JPH03249208A - Bio-degradable fiber - Google Patents

Bio-degradable fiber

Info

Publication number
JPH03249208A
JPH03249208A JP4876090A JP4876090A JPH03249208A JP H03249208 A JPH03249208 A JP H03249208A JP 4876090 A JP4876090 A JP 4876090A JP 4876090 A JP4876090 A JP 4876090A JP H03249208 A JPH03249208 A JP H03249208A
Authority
JP
Japan
Prior art keywords
fiber
starch
pva
fibers
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4876090A
Other languages
Japanese (ja)
Inventor
Masahiko Hayashi
政彦 林
Fujio Ueda
上田 富士男
Masaharu Mizuno
正春 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP4876090A priority Critical patent/JPH03249208A/en
Publication of JPH03249208A publication Critical patent/JPH03249208A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a novel fiber composed of starch and a PVA polymer and usable as rope, string, fishing line, fishing net, etc., which is decomposed by organisms when left outdoors to prevent the environmental pollution. CONSTITUTION:The objective fiber is composed of starch and a PVA polymer and has a fiber strength of preferably >=3g/d.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は生分解性繊維、特にロープ、紐、テグスおよび
漁網等を使用し、それが屋外に放棄された時、時間の経
過とともに生分解して環境汚染を誘起しないような新規
繊維に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention uses biodegradable fibers, especially ropes, strings, fishing nets, etc., which biodegrade over time when abandoned outdoors. This invention relates to new fibers that do not cause environmental pollution.

[従来技術] 今日、廃棄物による環境汚染が深刻な問題になっている
。廃棄物とはいっても、缶類、瓶類、プラスチック成型
物、フィルム、漁網、テグス、ロープ等多種である。中
でも、ロープ、紐、テグスおよび漁網等の合成繊維製品
は、使用後そのまま海浜、海中等に放棄されると、その
場の美観を損ねるのみならず、小鳥や海洋生物あるいは
潜水する人間を絡めたり、船のスクリュウに絡まったり
する等、新たな問題が生起していた。
[Prior Art] Today, environmental pollution caused by waste has become a serious problem. There are many types of waste, including cans, bottles, plastic moldings, films, fishing nets, fishing nets, and ropes. In particular, synthetic fiber products such as ropes, strings, fishing nets, etc., if abandoned on the beach or in the ocean after use, not only spoil the beauty of the area, but also cause entanglement with small birds, marine life, and people diving. New problems were occurring, such as getting tangled in the ship's propeller.

これら従来の合成繊維製品は、丈夫で、何年経っても分
解しない。このことが環境汚染を拡大し、問題を一層深
刻にしてきた。これらの問題を解消するためには、上記
合成繊維製品の使用後、ある期間がすぎると自然に崩壊
し、環境汚染的に無害化する、即ち生分解性繊維の出現
が必要となり、このような新規繊維の開発が、当技術分
野での早期に解決すべき課題となっていた。
These traditional synthetic fiber products are durable and do not degrade over many years. This has spread environmental pollution and made the problem even more serious. In order to solve these problems, it is necessary to develop biodegradable fibers that naturally disintegrate after a certain period of use and become harmless in terms of environmental pollution. The development of new fibers has become an issue that should be solved at an early stage in this technical field.

ところで、澱粉類と繊維形成性ポリマーきの混合紡糸は
、例えば特公昭60−18353号公報により、セルロ
ースと澱粉混合物のアルカリ溶液を湿式紡糸することが
開示されている。しかしながら、この方法によって得ら
れた繊維は、セルロース繊維に一層の吸水性付与を目的
としたものであって、引張強度が高々2g/d程度にす
ぎず、強度的な面で9例えばロープ、紐、テグスおよび
漁網等の産業用途には適さなかった。
By the way, as for mixed spinning of starches and fiber-forming polymers, for example, Japanese Patent Publication No. 18353/1983 discloses wet spinning of an alkaline solution of a mixture of cellulose and starch. However, the fibers obtained by this method are intended to impart even more water absorption to cellulose fibers, and have a tensile strength of only about 2 g/d at most. It was unsuitable for industrial uses such as fishing nets and fishing nets.

[発明が解決しようとする課題] 本発明の課題は、繊維製品の使用後、ある期間がすぎる
と自然に崩壊し、環境汚染的に無害化するような新規繊
維を提供することにある。また他の課題は、例えばロー
プ、紐、テグスおよび漁網等の繊維資材用繊維として、
環境汚染的に無害化するような生分解性繊維を提供する
ことにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a new fiber that naturally disintegrates after a certain period of time after use of the textile product and becomes harmless in terms of environmental pollution. Another problem is that as fibers for textile materials such as ropes, strings, strings, and fishing nets,
The object of the present invention is to provide biodegradable fibers that are harmless in terms of environmental pollution.

[課題を解決するための手段] 本発明の上記課題は、澱粉とポリビニルアルコール系重
合体(以下、PVA系ポリマーと略記)からなる生分解
性繊維によって解決することができる。
[Means for Solving the Problems] The above problems of the present invention can be solved by a biodegradable fiber made of starch and a polyvinyl alcohol polymer (hereinafter abbreviated as PVA polymer).

すなわち、本発明の生分解性繊維において、PVA系ポ
リマとは、ケン化度が好ましくは98モル%以上、さら
に好ましくは99.0モル%以上の高ケン化PVA系ポ
リマーを用いる。また該PVA系ポリマーの重合度は好
ましくは1000以上、より好ましくは1500以上で
ある。このポリマー重合度が1000未満では例えば産
業資材繊維として充分適する強度的性質が得難くなる。
That is, in the biodegradable fiber of the present invention, the PVA-based polymer is a highly saponified PVA-based polymer having a saponification degree of preferably 98 mol% or more, more preferably 99.0 mol% or more. Further, the degree of polymerization of the PVA-based polymer is preferably 1000 or more, more preferably 1500 or more. If the degree of polymerization is less than 1,000, it becomes difficult to obtain sufficient strength properties as, for example, industrial material fibers.

また必要により耐水性を向上させるためにエチレン等を
共重合したPVA系ポリマーも使用できる。
Furthermore, if necessary, a PVA-based polymer copolymerized with ethylene or the like can be used to improve water resistance.

また澱粉とは、原料によって含有されるアミロース、ア
ミロペクチン等の組成が幾分異なるが、馬鈴薯澱粉、ト
ウモロコシ澱粉、小麦澱粉、タピオカ、含ろうメイズ等
が例示できる。
The composition of starch, such as amylose and amylopectin, differs depending on the raw material, but examples include potato starch, corn starch, wheat starch, tapioca, and waxy maize.

上記PVA系ポリマーと澱粉との混合割合は、澱粉量が
全繊維中、好ましくは15重量%〜70重量%、より好
ましくは20重量%〜6o重量%である。このような澱
粉量は所望する生分解期間との関連で適宜決定すればよ
いが、この範囲量のとき、生分解が起こり易く、また強
度的性質も充分高度な繊維が得られ易い。
The mixing ratio of the PVA-based polymer and starch is such that the amount of starch is preferably 15% to 70% by weight, more preferably 20% to 6% by weight based on the total fibers. The amount of starch may be appropriately determined in relation to the desired biodegradation period, but when the amount is within this range, biodegradation is likely to occur and fibers with sufficiently high strength properties are likely to be obtained.

さらに上記PVA系ポリマーおよび澱粉からなる本発明
繊維は、引張強度が好ましくは3g/d以上、より好ま
しくは4g/d以上、−層好ましくは、5g/a以上で
ある。引張強度が3g/dに達しないと、例えば産業資
材用繊維としては強度的に不十分な場合がある。
Furthermore, the fiber of the present invention made of the PVA-based polymer and starch has a tensile strength of preferably 3 g/d or more, more preferably 4 g/d or more, and preferably 5 g/a or more. If the tensile strength does not reach 3 g/d, the fiber may be insufficient in strength, for example, as a fiber for industrial materials.

なお、本発明繊維は生分解を助長するために、例えばベ
ンゾイルパーオキサイド、ラウリルパーオキサイド、ク
メンヒドロパーオキサイド、j−ブチルパーオキサイド
等の有機過酸化物、過硫酸カリウム、過硫酸ナトリウム
、過硫酸アンモニウム等の無機系酸化剤、あるいはベン
ゾフェノン、金属錯体、芳香族ケトン等のの光増感剤あ
るいはビニルケトンを主成分とする光分解性高分子化合
物類を少量添加することができる。また本発明繊維の耐
水性を付与するために、澱粉の一部をポリアクリルニト
リル、ポリ酢酸ビニル、ポリスチレン等でグラフト重合
することも好ましい技術である。
The fibers of the present invention contain organic peroxides such as benzoyl peroxide, lauryl peroxide, cumene hydroperoxide, and j-butyl peroxide, potassium persulfate, sodium persulfate, and ammonium persulfate to promote biodegradation. A small amount of an inorganic oxidizing agent such as, a photosensitizer such as benzophenone, a metal complex, an aromatic ketone, or a photodegradable polymer compound whose main component is vinyl ketone can be added. In order to impart water resistance to the fibers of the present invention, it is also a preferred technique to graft-polymerize a portion of the starch with polyacrylonitrile, polyvinyl acetate, polystyrene, or the like.

次に、本発明繊維の製造例について説明する。Next, an example of manufacturing the fiber of the present invention will be explained.

本発明繊維は、PVA系ポリマと澱粉を水、あるいは有
機溶媒、たとえばジメチルスルホキシド(以下DMSO
と略記)に溶解せしめた紡糸原液を、乾式紡糸、湿式紡
糸1乾湿式紡糸およびゲル紡糸等により、得ることがで
きる。中でも繊維の微密構造を得やすい乾湿式紡糸法が
望ましい。
The fiber of the present invention is made by combining the PVA-based polymer and starch with water or an organic solvent such as dimethyl sulfoxide (hereinafter referred to as DMSO).
A spinning dope dissolved in (abbreviated as) can be obtained by dry spinning, wet spinning, dry-wet spinning, gel spinning, etc. Among these, the dry-wet spinning method is preferable because it facilitates obtaining a fine fiber structure.

ここで、特に好ましい紡糸法である乾湿式紡糸法による
本発明繊維の製造法について説明する。
Here, a method for producing the fiber of the present invention using a dry-wet spinning method, which is a particularly preferred spinning method, will be explained.

先ず、澱粉(例えば、トウモロコシ澱粉)とPVA系ポ
リマー(ケン化度99.5モル%以上、重合度1000
以上)を重量比率が、好ましくは15/85〜70/3
0になるようにDMSOに分散させ、加熱溶解して紡糸
原液を調製する。このとき紡糸原液は水素イオン濃度(
PH)を5〜8の範囲とし、この値に調整するため少量
の蓚酸等を添加するのが普通である。PHが5以下であ
ると澱粉のエーテル結合の分解切断がおきやすく、また
PHが8以上になると紡糸原液が著しく着色する傾向が
ある。
First, starch (for example, corn starch) and PVA-based polymer (saponification degree of 99.5 mol% or more, polymerization degree of 1000
or more), preferably in a weight ratio of 15/85 to 70/3
A spinning stock solution is prepared by dispersing it in DMSO so that it has a concentration of 0.0 and dissolving it by heating. At this time, the spinning stock solution has a hydrogen ion concentration (
PH) is set in the range of 5 to 8, and a small amount of oxalic acid or the like is usually added to adjust it to this value. If the pH is 5 or less, the ether bonds in starch are likely to be decomposed and broken, and if the pH is 8 or more, the spinning stock solution tends to be significantly colored.

ここで、DMSO中のポリマー濃度(PVA系ポリマー
と澱粉相当分)は好ましくは5〜50重量%、より好ま
しくは10〜40重量%である。
Here, the polymer concentration (PVA-based polymer and starch equivalent) in DMSO is preferably 5 to 50% by weight, more preferably 10 to 40% by weight.

もちろん、ポリマー濃度はPVAと澱粉のブレンド比率
、使用するPVA系ポリマーの重合度等によって異なる
が、−船釣には紡糸原液の溶液粘度が100〜2000
ポイズ(a t 100’C)になるように調整するの
が望ましい。
Of course, the polymer concentration varies depending on the blend ratio of PVA and starch, the degree of polymerization of the PVA-based polymer used, etc.;
It is desirable to adjust the temperature to a poise (a t 100'C).

このようにして得られた紡糸原液は、乾湿式紡糸する。The spinning dope thus obtained is subjected to dry-wet spinning.

すなわち紡糸口金より吐出した糸条を一旦空気雰囲気を
介して、メタノール、エタノール等の凝固浴に導き凝固
せしめる。凝固した糸条は、脱溶媒の後、二連ローラに
より冷延伸を施した後、さらに加熱筒を通して高倍率に
乾熱延伸する。
That is, the yarn discharged from the spinneret is once introduced into a coagulation bath of methanol, ethanol, etc. through an air atmosphere and coagulated. After removing the solvent, the coagulated yarn is cold-stretched using double rollers, and then dry-heat-stretched to a high magnification through a heating tube.

このようにして得られた繊維糸条は強度が3g/d以上
という好ましい強度を有し、かつ微生物によって分解さ
れやすい性質があり、最終的には実質的に自然消滅する
全くの新規繊維といえるのである。
The fiber yarn obtained in this way has a preferable strength of 3 g/d or more, and is easily decomposed by microorganisms, so it can be said that it is a completely new fiber that will essentially disappear naturally. It is.

[実施例] 以下、実施例により本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

なお、本例中、繊維の引張強度および強力保持率は次の
方法に従って求めた。
In this example, the tensile strength and tenacity retention of the fibers were determined according to the following method.

引張強度および強力保持率 試料繊維を予め20℃、65%の相対湿度下で24時間
調湿し、繊維紙長20−1引取速度100 mm / 
m i nの条件で引張試験機を用いて引張強度(A、
g/d)を測定した。
Tensile strength and tenacity retention The sample fibers were conditioned in advance at 20°C and 65% relative humidity for 24 hours, and the fiber paper length was 20-1 and the take-up speed was 100 mm/
The tensile strength (A,
g/d) was measured.

一方、試料を土中に埋没させ、経時的に繊維の引張強度
(B 、  g / d )を上記と同様な条件下で調
理後測定し、次式により繊維の強力保持率を求めた。
On the other hand, the sample was buried in soil, and the tensile strength (B, g/d) of the fiber was measured over time after cooking under the same conditions as above, and the strength retention rate of the fiber was determined by the following formula.

強力保持率(%) = −X 100 また本例中の部は重量部である。Strong retention rate (%) = -X 100 Moreover, parts in this example are parts by weight.

実施例I DMS080部にPH調製剤として蓚酸0,028部を
溶解した後、トウモロコシ澱粉10部、重合度3000
の完全ケン化PVAl0部、(澱粉/PvAの重量比率
、50150)を分散させ、さらに窒素を通じながら、
80℃に加温して溶解した。この時、得られた紡糸原液
の粘度は240ポイズ(atloo℃)であった。この
紡糸原液を100℃に保温し、口金(口径、0.12m
m、孔数50)を用いて紡糸した。紡糸した糸条は5〜
20mmの空気雰囲気を介して、メタノール浴中に導入
して凝固せしめた。ここで得られた未延伸糸条を、メタ
ノール洗浄して、次いで、二連ローラにより、3.0倍
に冷延伸を行い、さらに、240℃の加熱筒において、
4,0倍に延伸を施した。このようにして得られた繊維
の単糸繊度は3゜4d、引張強度6.4g/d、伸度4
.8%であった。これらの澱粉−PVA繊維をステンレ
ス枠に巻き土中10QII下に埋没させて、繊維の強力
保持率による半年、1年、1年半にわたる分解挙動を調
査したところ、99.7%、54.3%、8゜2%と分
解による、顕著な繊維強度の低下が起こった。
Example I After dissolving 0,028 parts of oxalic acid as a pH adjuster in 080 parts of DMS, 10 parts of corn starch and a polymerization degree of 3000 were added.
0 parts of completely saponified PVAl (starch/PvA weight ratio, 50150) was dispersed, and while passing nitrogen,
It was heated to 80°C and dissolved. At this time, the viscosity of the obtained spinning dope was 240 poise (atloo°C). This spinning stock solution was kept warm at 100°C, and
(m, number of holes: 50). The spun yarn is 5~
It was introduced into a methanol bath via a 20 mm air atmosphere and allowed to coagulate. The undrawn yarn obtained here was washed with methanol, then cold-stretched to 3.0 times using double rollers, and further, in a heating cylinder at 240°C.
It was stretched 4.0 times. The fiber thus obtained has a single yarn fineness of 3°4d, a tensile strength of 6.4g/d, and an elongation of 4.
.. It was 8%. These starch-PVA fibers were wrapped in a stainless steel frame and buried under 10QII soil, and the decomposition behavior over six months, one year, and one and a half years was investigated based on the strong retention rate of the fibers, and the results were 99.7% and 54.3%. %, 8.2%, resulting in a significant decrease in fiber strength due to decomposition.

実施例2 DMS085部に修酸(PH調製剤)0.03部を溶解
した後、トウモロコシ澱粉3部、重合度3000ノ完全
ケン化PVA12部、(澱粉/PVAの重量比率、20
/80)を分散させ、さらに窒素を通じながら、80℃
に加温して溶解した。
Example 2 After dissolving 0.03 parts of oxalic acid (PH adjuster) in 085 parts of DMS, 3 parts of corn starch, 12 parts of completely saponified PVA with a degree of polymerization of 3000, (weight ratio of starch/PVA, 20
/80) and then heated to 80°C while passing nitrogen.
It was heated to dissolve.

この時、得られた紡糸原液の粘度は220ポイズ(at
loo℃)であった。この紡糸原液を100℃に保温し
、口金(口径、0.12mm、孔数50)を用いて紡糸
した。紡糸した糸条は5〜2〇−の空気雰囲気を介して
、メタノール洛中に導入して凝固せしめた。ここで得ら
れた未延伸糸条を、メタノール洗浄して、次いで、二連
ローラにより、3.0倍に冷延伸を行い、さらに、24
0℃の加熱筒において、5.0倍に延伸を施した。この
ようにして得られた繊維の単糸繊度は3.3d、引張強
度8.7g/d、伸度4.6%であった。これらの澱粉
−PVA繊維をステンレス枠に巻き土中10an下に埋
没させて、繊維の強力保持率による半年、1年、1年半
にわたる分解挙動を調査したところ、99.8%、99
.6%、78.2%と分解による繊維強度の低下が起こ
った。
At this time, the viscosity of the spinning dope obtained was 220 poise (at
temperature). This spinning dope was kept at 100° C. and spun using a spinneret (diameter: 0.12 mm, number of holes: 50). The spun yarn was introduced into a methanol tank through an air atmosphere of 5 to 20 °C to coagulate it. The undrawn yarn obtained here was washed with methanol, then cold-stretched to 3.0 times using double rollers, and further stretched to 24
The film was stretched 5.0 times in a heating tube at 0°C. The fiber thus obtained had a single yarn fineness of 3.3 d, a tensile strength of 8.7 g/d, and an elongation of 4.6%. These starch-PVA fibers were wrapped in a stainless steel frame and buried under 10 um of soil, and the decomposition behavior over six months, one year, and one and a half years was investigated based on the strong retention rate of the fibers, and the results were 99.8% and 99%.
.. The fiber strength decreased by 6% and 78.2% due to decomposition.

実施例3 DMSO77部に修酸(PH調製剤)0.027部を溶
解した後、トウモロコシ澱粉16.1部、重合度300
0の完全ケン化PVA6.9部、(澱粉/PVAの重量
比率、70/30)を分散させ、さらに窒素を通じなが
ら、80℃に加温して溶解した。この時、得られた紡糸
原液の粘度は300ボイズ(at100℃)であった。
Example 3 After dissolving 0.027 parts of oxalic acid (PH adjuster) in 77 parts of DMSO, 16.1 parts of corn starch and a polymerization degree of 300 were added.
6.9 parts of fully saponified PVA (starch/PVA weight ratio, 70/30) was dispersed and further heated to 80° C. while passing nitrogen to dissolve. At this time, the viscosity of the spinning stock solution obtained was 300 voids (at 100° C.).

この紡糸原液を100℃に保温し、口金(口径、0.1
2■、孔数50)を用いて紡糸した。紡糸した糸条は5
〜20mmの空気雰囲気を介して、メタノール洛中に導
入して凝固せしめた。ここで得られた未延伸糸条を、メ
タノール洗浄して、次いで、二連ローラにより、2.0
倍に冷延伸を行い、さらに、240℃の加熱筒において
、2.0倍に延伸を施した。このようにして得られた繊
維の単糸繊度は5.3d、引張強度3.2g/d、伸度
8゜6%であった。これらの澱粉−PVA繊維をステン
レス枠に巻き土中10an下に埋没させて、繊維の強力
保持率による半年、1年、1年半にわたる分解挙動を調
査したところ、53.2%、29゜6%、8.1%と分
解による、著しい繊維強度の低下が起こった。
This spinning stock solution was kept warm at 100°C, and the spinneret (caliber, 0.1
2■, number of holes: 50). The spun yarn is 5
Through an air atmosphere of ~20 mm, it was introduced into a methanol tank and coagulated. The undrawn yarn obtained here was washed with methanol, and then passed through a double roller to
Cold stretching was performed to double the length, and further stretching was performed to 2.0 times in a heated cylinder at 240°C. The fiber thus obtained had a single yarn fineness of 5.3 d, a tensile strength of 3.2 g/d, and an elongation of 8.6%. These starch-PVA fibers were wrapped in a stainless steel frame and buried under 10 um of soil, and the decomposition behavior over six months, one year, and one and a half years was investigated based on the strong retention rate of the fibers, and the results were 53.2%, 29°6 %, a significant decrease in fiber strength occurred due to decomposition of 8.1%.

[発明の効果コ 本発明繊維は、繊維製品の使用後、ある期間がすぎると
自然に崩壊するような機能を有する。従って、この繊維
製品を使捨てた際にも環境汚染の拡大を防止することが
できる。
[Effects of the Invention] The fiber of the present invention has a function of naturally disintegrating after a certain period of time after the textile product is used. Therefore, even when this textile product is thrown away, it is possible to prevent the spread of environmental pollution.

このため特にロー プ、 紐、 テグスおよび漁網等の繊維資材用繊維として有用である
For this reason, it is particularly useful as a fiber for textile materials such as ropes, strings, strings, and fishing nets.

Claims (2)

【特許請求の範囲】[Claims] (1)澱粉とポリビニルアルコール系重合体からなる生
分解性繊維。
(1) Biodegradable fiber made of starch and polyvinyl alcohol polymer.
(2)繊維強度が3g/d以上である請求項(1)記載
の生分解性繊維。
(2) The biodegradable fiber according to claim (1), which has a fiber strength of 3 g/d or more.
JP4876090A 1990-02-27 1990-02-27 Bio-degradable fiber Pending JPH03249208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4876090A JPH03249208A (en) 1990-02-27 1990-02-27 Bio-degradable fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4876090A JPH03249208A (en) 1990-02-27 1990-02-27 Bio-degradable fiber

Publications (1)

Publication Number Publication Date
JPH03249208A true JPH03249208A (en) 1991-11-07

Family

ID=12812239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4876090A Pending JPH03249208A (en) 1990-02-27 1990-02-27 Bio-degradable fiber

Country Status (1)

Country Link
JP (1) JPH03249208A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264030A (en) * 1991-04-16 1993-11-23 Nittetsu Mining Co., Ltd. Filler for degradable plastics and process for producing the same
WO1996025538A1 (en) * 1995-02-14 1996-08-22 Chisso Corporation Biodegradable fiber and nonwoven fabric
KR20050005187A (en) * 2003-07-07 2005-01-13 이진국 Fishing net which can be used as artificial seaweeds
US7947766B2 (en) 2003-06-06 2011-05-24 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
US9017586B2 (en) 2004-04-29 2015-04-28 The Procter & Gamble Company Polymeric structures and method for making same
WO2023276402A1 (en) 2021-06-29 2023-01-05 株式会社クラレ Starch composition and molded body

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264030A (en) * 1991-04-16 1993-11-23 Nittetsu Mining Co., Ltd. Filler for degradable plastics and process for producing the same
WO1996025538A1 (en) * 1995-02-14 1996-08-22 Chisso Corporation Biodegradable fiber and nonwoven fabric
US6045908A (en) * 1995-02-14 2000-04-04 Chisso Corporation Biodegradable fiber and non-woven fabric
US8617303B2 (en) 2003-06-06 2013-12-31 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
US7947766B2 (en) 2003-06-06 2011-05-24 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
US7960453B2 (en) 2003-06-06 2011-06-14 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
US8088843B2 (en) 2003-06-06 2012-01-03 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
US8129449B2 (en) 2003-06-06 2012-03-06 The Procter & Gabmle Company Crosslinking systems for hydroxyl polymers
US8357237B2 (en) 2003-06-06 2013-01-22 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
US9340657B2 (en) 2003-06-06 2016-05-17 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
KR20050005187A (en) * 2003-07-07 2005-01-13 이진국 Fishing net which can be used as artificial seaweeds
US9017586B2 (en) 2004-04-29 2015-04-28 The Procter & Gamble Company Polymeric structures and method for making same
WO2023276402A1 (en) 2021-06-29 2023-01-05 株式会社クラレ Starch composition and molded body

Similar Documents

Publication Publication Date Title
JPH04100913A (en) Biodegradable fiber, biodegradable film and its production
CA1104313A (en) Chitin films and fibers
KR980700469A (en) TECHNICAL AND NON-TECHNICAL TEXTILE PRODUCTS AND PACKAGING METERIALS
JPH03249208A (en) Bio-degradable fiber
JPH04146217A (en) Biodegradable fiber
JPH03220309A (en) Yarn and production thereof
US5380588A (en) Polyvinyl alcohol-based synthetic fiber
JPH06269239A (en) Fishing line
JPH01156517A (en) High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber
JP3357215B2 (en) Wet heat resistant polyvinyl alcohol fiber and method for producing the same
JP3366476B2 (en) High-strength polyvinyl alcohol-based fiber excellent in wet heat resistance and method for producing the same
JP7336282B2 (en) Polyvinyl alcohol fiber and method for producing the same
JP3466279B2 (en) Polyvinyl alcohol fiber excellent in dimensional stability in wet and dry conditions and method for producing the same
JP2905545B2 (en) High strength and high modulus polyvinyl alcohol fiber with excellent hot water resistance
JP2002155426A (en) Conjugate fiber and method for producing hollow fiber using the conjugate fiber
JP4687473B2 (en) Cellulose fatty acid ester fiber and method for producing the same
JPH11140720A (en) Production of polyvinyl alcohol synthetic fiber
JP3023918B2 (en) Polyvinyl alcohol-based synthetic fiber with excellent heat resistance
JP4578670B2 (en) Composite fiber and method for producing hollow fiber using the composite fiber
JP3266673B2 (en) Polyvinyl alcohol-based synthetic fiber
JP2004332179A (en) Acrylic synthetic fiber and method for producing the same
JP2022053773A (en) Fiber for industrial materials and method for producing the same
JPH09195122A (en) Biodegradable fiber
AU2020360403A1 (en) Water soluble nonwoven webs for packaging harsh chemicals
CN117580905A (en) Starch composition and molded body