JPH03250673A - Compound semiconductor photoelectric conversion element on si substrate - Google Patents

Compound semiconductor photoelectric conversion element on si substrate

Info

Publication number
JPH03250673A
JPH03250673A JP2048998A JP4899890A JPH03250673A JP H03250673 A JPH03250673 A JP H03250673A JP 2048998 A JP2048998 A JP 2048998A JP 4899890 A JP4899890 A JP 4899890A JP H03250673 A JPH03250673 A JP H03250673A
Authority
JP
Japan
Prior art keywords
substrate
electrode
gaas
solar cell
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2048998A
Other languages
Japanese (ja)
Other versions
JP2512188B2 (en
Inventor
Masaaki Usui
正明 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2048998A priority Critical patent/JP2512188B2/en
Publication of JPH03250673A publication Critical patent/JPH03250673A/en
Application granted granted Critical
Publication of JP2512188B2 publication Critical patent/JP2512188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To permit connection of an external connector without destroying a GaAs solar battery on an Si substrate or degrading its characteristics by forming a welded assembly part of a p-electrode and a welded assembly part of an n-electrode outside the GaAs solar battery itself. CONSTITUTION:A p-electrode 7 is joined to a p-type GaAs layer 4 with a hole opened in ARC 6 and p-type AlGaAs 5 as well as wired on the side of an Si substrate via an insulating film 9 and is further extended continuously to the outside on the same plane as a second principal surface. An-electrode 8 is continuously extended to the outside of the second principal surface on the second principal plane and the same plane as the second principal plane. A welded part 7b of the p-electrode 7 and a welded part 8b of the n-electrode exist outside a GaAs layer of a GaAs solar battery on the Si substrate and the Si substrate. When an external connector is to be welded, thermal and mechanical stress accompanying the welding does not affect the GaAs layer, so that no crack will occur on the GaAs layer as well as no crack of the Si substrate due to the stress will occur.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はSi基板上化合物半導体光電変換素子に関し
、特にSi基板上にm−v族化合物半導体層を有する光
電変換素子の構造に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a compound semiconductor photoelectric conversion device on a Si substrate, and particularly relates to the structure of a photoelectric conversion device having an m-v group compound semiconductor layer on a Si substrate. .

〔従来の技術〕[Conventional technology]

第4図は例えば1987年開催第3回太陽光発電国際会
議の発表論文集の196頁に示された従来のSi基板上
化合物半導体光電変換素子を示す。
FIG. 4 shows, for example, a conventional compound semiconductor photoelectric conversion element on a Si substrate, as shown on page 196 of the collection of papers presented at the 3rd International Conference on Photovoltaic Power Generation held in 1987.

ここではSi基板上の化合物半導体光電変換素子の一例
としてSi基板上のGaAs太陽電池について説明する
Here, a GaAs solar cell on a Si substrate will be described as an example of a compound semiconductor photoelectric conversion element on a Si substrate.

第4図において、1はSi基板、2はこのSi基板1の
第1の主面上にエピタキシャル成長させたn型GaAs
、3はさらにその上に成長させたGaAsとAlGaA
s (又はInGaAs)の超格子(以下、G a A
 s / A 7!G a A s超格子と称す)、2
′は太陽電池の能動層としてのn型GaAs、4はG 
a A s / A j! G a A s超格子3の
上に形成されたn型GaAS2’の上に形成され、太陽
電池の能動層として光エネルギーを吸収し、発電するp
n接合形成のためのn型GaAs、5はn型GaAs4
の上に形成され、太陽電池の窓層の役割を果たすp型A
fGaAs、6は太陽電池内部へできるだけ多くの光を
入射させるための反射防止膜(以下、A RC:  A
nti Reflection Coatingの略”
と称す)、7はARC6及びp型A#GaAs5に穴を
開け、n型GaAs4にコンタクトするようにバターニ
ング形成され、光照射により発生した光電流を有効に収
集して外部へ取り出すためのn側メタル電極、8はSi
基板1の裏面側に形成されたn側メタル電極である。
In FIG. 4, 1 is a Si substrate, and 2 is an n-type GaAs epitaxially grown on the first main surface of the Si substrate 1.
, 3 is GaAs and AlGaA grown on top of it.
s (or InGaAs) superlattice (hereinafter referred to as Ga A
s/A 7! (referred to as G a As superlattice), 2
' is n-type GaAs as the active layer of the solar cell, 4 is G
a As / A j! It is formed on the n-type GaAS 2' formed on the GaAs superlattice 3, and absorbs light energy and generates electricity as the active layer of the solar cell.
n-type GaAs for n-junction formation, 5 is n-type GaAs4
p-type A is formed on top of the solar cell and serves as the window layer of the solar cell.
fGaAs, 6 is an anti-reflection coating (hereinafter referred to as A RC) to allow as much light as possible to enter the inside of the solar cell.
Abbreviation for Reflection Coating”
), 7 is a hole formed in ARC6 and p-type A#GaAs5, and patterned to contact n-type GaAs4, to effectively collect the photocurrent generated by light irradiation and take it out to the outside. Side metal electrode, 8 is Si
This is an n-side metal electrode formed on the back side of the substrate 1.

次に動作について説明する。Next, the operation will be explained.

光がA、 R,C6及びp型Aj!GaAs 5を通し
てn型GaAs4及びn型GaAs 2 ′に入射する
と該入射した光はこの領域で吸収され、電子と正孔のキ
ャリアに変換され、n型GaAs4で発生した電子はp
n接合を通しn型GaAs 2 ’へ、n型GaAs2
′で発生した正孔はpn接合を通しn型GaAs4へそ
れぞれ拡散してゆき、正の電荷がn側メタル電極7.負
の電荷がn側メタル電極8へ収集され、この端子間に電
圧が発生し、この端子間から電流を取り出すことができ
る。
The light is A, R, C6 and p-type Aj! When the light enters n-type GaAs4 and n-type GaAs 2' through GaAs 5, the incident light is absorbed in this region and converted into carriers of electrons and holes, and the electrons generated in n-type GaAs4 are p
through n-junction to n-type GaAs2', n-type GaAs2
The holes generated at 7.' diffuse into the n-type GaAs4 through the p-n junction, and positive charges are transferred to the n-side metal electrode 7. Negative charges are collected on the n-side metal electrode 8, a voltage is generated between these terminals, and a current can be extracted from between these terminals.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のSi基板上GaAs太陽電池は以上のように構成
されているので、原理上電流の取り出しに問題がないよ
うに見えるが、実際に太陽電池として使用する場合は、
このn電極7及びn電極8側に電流取り出しのためのイ
ンターコネクタを接続する必要がある。この接続にはG
aAs太陽電池等では一般的には接続箇所の信頼性が高
いパラレルギヤツブ溶接法が用いられているが、この方
式を第4図に示すような構造のSi基板上GaAs太陽
電池に適用すると、熱ダメージによりn電極7の溶接下
部のGaAs層に熱的9機穢的ダメージを与え、その箇
所のインターコネクタの付着力の低下、及びpn接合破
壊による太陽電池特性の低下という問題点が生じる。ま
た、さらに、Ga A、 sとSiO熱膨張係数はSi
が2.4X10’(K−’)、GaAsが5.7 X 
10−6(K−’)であり、この両者の差に起因する素
子の変形、即ち、第4図の太陽電池ではn電極8を上に
して見た場合、上に凸形状となる変形があり、第2図(
alに示すように、このn電極側に接続子を溶接する際
、第2図(a)に示すように、この凸側に溶接ヘッド1
5から機械的、熱的ストレスが加えられることとなり、
容品に溶接箇所に対応する部分のGaAs層にクラック
が発生し、ひどい場合にはSi基板までが割れて太陽電
池として使用不能になるという問題点もあった。
Conventional GaAs solar cells on Si substrates are constructed as described above, so in principle there seems to be no problem in extracting current, but when actually used as a solar cell,
It is necessary to connect an interconnector for current extraction to the n-electrode 7 and n-electrode 8 sides. This connection has G
Parallel gear welding is generally used in aAs solar cells, etc., as it has high reliability at connection points, but when this method is applied to a GaAs solar cell on a Si substrate with the structure shown in Figure 4, Thermal damage causes thermal damage to the GaAs layer below the weld of the n-electrode 7, resulting in problems such as a decrease in adhesive strength of the interconnector at that location and a decrease in solar cell characteristics due to p-n junction breakdown. Furthermore, the thermal expansion coefficients of Ga A, s and SiO are
is 2.4X10'(K-'), GaAs is 5.7X
10-6 (K-'), and the deformation of the element due to the difference between the two, that is, the deformation that causes the solar cell in FIG. 4 to become convex upward when viewed with the n-electrode 8 facing upward. Yes, Figure 2 (
When welding a connector to this n-electrode side, as shown in Figure 2(a), welding head 1 is placed on this convex side.
From 5 onwards, mechanical and thermal stress will be applied.
Cracks occur in the GaAs layer in the parts of the product corresponding to the welded parts, and in severe cases, the Si substrate is also cracked, making it unusable as a solar cell.

この発明は上記のような問題点を解消するためになされ
たもので、太陽電池のn電極及びn電極上への外部接続
子の溶接時にGaAs層のクラック、及び太陽電池の割
れ等の発生を防止できるSi基板上化合物半導体光電変
換素子を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it prevents cracks in the GaAs layer and cracks in the solar cell when welding the n-electrode of the solar cell and the external connector on the n-electrode. An object of the present invention is to obtain a compound semiconductor photoelectric conversion element on a Si substrate that can prevent the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るSi基板上化合物半導体光電変換素子は
、第2導電型電極がSi基板の第1の主面上に形成した
第2導電型m−v族化合物半導体層に接続され、かつそ
の一部が絶縁膜を介してSi基板の側面上を通り、Si
基板の第2の主面と同一面上で形成されるとともに第2
の主面上でない部分に連続して延伸形成され、かつ第1
導電型電極についてもSi基板の第2の主面上に形成さ
れるとともにその一部が第2の主面上でない部分へ連続
して延伸形成されるように形成したものである。
In the compound semiconductor photoelectric conversion device on a Si substrate according to the present invention, the second conductivity type electrode is connected to the second conductivity type m-v group compound semiconductor layer formed on the first main surface of the Si substrate; The part passes over the side surface of the Si substrate through the insulating film, and the
The second major surface is formed on the same surface as the second main surface of the substrate.
is continuously stretched on a portion other than the main surface of the first
The conductivity type electrode is also formed on the second main surface of the Si substrate, and a part thereof is formed so as to be continuously extended to a portion other than the second main surface.

また、この発明は前記第1導電型電極(n電極)及び第
2導電型電極(n電極)のSi基板の第2の主面上でな
い部分、即ち太陽電池の外部に飛び出ている部分を、ス
トレスレリーフ構造にしたものである。
Further, the present invention provides that the portions of the first conductivity type electrode (n electrode) and the second conductivity type electrode (n electrode) that are not on the second main surface of the Si substrate, that is, the portions that protrude to the outside of the solar cell, It has a stress relief structure.

〔作用〕[Effect]

この発明におけるn電極及びn電極の先端部はSj基板
上m−v族化合物半導体太陽電池のSi及びm−v族化
合物半導体の存在しない領域に存在するため、この部分
で外部接続子を接続することにより、m−v族化合物半
導体太陽電池に機械的、熱的ストレスが影響することが
なくなり、Si基板上のm−v族化合物半導体太陽電池
の特性低下や形状の割れ等の問題を生じることなく実用
的なアセンブリを行うことができる。
In this invention, the n-electrode and the tip of the n-electrode are present in the region where Si and the m-v group compound semiconductor of the m-v group compound semiconductor solar cell on the Sj substrate are not present, so external connectors are connected at these parts. As a result, mechanical and thermal stress will not affect the m-v group compound semiconductor solar cell, and problems such as deterioration of characteristics and cracking of the shape of the m-v group compound semiconductor solar cell on the Si substrate will occur. Practical assembly can be done without any problems.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例によるSi基板上化合物半
導体光電変換素子であるSi基板上のGaAs太陽電池
の断面斜視図である。図において、1はn型Si基板、
2はこのSi基板l上にエピタキシャル成長させたn型
GaAs、3はさらにその上に成長させたGaA、s/
Aj!GaAs  (又はInGaAs等)の超格子、
2′は太陽電池の能動層としてのn型GaAs、4はG
 a A S /AlGaAs超格子3の上に形成され
、太陽電池の能動層として光エネルギーを吸収し発電す
るpn接合形成のためのp型G a A、 s、5はn
型GaAs4の上に形成され、太陽電池の窓層の役割を
果たすp型AlGaAs、6は反射防止膜(A、RC)
、7はARC6及びp型AAGaAs 5に穴を開け、
p型GaAs層4と接合するとともに、絶縁膜9を介し
てSi基板の側面を配線され、さらに第2主面と同一平
面の外部へ連続して延伸形成されたp電極であり、7a
はそのグリッド電極部、7bはバス電極溶接部である。
FIG. 1 is a cross-sectional perspective view of a GaAs solar cell on a Si substrate, which is a compound semiconductor photoelectric conversion element on a Si substrate according to an embodiment of the present invention. In the figure, 1 is an n-type Si substrate;
2 is n-type GaAs epitaxially grown on this Si substrate l, 3 is GaA further grown on it, s/
Aj! GaAs (or InGaAs etc.) superlattice,
2' is n-type GaAs as the active layer of the solar cell, 4 is G
a p-type G a A, s, 5 is formed on the a A S /AlGaAs superlattice 3 to form a p-n junction that absorbs light energy and generates electricity as an active layer of a solar cell.
p-type AlGaAs formed on 4-type GaAs and serving as the window layer of the solar cell; 6 is an anti-reflection film (A, RC)
, 7 drilled holes in ARC6 and p-type AAGaAs 5,
A p-electrode connected to the p-type GaAs layer 4, wired on the side surface of the Si substrate via an insulating film 9, and further extended continuously to the outside of the same plane as the second main surface, 7a
7b is the grid electrode portion, and 7b is the bus electrode welding portion.

8は第2主面及び第2主面の同一面状で第2主面の外部
まで連続して延伸形成されたn電極で、そのうち、8a
は第2主面上に形成されたn電極、8bはハス電極溶接
部である。9はp電極7とn型GaAs及びn型Si基
板とを電気的に絶縁するための絶縁膜、10はp電極7
とn電極8の短絡を防止するための絶縁膜である。
Reference numeral 8 denotes a second main surface and an n-electrode formed on the same plane as the second main surface and extending continuously to the outside of the second main surface, of which 8a
is an n-electrode formed on the second main surface, and 8b is a helical electrode welding part. 9 is an insulating film for electrically insulating the p-electrode 7 and the n-type GaAs and n-type Si substrates; 10 is the p-electrode 7;
This is an insulating film for preventing a short circuit between the n-electrode 8 and the n-electrode 8.

本実施例によるSi基板上のGaAs太陽電池の太陽電
池自体の動作については従来例と同一であるので省略し
、本実施例の特徴的作用について述べる。この発明によ
るp電極の溶接部分7b及びn電極の溶接部分8bはS
i基板上のGaAs太陽電池のGaAs層及びSi基板
の外に存在するので、ここに外部接続子を溶接する場合
、溶接に伴う熱的及び機械的ストレスがGaAs層に及
ばないのでGaAs層にクラックが発生しないだけでな
く、上記ストレスによるSi基板の割れも生ずることが
なくなる。従来例でも述べたように、Si基板上にGa
As層を形成する場合、通常700℃程度の高温でエピ
タキシャル成長を行った後、徐冷していく過程で高温領
域では転位の移動によりストレスの緩和が行われている
が、350℃前後程度まで冷却されてくると転位が移動
してストレスを緩和することができなくなり、それより
冷却された分の温度差に相当するSiとGaASO熱膨
張係数差によって生じるストレスが内部に形成されるこ
とになる。この内在するストレス量はSi基板上のGa
As層にクランクを発生させるに十分な量(〜1 、 
5 X 109dyn/cm” )が蓄積されている。
Since the operation of the solar cell itself of the GaAs solar cell on the Si substrate according to this embodiment is the same as that of the conventional example, the description will be omitted, and the characteristic operation of this embodiment will be described. The welded portion 7b of the p-electrode and the welded portion 8b of the n-electrode according to the present invention are S
Since it exists outside the GaAs layer of the GaAs solar cell on the i-substrate and the Si substrate, when welding an external connector here, the thermal and mechanical stress associated with welding does not reach the GaAs layer, so cracks may occur in the GaAs layer. Not only will this not occur, but the Si substrate will not crack due to the stress described above. As mentioned in the conventional example, Ga is deposited on a Si substrate.
When forming an As layer, epitaxial growth is usually performed at a high temperature of about 700°C, and then stress is alleviated by the movement of dislocations in the high temperature region during the gradual cooling process, but it is not necessary to cool down to about 350°C. If this happens, the dislocations will move, making it impossible to alleviate the stress, and stress will be generated inside due to the difference in thermal expansion coefficient between Si and GaASO, which corresponds to the temperature difference caused by cooling. This inherent stress amount is
A sufficient amount to generate a crank in the As layer (~1,
5 x 109 dyn/cm”) has been accumulated.

静的状態であればかろうじてこのストレスに耐える場合
もありうるが、これに例えば外部接続子の溶接のような
機械的、熱的な動的ストレスが印加されると、これがト
リガとなり、GaAs層にクランクが発生し、このクラ
ックはGaAs層を分断するためにGaAs太陽電池の
光起電力特性の低下を生じさせる。
If it is static, it may be able to withstand this stress, but if mechanical or thermal dynamic stress is applied, such as when welding an external connector, this will act as a trigger, and the GaAs layer will be damaged. Crank occurs, and this crack breaks the GaAs layer, resulting in a decrease in the photovoltaic properties of the GaAs solar cell.

太陽電池は実際利用する際には単独で利用されることは
ほとんどなく、複数個の太陽電池どうしを外部接続子を
用いて接続している。第4図に示すように従来のSi基
板上のGaAs太陽電池はn電極がSi基板の第2の主
面上にあり、n電極側に外部接続子を接続する場合、第
2図(alに示すように凸状に反った太陽電池を溶接台
14に平らに接するまで溶接ヘッド15で極部的に加圧
し、加熱するため、まず曲げモーメントが太陽電池全体
にかかり、その上さらに極部的熱ストレスが溶接ヘッド
から加えられるので、溶接ヘッドが接している部分に対
応するGaAs層にクラックが発生したり、Si基板が
割れてしまったりした。
In actual use, solar cells are rarely used alone, and multiple solar cells are connected to each other using external connectors. As shown in Figure 4, in a conventional GaAs solar cell on a Si substrate, the n-electrode is on the second main surface of the Si substrate. As shown in the figure, since the convexly curved solar cell is locally pressurized and heated by the welding head 15 until it comes into flat contact with the welding table 14, a bending moment is first applied to the entire solar cell, and then the bending moment is applied to the entire solar cell, and then Since thermal stress was applied from the welding head, cracks occurred in the GaAs layer corresponding to the areas in contact with the welding head, and the Si substrate broke.

これに対し、本発明の上記実施例では、第1図に示すよ
うにn電極8をSi基板の第1の主面上に形成しである
ので、第2図(b)にあるようにn電極8bへの外部接
続子の溶接の際には、太陽電池11は上に凹状となり、
溶接のためn電極8b上を溶接ヘッド15が加圧しても
太陽電池の他端が浮き上がることによりSi基板上のG
aAs層11には機械的ストレスが印加されることがな
い。
On the other hand, in the above embodiment of the present invention, the n electrode 8 is formed on the first main surface of the Si substrate as shown in FIG. When welding the external connector to the electrode 8b, the solar cell 11 becomes concave upward;
Even when the welding head 15 applies pressure on the n-electrode 8b for welding, the other end of the solar cell lifts up, causing the G on the Si substrate to rise.
No mechanical stress is applied to the aAs layer 11.

また、n電極下部にはGaAs層が存在しないので、溶
接ヘッド15からの極部的加熱についてもGaAs層へ
の悪影響がない。このため本実施例では太陽電池の特性
低下や構造破壊を生じさせることなく、外部接続子の接
続が可能となり、Si基板上のGaAs太陽電池の実用
化が図れる。
Further, since there is no GaAs layer under the n-electrode, local heating from the welding head 15 has no adverse effect on the GaAs layer. Therefore, in this embodiment, external connectors can be connected without deteriorating the characteristics or destroying the structure of the solar cell, and a GaAs solar cell on a Si substrate can be put to practical use.

なお、上記実施例ではpバス電極溶接部7bの形状に平
板状のものを示したが、このpバス電極溶接部7bはス
トレスレリーフの構造のものでもよく、その−例を第3
図に示す。第3図はメソシュタイプのものを示している
。このようにバス電極溶接部をメソシュタイプにするこ
とにより、各電極へ外部接続子を溶接する際に、溶接の
ためn電極8b上を溶接ヘッド15が加圧した際にセル
に加わる力を逃すことができ、モジュール化した際のセ
ルの接続箇所のより信頼性の高いものが得られ太陽電池
の特性を向上を図ることができる。
In the above embodiment, the p-bus electrode welded portion 7b has a flat plate shape, but the p-bus electrode welded portion 7b may have a stress relief structure, and an example thereof is shown in the third example.
As shown in the figure. Figure 3 shows a mesh type. By making the bus electrode welding part a mesh type in this way, when welding external connectors to each electrode, it is possible to release the force applied to the cell when the welding head 15 pressurizes the n-electrode 8b for welding. This makes it possible to obtain more reliable cell connection points when modularized, and to improve the characteristics of solar cells.

なお、当然ながら、このストレスレリーフの形状はメソ
シュタイプのものに限定されるものではなく、もちろん
セルに加わる力を逃がす形状であれば他の構造のもので
もよい。
Naturally, the shape of the stress relief is not limited to the mesoche type, and may have any other structure as long as it releases the force applied to the cell.

なお、本発明の一実施例ではGaAs太陽電池の場合に
ついて述べたが、他の化合物半導体を用いたデバイスに
ついても同様の効果を示す。
In one embodiment of the present invention, a case of a GaAs solar cell has been described, but similar effects can be obtained with devices using other compound semiconductors.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によるSi基板上のGaAs太
陽電池は、p電極の溶接アセンブリ箇所及びn電極の溶
接アセンブリ箇所をGaAs太陽電池自体の外部に形成
したので、Sii板上のGaAs太陽電池を破壊又は特
性低下を生じさせることなしに外部接続子を接続するこ
とができ、実用化が図れるだけでなく、外部に飛び出た
p、  n電極を接続子そのものにすれば接続子や接続
子を接続する工程がいらないためアセンブリコストの低
減やセルを複数個接続するモジュール化の際のセル充填
率を高くすることができ、発電システムの内のモジュー
ルという単位で考えた場合、同一サイズのモジュールか
ら、より多くの電力が得られるという太陽電池モジュー
ルの高効率化が図れるという効果がある。
As described above, the GaAs solar cell on the Si substrate according to the present invention has the p-electrode welding assembly location and the n-electrode welding assembly location outside the GaAs solar cell itself. External connectors can be connected without causing damage or property deterioration, which not only makes it practical, but also allows connectors and connectors to be connected by using the externally protruding p and n electrodes as connectors themselves. Since there is no need for a process to do this, it is possible to reduce assembly costs and increase the cell filling rate when connecting multiple cells into modules. This has the effect of increasing the efficiency of the solar cell module by allowing more power to be obtained.

さらtこ上記外部に出張っているp、n電極をストレス
レリーフ構造にしたので、さらにモジュール化した際の
セルの接続箇所の信頼性の高いものが得られる効果があ
る。
Furthermore, since the p and n electrodes protruding to the outside have a stress relief structure, there is an effect that a highly reliable cell connection point can be obtained when modularized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるSi基板上化合物半
導体光電変換素子の断面斜視図、第2図(δ)、 fb
)は従来のSi基板上のGaAs太陽電池のnTK極へ
のアセンブリの状況を示す図及びこの発明の一実施例の
場合のアセンブリの状況を示す図、第3図はこの発明の
他の実施例の一例によるSi基板上化合物半導体光電変
換素子の平面図、第4図は従来のSi基板上のGaAs
太陽電池の断面構造図である。 1はSi基板、2はn型GaAS、、2′は太陽電池能
動層としてのn型GaAs、3はGaAs層 A I 
G a A s超格子、4はp型GaAs、5はp型A
&GaAs、6は反射防止膜、7はp電極、7aはpグ
リッド電極部、7bはnバス電極溶接部、8はn電極、
8aは第2主面上のn電極、8bはnバス電極溶接部、
9は側面絶縁膜、10は第2主面絶縁膜、11は本発明
のSi基板上GaAs太陽電池セル、14は溶接音、1
5は溶接へ・2ド、51は従来のSi基板上GaAs太
陽電池である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional perspective view of a compound semiconductor photoelectric conversion element on a Si substrate according to an embodiment of the present invention, and FIG. 2 (δ), fb
) is a diagram showing the state of assembly of a GaAs solar cell on a conventional Si substrate to an nTK pole, and a diagram showing the state of assembly in one embodiment of the present invention, and FIG. 3 is a diagram showing another embodiment of the present invention. A plan view of an example of a compound semiconductor photoelectric conversion device on a Si substrate, FIG. 4 shows a conventional GaAs on a Si substrate.
FIG. 2 is a cross-sectional structural diagram of a solar cell. 1 is a Si substrate, 2 is an n-type GaAs, 2' is an n-type GaAs as a solar cell active layer, 3 is a GaAs layer A I
Ga As superlattice, 4 is p-type GaAs, 5 is p-type A
&GaAs, 6 is an anti-reflection film, 7 is a p-electrode, 7a is a p-grid electrode part, 7b is an n-bus electrode welding part, 8 is an n-electrode,
8a is an n electrode on the second main surface, 8b is an n bus electrode welding part,
9 is a side insulating film, 10 is a second main surface insulating film, 11 is a GaAs solar cell on a Si substrate of the present invention, 14 is a welding sound, 1
5 is a welding device, and 51 is a conventional GaAs solar cell on a Si substrate. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型のSi基板と、このSi基板の第1の
主面上に形成された第1導電型のIII−V族化合物半導
体層と、この第1導電型III−V族化合物半導体層上に
形成された第2導電型III−V族化合物半導体層とを有
する光電変換素子において、第2導電型電極が、前記第
2導電型III−V族化合物半導体層に接続され、かつそ
の一部が絶縁膜を介して前記Si基板の第2の主面と同
一面上でかつ第2の主面上でない部分に延伸形成され、
第1導電型電極が、前記Si基板の第2の主面上に形成
され、かつその一部が第2の主面と同一平面上でかつ第
2の主面上でない部分に延伸形成されていることを特徴
とするSi基板上化合物半導体光電変換素子。
(1) A first conductivity type Si substrate, a first conductivity type III-V compound semiconductor layer formed on the first main surface of the Si substrate, and a first conductivity type III-V compound semiconductor layer formed on the first main surface of the Si substrate. In a photoelectric conversion element having a second conductivity type III-V compound semiconductor layer formed on a semiconductor layer, a second conductivity type electrode is connected to the second conductivity type III-V compound semiconductor layer, and A part of the Si substrate is formed by extending through an insulating film on the same surface as the second main surface of the Si substrate and not on the second main surface,
A first conductivity type electrode is formed on the second main surface of the Si substrate, and a part thereof is formed on the same plane as the second main surface and extends on a portion not on the second main surface. A compound semiconductor photoelectric conversion device on a Si substrate, characterized in that:
(2)前記第1導電型電極及び第2導電型電極の第2主
面上でない部分に、ストレスレリーフ構造を設けたこと
を特徴とする請求項1記載のSi基板上化合物半導体光
電変換素子。
(2) The compound semiconductor photoelectric conversion device on a Si substrate according to claim 1, wherein a stress relief structure is provided on a portion of the first conductivity type electrode and the second conductivity type electrode that is not on the second principal surface.
JP2048998A 1990-02-27 1990-02-27 Compound semiconductor photoelectric conversion device on Si substrate Expired - Lifetime JP2512188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2048998A JP2512188B2 (en) 1990-02-27 1990-02-27 Compound semiconductor photoelectric conversion device on Si substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2048998A JP2512188B2 (en) 1990-02-27 1990-02-27 Compound semiconductor photoelectric conversion device on Si substrate

Publications (2)

Publication Number Publication Date
JPH03250673A true JPH03250673A (en) 1991-11-08
JP2512188B2 JP2512188B2 (en) 1996-07-03

Family

ID=12818873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2048998A Expired - Lifetime JP2512188B2 (en) 1990-02-27 1990-02-27 Compound semiconductor photoelectric conversion device on Si substrate

Country Status (1)

Country Link
JP (1) JP2512188B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223022A (en) * 2004-01-20 2011-11-04 Cyrium Technologies Inc Solar cell with epitaxially grown quantum dot material
JP2012524387A (en) * 2009-04-15 2012-10-11 スノベル(ソシュウ) テクノロジーズ リミテッド Thin film solar cell structure, thin film solar cell array and manufacturing method thereof
US9018515B2 (en) 2004-01-20 2015-04-28 Cyrium Technologies Incorporated Solar cell with epitaxially grown quantum dot material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158917A (en) * 1982-03-16 1983-09-21 Mitsubishi Electric Corp Forming method of electrode of semiconductor device
JPS61292380A (en) * 1985-06-19 1986-12-23 Sharp Corp Manufacture of solar cell
JPS61292379A (en) * 1985-06-19 1986-12-23 Sharp Corp Wraparound contact cell
JPS6461958A (en) * 1987-09-02 1989-03-08 Mitsubishi Electric Corp Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158917A (en) * 1982-03-16 1983-09-21 Mitsubishi Electric Corp Forming method of electrode of semiconductor device
JPS61292380A (en) * 1985-06-19 1986-12-23 Sharp Corp Manufacture of solar cell
JPS61292379A (en) * 1985-06-19 1986-12-23 Sharp Corp Wraparound contact cell
JPS6461958A (en) * 1987-09-02 1989-03-08 Mitsubishi Electric Corp Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223022A (en) * 2004-01-20 2011-11-04 Cyrium Technologies Inc Solar cell with epitaxially grown quantum dot material
US9018515B2 (en) 2004-01-20 2015-04-28 Cyrium Technologies Incorporated Solar cell with epitaxially grown quantum dot material
JP2012524387A (en) * 2009-04-15 2012-10-11 スノベル(ソシュウ) テクノロジーズ リミテッド Thin film solar cell structure, thin film solar cell array and manufacturing method thereof

Also Published As

Publication number Publication date
JP2512188B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
US8203200B2 (en) Diode leadframe for solar module assembly
US10797187B2 (en) Photovoltaic device with back side contacts
US9029680B2 (en) Integration of a photovoltaic device
JP4425917B2 (en) Solar cell and manufacturing method thereof
US9559229B2 (en) Multi-junction solar cell
JP2007214372A (en) Solar battery and its manufacturing method
US20240047595A1 (en) Wire-based metallization and stringing for solar cells
TW201511312A (en) Photovoltaic module
JP6950101B2 (en) Flexible double-junction solar cell
JP2019515510A (en) Stacked solar cell with metal disk array
Guan et al. Fabrication and characterization of a high-power assembly with a 20-junction monolithically stacked laser power converter
JP2548820B2 (en) Compound semiconductor photoelectric conversion device on Si substrate
US4918507A (en) Semiconductor device
JPH03250673A (en) Compound semiconductor photoelectric conversion element on si substrate
US5142331A (en) Photoelectric conversion semiconductor device
JP4986056B2 (en) Condensing photoelectric converter
JP4467337B2 (en) Solar cell module
JP5360818B2 (en) Tandem solar cell and production method thereof
CN104576772B (en) laser photovoltaic cell and manufacturing method thereof
TWI395340B (en) Multijunction solar cell
KR102371947B1 (en) CELL DIVISION/INTERCONNECTION STRUCTURE SOLAR MODULE USING ELECTRODE PATTERN WITH LESS Ag
CN211629092U (en) High-power single diode module
JPWO2012053471A1 (en) Solar cells
JPH0793449B2 (en) GaAs on Si solar cell
JPH04109681A (en) Vertical pn junction solar battery