JP2512188B2 - Compound semiconductor photoelectric conversion device on Si substrate - Google Patents

Compound semiconductor photoelectric conversion device on Si substrate

Info

Publication number
JP2512188B2
JP2512188B2 JP2048998A JP4899890A JP2512188B2 JP 2512188 B2 JP2512188 B2 JP 2512188B2 JP 2048998 A JP2048998 A JP 2048998A JP 4899890 A JP4899890 A JP 4899890A JP 2512188 B2 JP2512188 B2 JP 2512188B2
Authority
JP
Japan
Prior art keywords
substrate
electrode
gaas
solar cell
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2048998A
Other languages
Japanese (ja)
Other versions
JPH03250673A (en
Inventor
正明 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2048998A priority Critical patent/JP2512188B2/en
Publication of JPH03250673A publication Critical patent/JPH03250673A/en
Application granted granted Critical
Publication of JP2512188B2 publication Critical patent/JP2512188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はSi基板上化合物半導体光電変換素子に関
し、特にSi基板上にIII−V族化合物半導体層を有する
光電変換素子の構造に関するものである。
TECHNICAL FIELD The present invention relates to a compound semiconductor photoelectric conversion device on a Si substrate, and more particularly to the structure of a photoelectric conversion device having a III-V group compound semiconductor layer on a Si substrate. .

〔従来の技術〕[Conventional technology]

第4図は例えば1987年開催第3回太陽光発電国際会議
の発表論文集の196頁に示された従来のSi基板上化合物
半導体光電変換素子を示す。ここではSi基板上の化合物
半導体光電変換素子の一例としてSi基板上のGaAs太陽電
池について説明する。
FIG. 4 shows, for example, a conventional compound semiconductor photoelectric conversion device on a Si substrate shown on page 196 of a collection of papers presented at the 3rd International Conference on Photovoltaics held in 1987. Here, a GaAs solar cell on a Si substrate will be described as an example of a compound semiconductor photoelectric conversion element on a Si substrate.

第4図において、1はSi基板、2はこのSi基板1の第
1の主面上にエピタキシャル成長させたn型GaAs、3は
さらにその上に成長させたGaAsとAlGaAs(又はInGaAs)
の超格子(以下、GaAs/AlGaAs超格子と称す)、2′は
太陽電池の能動層としてのn型GaAs、4はGaAs/AlGaAs
超格子3の上に形成されたn型GaAs2′の上に形成さ
れ、太陽電池の能動層として光エネルギーを吸収し、発
電するpn接合形成のためのp型GaAs、5はp型GaAs4の
上に形成され、太陽電池の窓層の役割を果たすp型AlGa
As、6は太陽電池内部へできるだけ多くの光を入射させ
るための反射防止膜(以下、ARC:Anti Reflection Coat
ingの略”と称す)、7はARC6及びp型AlGaAs5に穴を開
け、p型GaAs4にコンタクトするようにパターニング形
成され、光照射により発生した光電流を有効に収集して
外部へ取り出すためのp型メタル電極、8はSi基板1の
裏面側に形成されたn側メタル電極である。
In FIG. 4, 1 is a Si substrate, 2 is n-type GaAs epitaxially grown on the first main surface of the Si substrate 1, and 3 is GaAs and AlGaAs (or InGaAs) further grown thereon.
Superlattice (hereinafter referred to as GaAs / AlGaAs superlattice), 2'is n-type GaAs as an active layer of a solar cell, and 4 is GaAs / AlGaAs.
P-type GaAs for forming a pn junction, which is formed on n-type GaAs2 'formed on superlattice 3 and absorbs light energy as an active layer of a solar cell to generate electricity, 5 is on p-type GaAs4 P-type AlGa, which is formed on the surface and acts as a window layer for solar cells
As and 6 are antireflection films (hereinafter, ARC: Anti Reflection Coat) for making as much light as possible enter the inside of the solar cell.
), 7 is formed by forming a hole in ARC6 and p-type AlGaAs5 and patterning so as to contact p-type GaAs4. The photocurrent generated by light irradiation is effectively collected and taken out to the outside. A p-type metal electrode 8 is an n-side metal electrode formed on the back surface side of the Si substrate 1.

次に動作について説明する。 Next, the operation will be described.

光がARC6及びp型AlGaAs5を通してp型GaAs4及びn型
GaAs2′に入射すると該入射した光はこの領域で吸収さ
れ、電子と正孔のキャリアに変換され、p型GaAs4で発
生した電子はpn接合を通しn型GaAs2′へ、n型GaAs2′
で発生した正孔はpn接合を通しp型GaAs4へそれぞれ拡
散してゆき、正の電荷がp側メタル電極7,負の電荷がn
側メタル電極8へ収集され、この端子間に電圧が発生
し、この端子間から電流を取り出すことができる。
Light is p-type GaAs4 and n-type through ARC6 and p-type AlGaAs5
When incident on GaAs2 ', the incident light is absorbed in this region and converted into carriers of electrons and holes, and the electrons generated in p-type GaAs4 pass through the pn junction to n-type GaAs2' and n-type GaAs2 '.
The holes generated in the above process diffuse into the p-type GaAs4 through the pn junction, and the positive charge is the p-side metal electrode 7 and the negative charge is the n-type.
It is collected in the side metal electrode 8, a voltage is generated between the terminals, and a current can be taken out from between the terminals.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来のSi基板上GaAs太陽電池は以上のように構成され
ているので、原理上電流の取り出しに問題がないように
見えるが、実際に太陽電池として使用する場合は、この
p電極7及びn電極8側に電流取り出しのためのインタ
ーコネクタを接続する必要がある。この接続にはGaAs太
陽電池等では一般的には接続箇所の信頼性が高いパラレ
ルギャップ溶接法が用いられているが、この方式を第4
図に示すような構造のSi基板上GaAs太陽電池に適用する
と、熱ダメージによりp電極7の溶接下部のGaAs層に熱
的,機械的ダメージを与え、その箇所のインターコネク
タの付着力の低下、及びpn接合破壊による太陽電池特性
の低下という問題点が生じる。また、さらに、GaAsとSi
の熱膨張係数はSiが2.4×10-6〔K-1〕,GaAsが5.7×10-6
〔K-1〕であり、この両者の差に起因する素子の変形、
即ち、第4図の太陽電池ではn電極8を上にして見た場
合、上に凸形状となる変形があり、第2図(a)に示す
ように、このn電極側に接続子を溶接する際、第2図
(a)に示すように、この凸側に溶接ヘッド15から機械
的,熱的ストレスが加えられることとなり、容易に溶接
箇所に対応する部分のGaAs層にクラックが発生し、ひど
い場合にはSi基板までが割れて太陽電池として使用不能
になるという問題点もあった。
Since the conventional GaAs solar cell on Si substrate is configured as described above, it seems that there is no problem in current extraction in principle, but when actually used as a solar cell, this p-electrode 7 and n-electrode are used. It is necessary to connect an interconnector on the 8 side for extracting current. For this connection, a parallel gap welding method, which has high reliability at the connection point, is generally used in GaAs solar cells and the like.
When applied to a GaAs solar cell on a Si substrate having a structure as shown in the figure, thermal damage causes thermal and mechanical damage to the GaAs layer under the welding of the p-electrode 7, which reduces the adhesive force of the interconnector at that location. Also, the problem of deterioration of solar cell characteristics due to pn junction breakdown occurs. In addition, GaAs and Si
The thermal expansion coefficient of Si is 2.4 × 10 -6 [K -1 ] and that of GaAs is 5.7 × 10 -6.
[K -1 ], the deformation of the element due to the difference between the two,
That is, in the solar cell of FIG. 4, when the n-electrode 8 is viewed upward, there is a deformation in which the n-electrode 8 has a convex shape. As shown in FIG. 2 (a), a connector is welded to the n-electrode side. At this time, as shown in FIG. 2 (a), mechanical and thermal stress is applied from the welding head 15 to this convex side, and cracks easily occur in the GaAs layer at the portion corresponding to the welding location. However, in severe cases, there was a problem that even the Si substrate was broken and could not be used as a solar cell.

この発明は上記のような問題点を解消するためになさ
れたもので、太陽電池のp電極及びn電極上への外部接
続子の溶接時にGaAs層のクラック、及び太陽電池の割れ
等の発生を防止できるSi基板上化合物半導体光電変換素
子を得ることを目的とする。
The present invention has been made in order to solve the above problems, and it is possible to prevent cracks in the GaAs layer and cracks in the solar cell during welding of the external connector on the p electrode and n electrode of the solar cell. An object is to obtain a compound semiconductor photoelectric conversion device on a Si substrate that can be prevented.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係るSi基板上化合物半導体光電変換素子
は、第2導電型電極がSi基板の第1の主面上に形成した
第2導電型III−V族化合物半導体層に接続され、かつ
その一部が絶縁膜を介してSi基板の側面上を通り、Si基
板の第2の主面と同一面上で形成されるとともに第2の
主面上でない部分に連続して延伸形成され、かつ第1導
電型電極についてもSi基板の第2の主面上に形成される
とともにその一部が第2の主面上でない部分へ連続して
延伸形成されるように形成したものである。
In the compound semiconductor photoelectric conversion device on the Si substrate according to the present invention, the second conductivity type electrode is connected to the second conductivity type III-V compound semiconductor layer formed on the first main surface of the Si substrate, and Part passes through the side surface of the Si substrate through the insulating film, is formed on the same surface as the second main surface of the Si substrate, and is continuously formed in a portion not on the second main surface. The one-conductivity type electrode is also formed on the second main surface of the Si substrate and a part of the electrode is continuously extended to a portion other than the second main surface.

また、この発明は前記第1導電型電極(n電極)及び
第2導電型電極(p電極)のSi基板の第2の主面上でな
い部分、即ち太陽電池の外部に飛び出ている部分を、ス
トレスレリーフ構造にしたものである。
Further, according to the present invention, a portion of the first conductivity type electrode (n electrode) and the second conductivity type electrode (p electrode) which is not on the second main surface of the Si substrate, that is, a portion protruding to the outside of the solar cell, It has a stress relief structure.

〔作用〕[Action]

この発明におけるp電極及びn電極の先端部はSi基板
上III−V族化合物半導体太陽電池のSi及びIII−V族化
合物半導体の存在しない領域に存在するため、この部分
で外部接続子を接続することにより、III−V族化合物
半導体太陽電池に機械的,熱的ストレスが影響すること
がなくなり、Si基板上のIII−V族化合物半導体太陽電
池の特性低下や形状の割れ等の問題を生じることなく実
用的なアセンブリを行うことができる。
Since the tip portions of the p-electrode and the n-electrode in the present invention are present in the region of the Si-substrate III-V compound semiconductor solar cell where Si and III-V compound semiconductor do not exist, the external connector is connected at this portion. As a result, the III-V compound semiconductor solar cell is not affected by mechanical and thermal stress, and problems such as deterioration of the characteristics and shape crack of the III-V compound semiconductor solar cell on the Si substrate occur. Without the need for a practical assembly.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例によるSi基板上化合物半
導体光電変換素子であるSi基板上のGaAs太陽電池の断面
斜視図である。図において、1はn型Si基板、2はこの
Si基板1上にエピタキシャル成長させたn型GaAs、3は
さらにその上に成長させたGaAs/AlGaAs(又はInGaAs
等)の超格子、2′は太陽電池の能動層としてのn型Ga
As、4はGaAs/AlGaAs超格子3の上に形成され、太陽電
池の能動層として光エネルギーを吸収し発電するpn接合
形成のためのp型GaAs、5はp型GaAs4の上に形成さ
れ、太陽電池の窓層の役割を果たすp型AlGaAs、6は反
射防止膜(ARC)、7はARC6及びp型AlGaAs5に穴を開
け、p型GaAs層4と接合するとともに、絶縁膜9を介し
てSi基板の側面を配線され、さらに第2主面と同一平面
の外部へ連続して延伸形成されたp電極であり、7aはそ
のグリッド電極部、7bはバス電極溶接部である。8は第
2主面及び第2主面の同一面状で第2主面の外部まで連
続して延伸形成されたn電極で、そのうち、8aは第2主
面上に形成されたn電極、8bはバス電極溶接部である。
9はp電極7とn型GaAs及びn型Si基板とを電気的に絶
縁するための絶縁膜、10はp電極7とn電極8の短絡を
防止するための絶縁膜である。
FIG. 1 is a sectional perspective view of a GaAs solar cell on a Si substrate which is a compound semiconductor photoelectric conversion device on a Si substrate according to an embodiment of the present invention. In the figure, 1 is an n-type Si substrate, 2 is this
N-type GaAs epitaxially grown on the Si substrate 1 and 3 are GaAs / AlGaAs (or InGaAs) further grown thereon.
Etc.) superlattice, 2'is n-type Ga as active layer of solar cell
As, 4 are formed on the GaAs / AlGaAs superlattice 3, p-type GaAs for forming a pn junction that absorbs light energy and generates electricity as an active layer of the solar cell, and 5 is formed on p-type GaAs4, P-type AlGaAs serving as a window layer of the solar cell, 6 is an antireflection film (ARC), 7 is a hole formed in ARC6 and p-type AlGaAs5, and is bonded to the p-type GaAs layer 4 and through the insulating film 9. The p-electrode is formed by wiring the side surface of the Si substrate and is continuously extended to the outside of the same plane as the second main surface. 7a is a grid electrode portion thereof, and 7b is a bus electrode welding portion. Reference numeral 8 is an n-electrode formed on the second main surface and the same main surface as the second main surface and extending continuously to the outside of the second main surface, of which 8a is an n-electrode formed on the second main surface, 8b is a bus electrode weld.
Reference numeral 9 is an insulating film for electrically insulating the p-electrode 7 from the n-type GaAs and n-type Si substrate, and 10 is an insulating film for preventing a short circuit between the p-electrode 7 and the n-electrode 8.

本実施例によるSi基板上のGaAs太陽電池の太陽電池自
体の動作については従来例と同一であるので省略し、本
実施例の特徴的作用について述べる。この発明によるp
電極の溶接部分7b及びn電極の溶接部分8bはSi基板上の
GaAs太陽電池のGaAs層及びSi基板の外に存在するので、
ここに外部接続子を溶接する場合、溶接に伴う熱的及び
機械的ストレスがGaAs層に及ばないのでGaAs層にクラッ
クが発生しないだけでなく、上記ストレスによるSi基板
の割れも生ずることがなくなる。従来例でも述べたよう
に、Si基板上にGaAs層を形成する場合、通常700℃程度
の高温でエピタキシャル成長を行った後、徐冷していく
過程で高温領域では転位の移動によりストレスの緩和が
行われているが、350℃前後程度まで冷却されてくると
転位が移動してストレスを緩和することができなくな
り、それより冷却された分の温度差に相当するSiとGaAs
の熱膨張係数差によって生じるストレスが内部に形成さ
れることになる。この内在するストレス量はSi基板上の
GaAs層にクラックを発生させるに十分な量(〜1.5×109
dyn/cm2)が蓄積されている。静的状態であればかろう
じてこのストレスに耐える場合もありうるが、これに例
えば外部接続子の溶接のような機械的,熱的な動的スト
レスが印加されると、これがトリガとなり、GaAs層にク
ラックが発生し、このクラックはGaAs層を分断するため
にGaAs太陽電池の光起電力特性の低下を生じさせる。
Since the operation of the solar cell itself of the GaAs solar cell on the Si substrate according to the present embodiment is the same as that of the conventional example, description thereof will be omitted, and the characteristic operation of the present embodiment will be described. P according to this invention
The electrode weld 7b and the n electrode weld 8b are on the Si substrate.
Since it exists outside the GaAs layer and the Si substrate of the GaAs solar cell,
When the external connector is welded to the GaAs layer, the thermal and mechanical stress associated with the welding does not reach the GaAs layer, so that not only the GaAs layer is not cracked, but also the Si substrate is not cracked by the stress. As described in the conventional example, when a GaAs layer is formed on a Si substrate, stress is relieved due to the movement of dislocations in the high temperature region during the slow cooling process after the epitaxial growth is usually performed at a high temperature of about 700 ° C. However, when it is cooled down to around 350 ° C, dislocations move and it becomes impossible to relieve the stress.
The stress generated by the difference in the coefficient of thermal expansion is formed inside. This inherent amount of stress is on the Si substrate
Sufficient to generate cracks in the GaAs layer (up to 1.5 × 10 9
dyn / cm 2 ) is accumulated. In a static state, it may barely withstand this stress, but when mechanical and thermal dynamic stress, such as welding of an external connector, is applied to this, this triggers the GaAs layer. A crack is generated, and this crack divides the GaAs layer and causes deterioration of the photovoltaic characteristics of the GaAs solar cell.

太陽電池は実際利用する際には単独で利用されること
はほとんどなく、複数個の太陽電池どうしを外部接続子
を用いて接続している。第4図に示すように従来のSi基
板上のGaAs太陽電池はn電極がSi基板の第2の主面上に
あり、n電極側に外部接続子を接続する場合、第2図
(a)に示すように凸状に反った太陽電池を溶接台14に
平らに接するまで溶接ヘッド15で極部的に加圧し、加熱
するため、まず曲げモーメントが太陽電池全体にかか
り、その上さらに極部的熱ストレスが溶接ヘッドから加
えられるので、溶接ヘッドが接している部分に対応する
GaAs層にクラッチが発生したり、Si基板が割れてしまっ
たりした。
The solar cell is rarely used alone when actually used, and a plurality of solar cells are connected to each other using an external connector. As shown in FIG. 4, in the conventional GaAs solar cell on the Si substrate, the n-electrode is on the second main surface of the Si substrate, and when an external connector is connected to the n-electrode side, the n-electrode is shown in FIG. As shown in Figure 5, the solar cell bent in a convex shape is pressed locally by the welding head 15 until it comes into flat contact with the welding table 14 and heated, so that a bending moment is first applied to the entire solar cell, and further the pole part is further applied. Since the thermal stress is applied from the welding head, it corresponds to the part where the welding head is in contact.
A clutch was generated in the GaAs layer and the Si substrate was cracked.

これに対し、本発明の上記実施例では、第1図に示す
ようにn電極8をSi基板の第1の主面上に形成してある
ので、第2図(b)にあるようにn電極8bへの外部接続
子の溶接の際には、太陽電池11は上に凹状となり、溶接
のためn電極8b上を溶接ヘッド15が加圧しても太陽電池
の他端が浮き上がることによりSi基板上のGaAs層11には
機械的ストレスが印加されることがない。また、n電極
下部にはGaAs層が存在しないので、溶接ヘッド15からの
極部的加熱についてもGaAs層への悪影響がない。このた
め本実施例では太陽電池の特性低下や構造破壊を生じさ
せることなく、外部接続子の接続か可能となり、Si基板
上のGaAs太陽電池の実用化が図れる。
On the other hand, in the above embodiment of the present invention, as shown in FIG. 1, since the n electrode 8 is formed on the first main surface of the Si substrate, the n electrode 8 is formed as shown in FIG. At the time of welding the external connector to the electrode 8b, the solar cell 11 has a concave shape, and even if the welding head 15 pressurizes the n-electrode 8b for welding, the other end of the solar cell floats and the Si substrate No mechanical stress is applied to the upper GaAs layer 11. Further, since the GaAs layer does not exist under the n-electrode, the GaAs layer is not adversely affected by the local heating from the welding head 15. Therefore, in this embodiment, it is possible to connect the external connector without deteriorating the characteristics of the solar cell or causing structural destruction, and the GaAs solar cell on the Si substrate can be put into practical use.

なお、上記実施例ではpバス電極溶接部7bの形状に平
板状のものを示したが、このpバス電極溶接部7bはスト
レスレリーフの構造のものでもよく、その一例を第3図
に示す。第3図はメッシュタイプのものを示している。
このようにバス電極溶接部をメッシュタイプにすること
により、各電極へ外部接続子を溶接する際に、溶接のた
めn電極8b上を溶接ヘッド15が加圧した際にセルに加わ
る力を逃すことができ、モジュール化した際のセルの接
続箇所のより信頼性の高いものが得られ太陽電池の特性
を向上を図ることができる。
In the above embodiment, the p-bus electrode welded portion 7b has a flat plate shape, but the p-bus electrode welded portion 7b may have a stress relief structure, one example of which is shown in FIG. FIG. 3 shows a mesh type.
By making the bus electrode welded portion into a mesh type in this way, when welding the external connector to each electrode, the force applied to the cell when the welding head 15 presses on the n electrode 8b for welding is released. It is possible to obtain a more reliable cell connecting portion when modularized, and it is possible to improve the characteristics of the solar cell.

なお、当然ながら、このストレスレリーフの形状はメ
ッシュタイプのものに限定されるものではなく、もちろ
んセルに加わる力を逃がす形状であれば他の構造のもの
でもよい。
Of course, the shape of the stress relief is not limited to the mesh type, and of course, another structure may be used as long as the force applied to the cell is released.

なお、本発明の一実施例ではGaAs太陽電池の場合につ
いて述べたが、他の化合物半導体を用いたデバイスにつ
いても同様の効果を示す。
Although the embodiment of the present invention has been described with respect to a GaAs solar cell, similar effects can be obtained with devices using other compound semiconductors.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によるSi基板上のGaAs太陽電
池は、p電極の溶接アセンブリ箇所及びn電極の溶接ア
センブリ箇所をGaAs太陽電池自体の外部に形成したの
で、Si基板上のGaAs太陽電池を破壊又は特性低下を生じ
させることなしに外部接続子を接続することができ、実
用化が図れるだけでなく、外部に飛び出たp,n電極を接
続子そのものにすれば接続子や接続子を接続する工程が
いらないためにアセンブリコストの低減やセルを複数個
接続するモジュール化の際のセル充填率を高くすること
ができ、発電システム内のモジュールという単位で考え
た場合、同一サイズのモジュールから、より多くの電力
が得られるという太陽電池モジュールの高効率化が図れ
るという効果がある。
As described above, in the GaAs solar cell on the Si substrate according to the present invention, the welding assembly location of the p electrode and the welding assembly location of the n electrode are formed outside the GaAs solar cell itself. External connector can be connected without causing damage or deterioration of characteristics, and not only can it be put into practical use, but the connector itself can also be connected by using the p and n electrodes protruding to the outside as the connector itself. It is possible to reduce the assembly cost and increase the cell filling rate when modularizing by connecting multiple cells because there is no need for a process to perform, and when considering it as a module in the power generation system, from the module of the same size, This has the effect of increasing the efficiency of the solar cell module by obtaining more power.

さらに上記外部に出張っているp,n電極をストレスレ
リーフ構造にしたので、さらにモジュール化した際のセ
ルの接続箇所の信頼性の高いものが得られる効果があ
る。
Furthermore, since the p and n electrodes that are traveling to the outside have a stress relief structure, there is an effect that a highly reliable cell connection point can be obtained when further modularized.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例によるSi基板上化合物半導
体光電変換素子の断面斜視図、第2図(a),(b)は
従来のSi基板上のGaAs太陽電池のn電極へのアセンブリ
の状況を示す図及びこの発明の一実施例の場合のアセン
ブリの状況を示す図、第3図はこの発明の他の実施例の
一例によるSi基板上化合物半導体光電変換素子の平面
図、第4図は従来のSi基板上のGaAs太陽電池の断面構造
図である。 1はSi基板、2はn型GaAs、2′は太陽電池能動層とし
てのn型GaAs、3はGaAs/AlGaAs超格子、4はp型GaA
s、5はp型AlGaAs、6は反射防止膜、7はp電極、7a
はpグリッド電極部、7bはpバス電極溶接部、8はn電
極、8aは第2主面上のn電極、8bはnバス電極溶接部、
9は側面絶縁膜、10は第2主面絶縁膜、11は本発明のSi
基板上GaAs太陽電池セル、14は溶接台、15は溶接ヘッ
ド、51は従来のSi基板上GaAs太陽電池である。 なお図中同一符号は同一又は相当部分を示す。
FIG. 1 is a sectional perspective view of a compound semiconductor photoelectric conversion device on a Si substrate according to an embodiment of the present invention, and FIGS. 2 (a) and 2 (b) are assemblies of a conventional GaAs solar cell on a Si substrate to an n-electrode. And FIG. 3 is a view showing the situation of assembly in the case of one embodiment of the present invention, FIG. 3 is a plan view of a compound semiconductor photoelectric conversion device on a Si substrate according to one example of another embodiment of the present invention, and FIG. The figure is a cross-sectional view of a conventional GaAs solar cell on a Si substrate. 1 is a Si substrate, 2 is n-type GaAs, 2'is n-type GaAs as a solar cell active layer, 3 is GaAs / AlGaAs superlattice, 4 is p-type GaA
s, 5 is p-type AlGaAs, 6 is an antireflection film, 7 is a p-electrode, 7a
Is a p grid electrode portion, 7b is a p bus electrode welded portion, 8 is an n electrode, 8a is an n electrode on the second main surface, 8b is an n bus electrode welded portion,
9 is a side surface insulating film, 10 is a second main surface insulating film, and 11 is the Si of the present invention.
GaAs solar cells on a substrate, 14 is a welding table, 15 is a welding head, and 51 is a conventional GaAs solar cell on a Si substrate. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1導電型のSi基板と、このSi基板の第1
の主面上に形成された第1導電型のIII−V族化合物半
導体層と、この第1導電型III−V族化合物半導体層上
に形成された第2導電型III−V族化合物半導体層とを
有する光電変換素子において、 第2導電型電極が、前記第2導電型III−V族化合物半
導体層に接続され、かつその一部が絶縁膜を介して前記
Si基板の第2の主面と同一面上でかつ第2の主面上でな
い部分に延伸形成され、 第1導電型電極が、前記Si基板の第2の主面上に形成さ
れ、かつその一部が第2の主面と同一平面上でかつ第2
の主面上でない部分に延伸形成されていることを特徴と
するSi基板上化合物半導体光電変換素子。
1. A Si substrate of the first conductivity type and a first Si substrate
And a second conductivity type III-V compound semiconductor layer formed on the first conductivity type III-V group compound semiconductor layer. In the photoelectric conversion element having, the second conductivity type electrode is connected to the second conductivity type III-V group compound semiconductor layer, and a part of the second conductivity type electrode is connected via an insulating film.
A first conductive type electrode is formed on the second main surface of the Si substrate in the same plane as the second main surface and not on the second main surface, and the first conductivity type electrode is formed on the second main surface of the Si substrate; Part of the second main surface is on the same plane as the second main surface
A compound semiconductor photoelectric conversion device on a Si substrate, wherein the compound semiconductor photoelectric conversion device is stretched and formed on a portion that is not on the main surface.
【請求項2】前記第1導電型電極及び第2導電型電極の
第2主面上でない部分に、ストレスレリーフ構造を設け
たことを特徴とする請求項1記載のSi基板上化合物半導
体光電変換素子。
2. A compound semiconductor photoelectric conversion on a Si substrate according to claim 1, wherein a stress relief structure is provided on portions of the first conductivity type electrode and the second conductivity type electrode that are not on the second main surface. element.
JP2048998A 1990-02-27 1990-02-27 Compound semiconductor photoelectric conversion device on Si substrate Expired - Lifetime JP2512188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2048998A JP2512188B2 (en) 1990-02-27 1990-02-27 Compound semiconductor photoelectric conversion device on Si substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2048998A JP2512188B2 (en) 1990-02-27 1990-02-27 Compound semiconductor photoelectric conversion device on Si substrate

Publications (2)

Publication Number Publication Date
JPH03250673A JPH03250673A (en) 1991-11-08
JP2512188B2 true JP2512188B2 (en) 1996-07-03

Family

ID=12818873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2048998A Expired - Lifetime JP2512188B2 (en) 1990-02-27 1990-02-27 Compound semiconductor photoelectric conversion device on Si substrate

Country Status (1)

Country Link
JP (1) JP2512188B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0506541A (en) * 2004-01-20 2007-02-27 Cyrium Technologies Inc solar cell with epitaxially grown quantum dot material
US9018515B2 (en) 2004-01-20 2015-04-28 Cyrium Technologies Incorporated Solar cell with epitaxially grown quantum dot material
US20120037211A1 (en) * 2009-04-15 2012-02-16 Sunovel (Shzhou) Technologies Limited Thin Film of Solar Battery Structure, Thin Film of Solar Array and Manufacturing Method Thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158917A (en) * 1982-03-16 1983-09-21 Mitsubishi Electric Corp Forming method of electrode of semiconductor device
JPS61292379A (en) * 1985-06-19 1986-12-23 Sharp Corp Wraparound contact cell
JPS61292380A (en) * 1985-06-19 1986-12-23 Sharp Corp Manufacture of solar cell
JPS6461958A (en) * 1987-09-02 1989-03-08 Mitsubishi Electric Corp Semiconductor device

Also Published As

Publication number Publication date
JPH03250673A (en) 1991-11-08

Similar Documents

Publication Publication Date Title
US8203200B2 (en) Diode leadframe for solar module assembly
US6316716B1 (en) Solar cell and method for producing such a cell
US10797187B2 (en) Photovoltaic device with back side contacts
US9029680B2 (en) Integration of a photovoltaic device
US20240088317A1 (en) One-dimensional metallization for solar cells
US6103970A (en) Solar cell having a front-mounted bypass diode
US11742446B2 (en) Wire-based metallization and stringing for solar cells
TW201511312A (en) Photovoltaic module
JP2548820B2 (en) Compound semiconductor photoelectric conversion device on Si substrate
US4918507A (en) Semiconductor device
JP2512188B2 (en) Compound semiconductor photoelectric conversion device on Si substrate
US20190348551A1 (en) Perl solar cell and method for preparing same
US5142331A (en) Photoelectric conversion semiconductor device
JP4986056B2 (en) Condensing photoelectric converter
KR102320383B1 (en) Method of manufacturing flexible solar cell module based on ⅲ-ⅴ compound semiconductor
JP5639657B2 (en) Solar cells
KR101929442B1 (en) Compound semiconductor solar cell module
CN219419041U (en) Solar cell and battery
KR20140021125A (en) Solar cell
JPH04109681A (en) Vertical pn junction solar battery
JPH0793449B2 (en) GaAs on Si solar cell
JPH03238878A (en) Semiconductor device
KR20190085789A (en) Compound semiconductor solar cell and module thereof
JPS6323673B2 (en)
JPH0831614B2 (en) Solar cell