスや溶融スラグによる損傷から保護する
ため、断熱材あるいは耐火材32に水冷管17Aを埋め
込み、炉の側壁面105を冷却し、損傷が一定以上内部
に進行しないようにしている。また上段バーナ8上部か
ら生成ガス取出し口19にかけての壁面はガス化室下部
よりも温度が低くなるため、水冷管17Bで全周が覆わ
れており、生成ガス24との熱交換により蒸気を発生さ
せ、生成ガスの冷却を行う。
Next, details of the inside of the gasification furnace of the present invention will be described with reference to FIG. The upper part of the gasification chamber 70 communicates with the heat recovery boiler via the generated gas outlet 19, and the lower part communicates with the slag cooling unit 11 via the slag outlet 9. The cross-sectional area of each outlet is smaller than the cross-sectional area of the gasification chamber. The entire circumference from the lower part of the gasification chamber 70 to the vicinity of the upper burner 8 is surrounded by a heat insulating material or a refractory material 32. However, in order to protect the inner wall of the furnace from damage due to high temperature gas or molten slag, the heat insulating material or the refractory material 32 is used. The water cooling pipe 17A is embedded to cool the side wall surface 105 of the furnace so that the damage does not progress to a certain extent. Further, since the temperature of the wall surface from the upper part of the upper burner 8 to the generated gas outlet 19 becomes lower than that of the lower part of the gasification chamber, the entire circumference is covered with the water cooling pipe 17B, and steam is generated by heat exchange with the generated gas 24. Then, the generated gas is cooled.

【0036】上下段の微粉炭バーナは、それぞれガス化
室上方と下方に設けられ(7,8)、一方、チャーバー
ナ33はガス化室下部に設置される。本発明ではバーナ
の数は旋回円に接する方向に等間隔に4本配置されてい
る。上段バーナ,チャーバーナについても基本的には下
段バーナと同様に旋回をかけている。また、バーナの数
も4本である。旋回円径の大きさやバーナ本数は石炭供
給量や旋回流の安定性及び運転制御の複雑さなどから決
まるものである。さらには上下段バーナの旋回円径比を
変えることにより石炭粒子の滞留時間を調整することが
出来る。
The upper and lower pulverized coal burners are installed above and below the gasification chamber (7, 8), respectively, while the char burner 33 is installed in the lower part of the gasification chamber. In the present invention, the number of burners is four at equal intervals in the direction in contact with the turning circle. The upper burner and the char burner are basically turning in the same manner as the lower burner. Also, the number of burners is four. The size of the swirl circle diameter and the number of burners are determined by the amount of coal supply, the stability of the swirl flow, and the complexity of operation control. Furthermore, the residence time of the coal particles can be adjusted by changing the ratio of the diameters of the swirling circles of the upper and lower burners.

【0037】本発明では、上下バーナに供給される石炭
量は同一とし、下段バーナ7に供給される酸化剤である
酸素22A,22B(ガス化剤)と石炭21の流量比
(酸化剤/石炭)はトータルの(酸化剤/石炭)よりも
大きくしている。すなわち下段の酸化剤流量は結果的に
上段に供給される酸化剤よりも多いことになる。これに
より、ガス化室70の下部では下段バーナ7から供給さ
れた石炭は酸素が多いため、充分、灰の融点さらには灰
の流動点よりも高温な状態を形成することが出来る。そ
して、この溶融灰すなわちスラグは下段バーナ7の旋回
流により側壁面105に押しやられるため流下しやすく
なる。またチャー中のカーボンは酸素濃度が高いためガ
ス化が速やかに進行し、CO2,CO,H2Oにガス化す
る。なお、強い旋回力を得るためには、旋回円径dと炉
径Dの比d/Dを大きくする必要があるが、大きすぎて
も側壁面が高温火炎にさらされる危険性やスラグタップ
下の冷却部11にスラグが付着しやすくなるので、最適
な範囲内に留めておくのが望ましい。
In the present invention, the amount of coal supplied to the upper and lower burners is the same, and the flow rate ratio of the oxygen 22A, 22B (gasifying agent) which is the oxidant supplied to the lower burner 7 and the coal 21 (oxidizer / coal. ) Is larger than the total (oxidizer / coal). That is, the flow rate of the oxidizing agent in the lower stage is consequently higher than that of the oxidizing agent supplied in the upper stage. As a result, in the lower part of the gasification chamber 70, since the coal supplied from the lower burner 7 has a large amount of oxygen, it is possible to form a state sufficiently higher than the melting point of ash and the pour point of ash. Then, this molten ash, that is, slag, is pushed to the side wall surface 105 by the swirling flow of the lower burner 7, so that it easily flows down. Further, since carbon in the char has a high oxygen concentration, gasification progresses rapidly and is gasified into CO 2 , CO and H 2 O. In order to obtain a strong swirling force, it is necessary to increase the ratio d / D of the swirling circle diameter d and the furnace diameter D, but if it is too large, the side wall surface may be exposed to high-temperature flames and the slag tap Since the slag tends to adhere to the cooling section 11 of No. 3, it is desirable to keep it within the optimum range.

【0038】またリサイクルしてきた、いわゆる循環チ
ャー29についても、チャーバーナ33に供給する酸化
剤53の投入量に関しては、循環チャー中のカーボン分
が燃焼して、CO2 を生成する時に発生する熱量が、循
環チャー中に含まれている灰分を溶融できる熱量に相当
するよう、チャー成分に応じて酸化剤53の投入量が決
定されるように調整されるとともに、チャーと酸素の混
合はできるだけ良好にする。なお、チャーバーナのd/
Dに関しては量が少ないこともあり、d/Dを下段バー
ナ並みかそれより大きくとっても問題はない。
With respect to the so-called circulating char 29 that has been recycled, the amount of the oxidant 53 supplied to the char burner 33 is the amount of heat generated when the carbon in the circulating char is burned to generate CO 2. However, the charging amount of the oxidizer 53 is determined according to the char component so as to correspond to the amount of heat capable of melting the ash contained in the circulating char, and the mixing of char and oxygen is as good as possible. To In addition, d /
Since there is a small amount of D, there is no problem if d / D is set to be equal to or larger than the lower burner.

【0039】このようにガス化室70下部において、酸
素濃度を高めて高温状態を形成すること、および旋回力
を利用して側壁面105へのスラグ付着を促進すること
により、下段バーナ7及びチャーバーナ33から供給さ
れた石炭チャー中の灰分は非常に高い割合でスラグ化す
ることが出来る。逆にいえば上方へいく灰は少なくなる
ため、その分だけ灰付着の可能性を小さくすることがで
きるわけである。ただし温度が上がり過ぎてガス化炉の
側壁面105を損傷しないよう酸化剤である酸素22
A,22B及び53流量の制御あるいは場合によっては
スチーム添加が必要になることもありうる。なお、溶融
灰のなかの微細な高温スラグについては旋回流では壁に
付着することはなく、そのまま上方に流れていくことに
なる。
As described above, in the lower part of the gasification chamber 70, the oxygen concentration is increased to form a high temperature state, and the swirling force is utilized to promote the adhesion of the slag to the side wall surface 105, whereby the lower burner 7 and the char. The ash in the coal char supplied from the burner 33 can be slagged at a very high rate. Conversely, since less ash goes up, the possibility of ash adhesion can be reduced accordingly. However, in order not to damage the side wall surface 105 of the gasification furnace due to the temperature rising too much, the oxygen 22
It may be necessary to control the A, 22B and 53 flow rates or in some cases steam addition. Note that the fine high-temperature slag in the molten ash does not adhere to the wall in the swirling flow and flows upward as it is.

【0040】ここで、図3に本発明のガス化炉内のガス
流れの解析結果の概略図を示す。ガス化炉下部の中央付
近100は高温部となり前記微細スラグはこの中央付近
の上昇気流にのって上方に流れていく。また上段バーナ
と下段バーナ間の側壁面105は旋回力により側壁に押し
やられたスラグの流下が生じており、スラグ取出し口9
を伝わって水槽に流れ落ちる。
Here, FIG. 3 shows a schematic diagram of the analysis result of the gas flow in the gasification furnace of the present invention. The area 100 near the center of the lower part of the gasification furnace becomes a high temperature area, and the fine slag flows upward along the ascending air current near the center. Further, the side wall surface 105 between the upper burner and the lower burner causes the slag pushed down by the side wall due to the turning force to flow down, and the slag outlet 9
It flows down to the aquarium.

【0041】次に上段バーナから供給された石炭である
が、上段バーナはトータルの酸化剤/石炭比よりも小さ
いため、バーナ近傍では酸素不足の状態となっている。
しかし、酸素量が少ないため未反応のカーボンはある
が、粒子自身の温度は灰の溶融温度までには到達せず、
かつチャーの表面は反応性に富んでいる。この上段バー
ナからの石炭の一部は2段バーナ旋回方式を利用して形
成される流れ101により下段からの高温上昇ガス中の
CO2やH2Oがカーボンと接触しガス化が進行し、C
O,H2 が生成する。また、残りの石炭は同図に示すよ
うに側壁103に沿った上方流れとなり、温度は比較的
低く、このため比較的大きなチャーが発生しやすく、旋
回力により側壁103に付着する。
Next, regarding the coal supplied from the upper burner, since the upper burner is smaller than the total oxidizer / coal ratio, oxygen is insufficient near the burner.
However, since the amount of oxygen is small, there is unreacted carbon, but the temperature of the particles themselves does not reach the melting temperature of ash,
And the surface of the char is highly reactive. Some of the coal from the upper stage burner is CO 2 or of H 2 O hot rising gases from the lower by a flow 101 formed by using a two-stage burner turning scheme proceeds contact gasified with carbon, C
O and H 2 are produced. Further, the remaining coal becomes an upward flow along the side wall 103 as shown in the figure, and the temperature is relatively low, so that a relatively large char is likely to be generated and adheres to the side wall 103 by the swirling force.

【0042】上段バーナ近傍の上方102では、下段及
び上段下降流101によって形成された微細スラグは上
記付着チャー量の方が多ければ、スラグの一部はチャー
中に取り込まれ、付着はしづらくなり、また付着量が増
えても自然落下する可能性が高く、壁面103への灰付
着による水冷管の伝熱性能の低下が防止できる。
In the upper part 102 near the upper burner, if the amount of fine slag formed by the lower and upper descending flows 101 is larger than the amount of the adhered char, part of the slag is taken into the char and the adherence becomes difficult. Further, even if the amount of adhesion increases, there is a high possibility that it will fall spontaneously, and it is possible to prevent deterioration of the heat transfer performance of the water cooling pipe due to adhesion of ash to the wall surface 103.

【0043】次に上段バーナからガス化炉出口にかけて
は炉中央付近は高温で容易に付着する微細スラグを含む
ガスが流れ、図4に示す炉内横断面内の温度分布に示す
ように壁面に近づくにつれ温度は低下する。また温度分
布とは逆にチャー中のC分は同じく同図に合わせて示す
が、中央部は下段の旋回力によって捕集されない微細ス
ラグが通り、その周辺部は中央に近いほど、上段から噴
出された石炭が下降流にのり下段からの高温ガスと反応
してガス化反応によりカーボン量の少なくなった、そし
て、灰分の一部が溶融したものが流れている。周辺に近
づくにつれガス化していない未反応なカーボンの割合が
多くなる。すなわち、中央から壁面に近づくほどカーボ
ン量が増加する分布となる。本発明において最も留意し
た点は、この微細スラグやカーボン量の少ないチャーを
含む高温ガスと上段バーナ発生チャーの混合によるガス
化反応の促進と冷却である。
Next, from the upper burner to the outlet of the gasification furnace, a gas containing fine slag that easily adheres at a high temperature flows in the vicinity of the center of the furnace, and as shown in the temperature distribution in the cross section of the furnace shown in FIG. The temperature decreases as it approaches. Contrary to the temperature distribution, the C content in the char is also shown in the same figure, but in the center the fine slag that is not collected by the turning force of the lower stage passes, and as the peripheral part is closer to the center, it spouts from the upper stage. The coal is discharged in a downward flow and reacts with the high temperature gas from the lower stage to reduce the amount of carbon due to the gasification reaction, and some of the ash is melted. The proportion of unreacted carbon that has not been gasified increases as it approaches the periphery. That is, the distribution is such that the amount of carbon increases from the center toward the wall surface. The most important point in the present invention is promotion and cooling of the gasification reaction by mixing the high temperature gas containing the fine slag and the char containing a small amount of carbon and the upper stage burner generated char.

【0044】本発明のガス化炉では図2に示す上段バー
ナ8からガス化炉の生成ガス取出し口絞り部16までの
距離を上段バーナ8からスラグ取出し口9までの距離よ
り2倍以上とっている。このため図3のガス流れからも
わかるようにガス化炉中央の高温ガスは周辺に広がる傾
向を示しており、上段バーナからの未反応チャーとの混
合によりガス化の促進とそのとき生じる吸熱現象により
ガスの冷却が行われる。ガスの冷却に関しては側壁に設
けられた水冷管への輻射も本来は期待できるはずである
が、中央部と周辺の間にはチャー粒子が多く存在するた
め、輻射の効果は比較的小さい。輻射の効果を高めるた
めには未反応チャーはガス化させることはもちろん、灰
分は側壁に付着させガス中の粒子濃度を小さくすること
が重要である。高温の溶融灰がそのまま壁面に付着する
と付着量が徐々に増えていってしまうが、本発明では上
段バーナ後流側に充分な空間を設けているので混合や輻
射等の冷却により灰の温度は下がっており大きな付着は
防げる。
In the gasifier of the present invention, the distance from the upper burner 8 shown in FIG. 2 to the narrowed portion 16 of the produced gas outlet of the gasifier is set to be twice or more than the distance from the upper burner 8 to the slag outlet 9. There is. For this reason, as can be seen from the gas flow in Fig. 3, the high-temperature gas in the center of the gasifier tends to spread to the periphery, promoting gasification by mixing with unreacted char from the upper burner and the endothermic phenomenon that occurs at that time. This cools the gas. Regarding the cooling of the gas, radiation to the water-cooling pipe provided on the side wall should be expected, but the effect of radiation is relatively small because there are many char particles between the central part and the periphery. In order to enhance the effect of radiation, it is important not only to gasify the unreacted char but also to attach ash to the side wall to reduce the particle concentration in the gas. If the high-temperature molten ash adheres to the wall surface as it is, the amount of adhesion gradually increases.However, in the present invention, since the sufficient space is provided on the downstream side of the upper burner, the temperature of the ash can be reduced by cooling such as mixing and radiation. It is lowered and can prevent large adhesion.

【0045】更に炉内の混合による冷却の促進と局所的
な高温部をなくすること、及び側壁周辺に存在している
未反応カーボンのガス化の促進とそれに伴う吸熱効果に
よる冷却を行わせ、図4のような分布を改善するため、
図2に示すガス取出し口絞り部16の天蓋106から側
壁103に沿って上から下に向かって生成ガスであるリ
サイクルガス26を噴出させ、側壁103に付着したチ
ャーを吹き飛ばし、図4に示す循環流域104を形成す
る。これにより、吹き飛ばされたチャーは主流ガスと混
合しながらガス化反応(C+CO2=2CO)を進める。
このときの吸熱反応により主流高温ガスは冷却されるこ
とになる。また、低温のリサイクルガス26およびチャ
ーと主流ガスである生成ガス24との混合により生成ガ
ス24の温度が下がり、ガス化炉横断面の温度分布は均
一化の方向に進む。この結果、局所的な高温部がなくな
り生成ガス取出し口絞り部16近傍でのスラグ付着が防
止できる。
Further, promotion of cooling by mixing in the furnace and elimination of a local high temperature portion, and promotion of gasification of unreacted carbon existing around the side wall and cooling due to the endothermic effect accompanied therewith, To improve the distribution shown in Fig. 4,
Recycled gas 26, which is generated gas, is jetted from top to bottom along the side wall 103 from the canopy 106 of the gas outlet throttle unit 16 shown in FIG. 2 to blow off the char adhering to the side wall 103, and the circulation shown in FIG. A basin 104 is formed. As a result, the blown-off char advances the gasification reaction (C + CO 2 = 2CO) while being mixed with the mainstream gas.
The endothermic reaction at this time cools the mainstream high temperature gas. Further, the temperature of the produced gas 24 decreases due to the mixture of the low-temperature recycled gas 26 and char with the produced gas 24 which is the mainstream gas, and the temperature distribution of the cross section of the gasification furnace proceeds in the direction of homogenization. As a result, there is no local high temperature portion, and it is possible to prevent slag from adhering in the vicinity of the produced gas outlet narrowing portion 16.

【0046】また、吹き飛ばされた壁面付着チャーと生
成ガス24に含まれる微細スラグの混合によりスラグ表
面にカーボンを多く含むチャーが付くことにより、スラ
グ表面のカーボン濃度が10%以上になる割合が増える
ことになり、やはり下流側での高温微細スラグの付着防
止につながる。さらには、側壁103に付着していたチ
ャーがブローされることにより、周囲を垂直にはしる裸
管の水冷管17Bの表面が洗われ、結果的にはガス輻射
の効果が増し、水冷裸管17Bへの伝熱量が増える。従
って、下流側の熱回収ボイラの負荷が小さくなり、従来
よりコンパクトにすることができる。
Further, since the char containing a large amount of carbon is attached to the surface of the slag by mixing the blown-off wall-adhered char and the fine slag contained in the generated gas 24, the ratio of the carbon concentration on the slag surface to 10% or more increases. This also leads to prevention of adhesion of high temperature fine slag on the downstream side. Further, by blowing the char attached to the side wall 103, the surface of the water-cooled pipe 17B, which is a bare pipe that makes the periphery vertical, is washed, and as a result, the effect of gas radiation is increased, and the water-cooled bare pipe 17B is increased. The amount of heat transferred to Therefore, the load on the heat recovery boiler on the downstream side is reduced, and the heat recovery boiler can be made more compact than before.

【0047】次に、リサイクルガスのブロー方法である
が、動力削減の観点から見れば、当然リサイクルガス流
量は少ないに越したことはない。しかし、流量が少なす
ぎると、上記のようなブローの効果は弱まる。
Next, regarding the method for blowing the recycled gas, from the viewpoint of power reduction, the recycled gas flow rate is naturally small. However, if the flow rate is too low, the above-mentioned blow effect is weakened.

【0048】そこで、本実施例のリサイクルガス噴射構
造と噴射方法について説明する。図2,図5,図6に示
すように、リング状のリサイクルガスヘッダー47を前
記生成ガス取出し口絞り部16近傍の天蓋106の外周
部に設け、ヘッダーを仕切り板50により8分割し、各
室より噴射ノズル49を1個ずつ前記天蓋106からガ
ス化炉内部に挿入させる。前記リサイクルガスヘッダー
47の外側には、2つのリサイクルガスマニホールド4
2が取り囲む。
The recycled gas injection structure and injection method of this embodiment will be described. As shown in FIGS. 2, 5 and 6, a ring-shaped recycled gas header 47 is provided on the outer peripheral portion of the canopy 106 in the vicinity of the generated gas outlet narrowing portion 16, and the header is divided into eight by a partition plate 50. The injection nozzles 49 are inserted one by one from the chamber through the canopy 106 into the gasification furnace. Two recycled gas manifolds 4 are provided outside the recycled gas header 47.
Surrounded by two.

【0049】ガス精製装置から導かれたリサイクルガス
26はガスヘッダー40から2つに分岐され、分岐管4
1を通って前記リサイクルガスマニホールド42に入
る。それぞれのマニホールドと前記リサイクルガスヘッ
ダー47とは連通管48で結ばれており、そこには、そ
れぞれ電磁遮断弁43A,43Bが備わっている。リサ
イクルガスの噴射は、例えば図5に示すように、遮断弁
43A,43Bといった対向する1組の遮断弁のみが開
き、そのときは他の弁は閉じている。すなわち、リサイ
クガスは全ノズルから一斉に噴射させるのではなく、常
に対向する2個のノズルのみからブローされる。そし
て、遮断弁を電気信号により予め決められた時間間隔の
もとで、今開いてる弁を閉じ、隣り合う次の1組の弁を
開く。このようにして、順次各ノズルは連続的ではな
く、ある周期のもとで間欠的にリサイクルガスを噴射す
ることになるわけである。
The recycled gas 26 introduced from the gas purifier is branched from the gas header 40 into two, and the branched pipe 4
Through 1 into the recycled gas manifold 42. Each manifold and the recycled gas header 47 are connected by a communication pipe 48, and electromagnetic shutoff valves 43A and 43B are provided therein. For injection of the recycled gas, as shown in FIG. 5, for example, only one pair of shutoff valves, such as shutoff valves 43A and 43B, which are opposed to each other, are opened and other valves are closed at that time. That is, the recycle gas is not blown from all nozzles at once, but is always blown from only two nozzles facing each other. Then, the shutoff valve is closed at a predetermined time interval by an electric signal, and the valve that is currently open is closed and the next set of adjacent valves is opened. In this way, each nozzle is not continuous, and the recycled gas is intermittently injected in a certain cycle.

【0050】この方法により前記ヘッダー40に流入す
るリサイクルガスが少なくても、ブローされている壁面
近傍には上述の効果を得るだけの運動エネルギーを有す
るガスが流れることになる。壁面に付着したチャーをブ
ローするという観点から見れば連続的でなくてもその流
体の持つ運動エネルギーが大きければ充分その効果は得
られる。
By this method, even if the amount of recycled gas flowing into the header 40 is small, a gas having kinetic energy sufficient to obtain the above-mentioned effect flows near the blown wall surface. From the viewpoint of blowing the char attached to the wall surface, the effect is sufficiently obtained if the fluid has a large kinetic energy even if it is not continuous.

【0051】また、ノズルの組み合わせとして対向する
1組を選んだのは、できるだけ流れや温度分布が一方向
に非対称に片寄らないようにするためである。
Further, one pair of facing nozzles is selected as a combination of nozzles in order to prevent the flow and temperature distribution from being asymmetrically biased in one direction.

【0052】次に、図2に示すように生成ガス取出し口
絞り部16近傍に水冷管51をその長手方向が主流ガス
24のガス流れと直交するように配置させ、冷却水35
を導入し蒸気36を発生させる。ガス化炉中央部は比較
的粒子濃度が低く、側壁よりもガス化炉中央の上下方向
の輻射がより有効となるため、この水冷管はガス化炉中
央部の高温ガスの輻射冷却に効果があり、前記生成ガス
取出し口絞り部16近傍のスラグ付着を防止する。ま
た、冷却だけでなくガス化室70から飛散してきたチャ
ーは最も多くこの水冷管に付着することになる。従っ
て、この水冷管の後流側に設けた正規の水冷管(図示せ
ず)への灰付着は極力低減されることになり、正規の水
冷管の伝熱性能の低下を抑えて、冷却効果を高める働き
も行う。またガス化室(ガス化炉下部)70からの旋回
バーナである上段及び下段バーナ8,7による旋回流を
弱める整流作用の役割も果たし、後流側にある伝熱管の
伝熱性能の向上が期待できる。なお、この水冷管に付着
したチャーは夜間などにおいて冷却水による温度変化等
の熱衝撃等により付着物を除去する。
Next, as shown in FIG. 2, a water cooling pipe 51 is arranged in the vicinity of the generated gas outlet throttle portion 16 so that its longitudinal direction is orthogonal to the gas flow of the mainstream gas 24, and the cooling water 35 is supplied.
Is introduced to generate steam 36. Since the central part of the gasification furnace has a relatively low particle concentration and the vertical radiation in the central part of the gasification furnace is more effective than the side walls, this water cooling pipe is effective in radiative cooling of the high temperature gas in the central part of the gasification furnace. Yes, it prevents slag from adhering near the narrowed portion 16 of the generated gas outlet. In addition to the cooling, most of the char scattered from the gasification chamber 70 is attached to the water cooling pipe. Therefore, the adhesion of ash to the regular water cooling pipe (not shown) provided on the downstream side of this water cooling pipe will be reduced as much as possible, and the deterioration of the heat transfer performance of the regular water cooling pipe will be suppressed to reduce the cooling effect. It also works to increase Further, it also plays a role of rectifying the swirling flow by the upper and lower burners 8 and 7 which are swirl burners from the gasification chamber (lower part of the gasification furnace) 70, and improves the heat transfer performance of the heat transfer tube on the downstream side. Can be expected. The char adhering to the water-cooled pipe removes the adhering matter by thermal shock such as temperature change due to cooling water at night.

【0053】[0053]

【発明の効果】本発明によれば、炉内で充分な高温ガス
とチャーとの混合が行われるため、高いガス化率が得ら
れることによりチャーリサイクル量の低減が図れ、ガス
化プラントのコスト低減に大きく寄与する。また、スラ
グ付着防止の観点から見れば、高スラグ化率が得られる
ため、灰の飛散量自体が減ること、及び上記混合効果に
より、微細スラグ,低カーボンチャーが構造物に接する
前に気流中にて、少なくとも高温のものについては冷却
されることになり、ガス化室出口のガス取出し口絞り部
およびその後流側でスラグ付着が防止され、ガス化炉の
信頼性を高める効果がある。更にスラグ付着量が減るこ
とにより、伝熱特性が向上し、熱回収ボイラのコンパク
ト化によるコスト低減が図れる。
According to the present invention, since sufficient high temperature gas and char are mixed in the furnace, a high gasification rate can be obtained to reduce the amount of char recycling, and the cost of the gasification plant can be reduced. It greatly contributes to the reduction. Also, from the viewpoint of preventing slag adhesion, a high slag rate can be obtained, so the amount of ash scattering itself is reduced, and due to the above mixing effect, the fine slag and low carbon char are exposed to air flow before they contact the structure. Therefore, at least the high temperature one is cooled, and the slag is prevented from adhering to the gas outlet narrowing portion at the gasification chamber outlet and the downstream side thereof, which has the effect of enhancing the reliability of the gasification furnace. Further, since the amount of slag adhering is reduced, the heat transfer characteristics are improved, and the cost can be reduced by making the heat recovery boiler compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガス化炉が組み込まれた石炭ガス化フ
ロー図。
FIG. 1 is a flow chart of coal gasification in which a gasification furnace of the present invention is incorporated.

【図2】ガス化炉一実施例を示す要部縦断面図。FIG. 2 is a longitudinal sectional view of an essential part showing an embodiment of a gasification furnace.

【図3】本発明のガス化炉内部のガス流れの説明図。FIG. 3 is an explanatory diagram of a gas flow inside the gasification furnace of the present invention.

【図4】従来のガス化炉横断面内の温度およびカーボン
濃度分布概略図。
FIG. 4 is a schematic view of temperature and carbon concentration distribution in a cross section of a conventional gasifier.

【図5】本発明のガス化炉の一部であるリサイクルガス
の噴射構造の平面図。
FIG. 5 is a plan view of a recycled gas injection structure which is a part of the gasification furnace of the present invention.

【図6】そのA−A断面図。FIG. 6 is a sectional view taken along line AA.

【符号の説明】[Explanation of symbols]

6…ガス化炉、7…下段バーナ、8…上段バーナ、10
…水槽、16…ガス取出し口絞り部、17…水冷管、1
9…ガス取出し口、21…微粉炭、22A…酸素、24
…生成ガス、26…精製ガス、29…循環チャー、32
…耐火材、47…リサイクルガスヘッダー、49…噴射
ノズル、51…水冷管、70…ガス化室、106…天
蓋。
6 ... Gasification furnace, 7 ... Lower burner, 8 ... Upper burner, 10
... water tank, 16 ... gas outlet throttle, 17 ... water cooling pipe, 1
9 ... Gas outlet, 21 ... Pulverized coal, 22A ... Oxygen, 24
… Production gas, 26… Purified gas, 29… Circulation char, 32
... Refractory material, 47 ... Recycled gas header, 49 ... Injection nozzle, 51 ... Water cooling pipe, 70 ... Gasification chamber, 106 ... Canopy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森原 淳 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 田村 善助 茨城県日立市城南町5−10−5 (56)参考文献 特開 昭59−176391(JP,A) 特開 平7−97579(JP,A) 特開 昭61−218689(JP,A) 特開 昭61−207492(JP,A) (58)調査した分野(Int.Cl.7,DB名) C10J 3/46 - 3/56 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Atsushi Morihara Jun 1-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Zensuke Tamura 5-10, Jonan-cho, Hitachi-shi, Ibaraki 5 (56) Reference JP-A-59-176391 (JP, A) JP-A-7-97579 (JP, A) JP-A-61-218689 (JP, A) JP-A-61-207492 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C10J 3/46-3/56

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】微粉炭ガス化反応領域であるガス化室上部
にこのガス化室の内径よりも小径のガス取出し口絞り部
を設けると共に、底部にはスラグ取出し口を設けたガス
化炉において、前記ガス化室を一室とし、前記ガス化室
に微粉炭と酸化剤の混合流体を供給するバーナを上下二
段に配置するとともに、上下バーナそれぞれが前記ガス
化室に仮想した仮想円の接線方向に前記混合流体を噴出
するようにし、前記ガス化室上部とそれより径の小さい
前記ガス取出し口絞り部をつないでいる天蓋部からガス
化炉から出た生成ガスをリサイクルガスとして導入する
ことを特徴とする石炭ガス化炉。
1. A gasification furnace in which a gas outlet narrowing portion having a diameter smaller than the inner diameter of the gasification chamber is provided in the upper part of the gasification chamber, which is a pulverized coal gasification reaction region, and a slag outlet is provided in the bottom portion. , With the gasification chamber as one chamber, the burners for supplying a mixed fluid of pulverized coal and an oxidant to the gasification chamber are arranged in two stages, and each of the upper and lower burners is a virtual circle virtual in the gasification chamber. The mixed fluid is ejected in a tangential direction, and the upper part of the gasification chamber and a smaller diameter than that
Gas from the canopy that connects the gas outlet throttle
A coal gasification furnace characterized in that the produced gas emitted from the gasification furnace is introduced as a recycled gas .
【請求項2】請求項第1項において、前記上段,下段バ
ーナへの酸化剤投入量は下段バーナの石炭に対する酸化
剤割合を上下段の平均値であるトータルの石炭に対する
酸化剤割合より大きくし、逆に上段は平均値より小さく
なるよう制御されることを特徴とする石炭ガス化炉。
2. The amount of oxidizer charged to the upper and lower burners according to claim 1, wherein the ratio of oxidant to coal in the lower burner is larger than the ratio of oxidant to total coal which is the average value of upper and lower burners. On the contrary, the upper stage is a coal gasification furnace characterized by being controlled to be smaller than the average value.
【請求項3】請求項第1項において、前記ガス化室下部
に前記石炭ガス化炉から排出された循環チャーと酸化剤
を供給するためのチャーバーナを配置し、前記チャー中
のカーボン分が燃焼して、CO2 を生成する時に発生す
る熱量が、チャー中の灰分を溶融できる熱量に相当する
よう、チャー成分に応じて酸化剤投入量が決定されるこ
とを特徴とする石炭ガス化炉。
3. The circulating char discharged from the coal gasification furnace and a char burner for supplying an oxidant are arranged in the lower part of the gasification chamber according to claim 1, and the carbon content in the char is reduced. A coal gasification furnace, characterized in that the amount of oxidant input is determined according to the char component so that the amount of heat generated when burning to generate CO 2 corresponds to the amount of heat capable of melting the ash in the char. .
【請求項4】請求項第1項において、上段バーナと前記
ガス化炉ガス取出し口絞り部の距離を上段バーナと前記
スラグ取出し口間の距離の少なくとも2倍以上離し、下
段バーナで発生させた高温ガスと上段バーナの石炭から
発生するチャーとの混合面からと、側壁面への輻射、及
び混合による冷却面とから、充分な空間領域を上段バー
ナ上部に設けた構造を備え、前記ガス化室上部のガス取
出し口絞り部で灰の融点以下の温度となることを特徴と
する石炭ガス化炉。
4. The method according to claim 1, wherein the distance between the upper burner and the gasification furnace gas outlet narrowing portion is at least twice the distance between the upper burner and the slag outlet, and the lower burner generates the gas. From the mixing surface of the hot gas and the char generated from the coal of the upper burner, and the cooling surface due to the radiation and mixing to the side wall surface, a sufficient space area is provided in the upper burner, and the gasification is performed. A coal gasification furnace characterized in that the temperature at the gas outlet narrowing part in the upper part of the chamber is lower than the melting point of ash.
【請求項5】請求項第1項において、ガス化炉から排出
されるチャーのカーボン濃度が10%以上であることを
特徴とする石炭ガス化炉。
5. The coal gasification furnace according to claim 1, wherein the carbon concentration of the char discharged from the gasification furnace is 10% or more.
【請求項6】請求項第項において、前記リサイクルガ
ス用の噴射ノズルを複数個に分割し、該ノズルを間欠的
に切り替えながら噴射させることを特徴とする石炭ガス
化炉。
6. The method of claim paragraph 1, wherein the split injection nozzle for the recycle gas in a plurality, the coal gasification furnace which comprises causing the injected by switching the nozzles intermittently.
【請求項7】請求項第1又は4項において、前記ガス化
炉とその下流側に位置する熱回収ボイラとの間に前記ガ
ス取出し口絞り部近傍の後流側に新たに冷水管を設け、
偏流防止とガス輻射により比較的固形分の少ないガス化
炉中央部の高温域を冷却することを特徴とする石炭ガス
化炉。
7. The cold water pipe according to claim 1 or 4 , wherein a cold water pipe is newly provided between the gasification furnace and a heat recovery boiler located on the downstream side of the gasification furnace on the downstream side in the vicinity of the gas outlet narrowing section. ,
A coal gasification furnace characterized by cooling a high temperature region in the central part of the gasification furnace with relatively low solid content by preventing uneven flow and radiating gas.
JP17328796A 1996-07-03 1996-07-03 Coal gasifier Expired - Lifetime JP3371692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17328796A JP3371692B2 (en) 1996-07-03 1996-07-03 Coal gasifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17328796A JP3371692B2 (en) 1996-07-03 1996-07-03 Coal gasifier

Publications (2)

Publication Number Publication Date
JPH1017873A JPH1017873A (en) 1998-01-20
JP3371692B2 true JP3371692B2 (en) 2003-01-27

Family

ID=15957658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17328796A Expired - Lifetime JP3371692B2 (en) 1996-07-03 1996-07-03 Coal gasifier

Country Status (1)

Country Link
JP (1) JP3371692B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542237B1 (en) 2012-11-13 2015-08-21 현대중공업 주식회사 Molten fly ash cooling device for coal gasification

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007123396A (en) 2004-11-22 2008-12-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. (NL) GAS FUEL DRIVING UNIT
JP2008025852A (en) * 2006-07-18 2008-02-07 Hitachi Ltd Melting furnace, cooling method of melting furnace and power generation system
JP5367280B2 (en) * 2008-03-04 2013-12-11 一般財団法人電力中央研究所 Foam material manufacturing system and manufacturing method
CN102071063B (en) * 2011-01-13 2013-07-10 清华大学 Low-pressure water-cooled wall gasifier
CN102643677B (en) * 2012-04-25 2014-02-19 神华集团有限责任公司 Entrained flow gasifier and slag hole brick thereof
KR102032179B1 (en) * 2013-04-19 2019-10-15 한국전력공사 Gasifier
CN105670702A (en) * 2016-03-22 2016-06-15 胡志阳 High-slag-capture-rate synthesis gas production reactor and synthesis gas production method
CN107338073A (en) * 2017-01-10 2017-11-10 北京清创晋华科技有限公司 A kind of constant level chilling-type gasification furnace
CN107099339B (en) * 2017-07-05 2023-05-12 华东理工大学 Pyrolysis and gasification decoupling gasification furnace
CN107418632B (en) * 2017-07-05 2023-05-12 华东理工大学 Gasification system and gasification method for simultaneously producing methane pyrolysis gas and synthesis gas
JP6865149B2 (en) * 2017-11-30 2021-04-28 三菱パワー株式会社 Blockage prevention device and blockage prevention method for coal gasification equipment
CN108913210B (en) * 2018-08-29 2024-01-23 云南煤化集团工程技术有限公司 Fixed bed slag gasifier cloth temperature regulating device
CN110616086B (en) * 2019-10-29 2024-03-29 河南心连心化学工业集团股份有限公司 Multifunctional startup drawing device and method for gasification furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542237B1 (en) 2012-11-13 2015-08-21 현대중공업 주식회사 Molten fly ash cooling device for coal gasification

Also Published As

Publication number Publication date
JPH1017873A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
FI84841C (en) FOERFARANDE OCH ANORDNING FOER REDUKTION AV METALLOXIDHALTIGT MATERIAL.
JP3371692B2 (en) Coal gasifier
US7862632B2 (en) Multi-burner gasification reactor for gasification of slurry or pulverized hydrocarbon feed materials and industry applications thereof
CN101392191B (en) Two stage type dry coal powder entrained flow gasifier
CN101845326B (en) Spiral-flow melting pond gasifier
JPS59176391A (en) Coal gasifying oven
CN103666580A (en) Coupled biomass pressurized pyrolysis process and system
WO2013165122A1 (en) Non-melt and partial melt type entrained flow bed gasifier
CN107488470A (en) A kind of gasification furnace and method of plasma slag tap
KR850000823B1 (en) Method for producing molten iron from iron oxide with coal & oxygen
JPH0987639A (en) Slag tap structure and gasification apparatus using the slag tap
WO2011071339A2 (en) Top-feeding double-swirl type gasifier
CN113005250A (en) System and working process for preparing hydrogen-rich gas and applying hydrogen-rich gas to blast furnace injection
EP0094707B1 (en) Method and apparatus for the production of liquid iron from iron oxide
FI83670B (en) FOERREDUKTION AV METALLOXIDHALTIGT MATERIAL.
EP2834327B1 (en) A burner and a process for the gasification of a solid fuel
CN201634638U (en) Gasification furnace of spiral-flow type molten pool
JP3890482B2 (en) Airflow gasifier
CN215440517U (en) System for hydrogen-rich gas preparation is used for blast furnace jetting
JPH08104882A (en) Coal gasifying furnace of entrained layer and method for gasifying coal
JPH0472877B2 (en)
CN106635177B (en) High-efficiency low-consumption high-hydrogen gas generation system
JP4029223B2 (en) Coal gasifier and control method thereof
CN203582820U (en) Coupling-type biomass pressurization pyrolysis system
JP2004315639A (en) Apparatus and process for gasification of waste plastic

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term