JPH06269239A - Fishing line - Google Patents

Fishing line

Info

Publication number
JPH06269239A
JPH06269239A JP6175693A JP6175693A JPH06269239A JP H06269239 A JPH06269239 A JP H06269239A JP 6175693 A JP6175693 A JP 6175693A JP 6175693 A JP6175693 A JP 6175693A JP H06269239 A JPH06269239 A JP H06269239A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
fiber
line
fishing
degree
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6175693A
Other languages
Japanese (ja)
Inventor
Tadayuki Matsumoto
Masanori Sakamoto
Atsushi Taniguchi
正典 坂本
忠之 松本
敦 谷口
Original Assignee
Toray Ind Inc
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE: To obtain a fishing line composed of a new fiber consisting of a PVA polymer having a specific average degree of polymerization and a starch at a specific ratio, decomposable by microorganisms, etc., and free from problem of environmental pollution even by discarding in natural environment after use.
CONSTITUTION: The fishing line is composed of a fiber having a tensile strength of ≥5g/d and an initial elastic modulus of ≥150g/d and produced by mixing (A) a PVA polymer having an average degree of polymerization of 1,500-8,000 with (B) a starch at a weight ratio of 90/10 to 50/50. The fiber is preferably produced by a solution spinning process comprising the dissolution of the components A and B in water and/or dimethyl sulfoxide at 80-120°C, extrusion of the obtained dope through a spinneret and the removal of the solvent from the extruded fiber. When a multifilament is used as the fiber, the surface of the fiber is usually coated with a resin after twisting. In this case, a polycaprolactone, etc., is preferably used as the coating resin to effect the quick biodegradation of the fiber.
COPYRIGHT: (C)1994,JPO&Japio

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は釣糸に関するものである。 The present invention relates to relates to a fishing line. さらに詳細には、生分解機能を有する繊維によって構成された釣糸に関するものである。 More particularly, it relates to a fishing line which is composed of fibers having a biodegradability function.

【0002】 [0002]

【従来の技術】近年、増え続けるゴミによる環境汚染に対する人々の関心の高まりにより、プラスチック廃棄物の処理や処分問題が深刻な社会問題となっている。 In recent years, the growing interest of people to the environmental pollution caused by ever-increasing waste, treatment and disposal problem of plastic waste has become a serious social problem.

【0003】そうした社会問題に対して、もし仮に、使用後自然界に放棄された場合、バクテリヤや微生物などにより分解(生分解)されるもの、また紫外線などにより分解されるといった分解性プラスチックが必要となってくる。 [0003] For these social issues, if temporarily, when it is abandoned in nature after use, shall be resolved (biodegradation) due Bakuteriya and microorganisms, also requires a degradable plastic such is decomposed like by ultraviolet now come.

【0004】そこで、自然界への廃棄問題の1つの対象物となっている釣糸に関しても、上記のごときニーズにより生分解機能を有する繊維から構成されたものが必要となってくるのである。 [0004] Therefore, with regard to fishing line that has become one of the objects of the disposal problems to the natural world, it is the things that have been constructed from fibers having a biodegradable function will be needed by the above-mentioned such needs.

【0005】繊維に澱粉を含有するものの公知例としては、特開昭55−116814号公報では特定のアルカリ性澱粉を含有することにより染色性を向上することを目的としたレーヨン繊維が報告されている。 [0005] As known examples of those containing starch fibers, rayon fibers have been reported for the purpose of improving dyeability by containing a specific alkaline starch in JP-A-55-116814 . また、特公昭60−35480号公報では澱粉繊維を含む紙の製法が公知となっているが、本発明とは発明の意図するところや原料となる素材が全く異なるものである。 Further, in JP-B-60-35480 but preparation of paper containing starch fibers has become known, the present invention is totally different from the intended place and materials to become the material of the invention.

【0006】 [0006]

【本発明が解決しようとする課題】本発明の課題は、釣糸として使用した後に土中や海洋中など自然界に放棄された場合、バクテリヤや微生物などにより生分解されてしまい、環境汚染を起こさない、新規なPVA系重合体と澱粉とからなる生分解機能を有する繊維によって構成される釣糸を提供することを主たる課題とする。 The object of the present subject invention It is an object of the present invention is, if it is abandoned to nature, such as soil or marine after using as a fishing line, will be biodegradable due to Bakuteriya and microorganisms, it does not cause environmental pollution , to provide a fishing line composed of fibers having a novel comprising a PVA polymer and starch biodegradable functions as a main issue.

【0007】 [0007]

【課題を解決するための手段】上記課題を解決するため、本発明の釣糸は次の構成を有する。 Means for Solving the Problems] To solve the above problems, the fishing line of the present invention has the following configuration. すなわち、平均重合度が1500〜8000のポリビニルアルコール系重合体と澱粉とが重量比で90/10〜50/50の割合からなり、引張強度が5g/d以上、初期弾性率が1 That is, the average polymerization degree of the polyvinyl alcohol polymer and starch 1500-8000 consists ratio of 90 / 10-50 / 50 by weight, the tensile strength of 5 g / d or more, an initial modulus of 1
50g/d以上の繊維からなる釣糸である。 A fishing line, which consists of 50g / d or more fibers.

【0008】本発明で用いられるPVA系重合体の平均重合度は、得られる繊維の引張強度およびポリマのコストを現実的なものとすることから1500〜8000とするものであり、好ましくは1500〜5000である。 [0008] The average degree of polymerization of the PVA polymer used in the present invention is for the 1500-8000 since the cost of the tensile strength and the polymer of the resulting fiber and realistic, preferably 1500 to 5000.

【0009】また、溶媒への溶解性を損なうものでなければ、一部エチレン、アクリル酸、アクリロニトリルなどを共重合したものでも良い。 Further, as long as they do not impair the solubility in solvents, a part of ethylene, acrylic acid, it may be obtained by copolymerizing acrylonitrile.

【0010】澱粉についても特に限定されるものではなく、馬鈴薯澱粉、トウモロコシ澱粉、小麦粉澱粉、タピオカ、含ろうメイズなどいずれでもかまわない。 [0010] There is no particular limitation on the starch, may potato starch, corn starch, wheat starch, tapioca, any such waxy maize.

【0011】このようなPVAと澱粉とから構成される繊維の引張強度は釣糸としての要求レベルや、同じ強度であれば糸経を細くできるといった効果を引き出すために、より高強度のものが良く、本発明の釣糸の場合、その引張強度は5g/d以上であり、好ましくは6g/d [0011] Tensile strength of fibers composed of such a PVA and starch and the required level as a fishing line, in order to bring out the effect that can be thinned Itokei if the same strength, good ones higher-strength when the fishing line of the present invention, its tensile strength is at 5 g / d or more, preferably 6 g / d
以上である。 Or more.

【0012】例えば、繊維の引張強度が5g/d未満の場合、その使用に際しては強度不足となってしまい、上記の効果が引き出せずに好ましくない。 [0012] For example, if the tensile strength of the fiber is less than 5 g / d, the time of use becomes insufficient strength, undesirably not drawn out the effect of the.

【0013】繊維の初期弾性率については、150g/ [0013] For the initial elastic modulus of the fiber, 150g /
d未満の場合には、糸に腰が不足し、わずかな魚信を鋭敏に手元や竿先に伝達することが困難となり、釣糸として好ましくない。 If it is less than d, the waist is insufficient yarn, it is difficult to sensitively transfer the hand and rod away a slight bite, which is not preferable as a fishing line.

【0014】本発明に用いる繊維は前記のPVA系重合体と澱粉とからなり、その混合比率は90/10〜50 [0014] Fibers used in the present invention is composed of a PVA polymer and starch mentioned above, the mixing ratio 90 / 10-50
/50重量%、好ましくは85/15〜60/40重量%とするものである。 / 50 wt%, preferably not a 85 / 15-60 / 40 by weight%. 澱粉含有量が10重量%未満になると、得られる糸の強度、初期弾性率は高くなるが、生分解時間が非常に長くなり本発明で目的とする効果が得られなくなる。 When the starch content is less than 10 wt%, strength of the resulting yarn, the initial elastic modulus is high, biodegradation time is not the desired effect is obtained with very long become present invention. また、澱粉含有量が50重量%を越えると得られる繊維が非常に脆くなり、強度や初期弾性率が低いものとなってしまい充分な使用に耐えられない場合があり好ましくない。 Further, the starch content of the fiber becomes very brittle and resulting exceeds 50 wt%, may strength and initial elastic modulus can not tolerate low and turned to cause sufficient use is not preferred.

【0015】このPVA系重合体と澱粉との混合比率は、90/10〜50/50重量%の範囲内で生分解に要する時間に応じて決めることができる。 The mixing ratio of the PVA polymer and starch can be determined depending on the time required for biodegradation in the range of 90 / 10-50 / 50 by weight%.

【0016】さらに、得られた繊維がマルチフィラメントの場合は、通常、撚りを掛けた後、その表面を樹脂などで固めて用いられるが、本発明の場合、10cmあたり5〜30ターン、さらには5〜20ターンの撚りを掛けるのが得られる釣糸としての特性および品位の面から好ましい。 Furthermore, when the resulting fibers are multifilament, usually, after applying twists, but used its surface solidified with a resin, in the present invention, 5 to 30 turns per 10 cm, more preferred characteristics and quality of the surface of the fishing line obtained that twisting of 5-20 turns.

【0017】そして、本発明の目的とする生分解を速やかに行わせるために、該マルチフィラメントを加撚したあと、その表面を被覆する樹脂としては、生分解性を有する樹脂を用いるのが好ましい。 [0017] Then, in order to quickly perform biodegradation of interest of the present invention, After twisting the multifilament, the resin coating the surface, it is preferable to use a resin having biodegradability . このような樹脂としては、自然界で生分解されるもの、具体的にはポリカプロラクトン、ポリヒドロキシアルカノエート系重合体、脂肪族ポリエステルなどが好ましい。 Such resins, which are biodegradable in nature, specifically polycaprolactone, polyhydroxyalkanoate polymers, such as aliphatic polyesters are preferred.

【0018】次に、本発明に用いる繊維を製造する方法としては、PVAおよび澱粉は溶融成型がその分解温度との関係から困難であり、PVAおよび澱粉を適当な溶媒に溶解して口金より押出した後、その溶媒を除去して製造する溶液紡糸法が好ましい方法として例示できる。 Next, as a method for producing a fiber for use in the present invention, PVA and starch are difficult melt molding from the relationship between the decomposition temperature, extruded from spinneret by dissolving the PVA and starch in a suitable solvent after, it exemplified as a solution spinning method is a preferred method be produced by removing the solvent.
この際の紡糸原液の溶媒としては、PVAおよび澱粉がともに溶解する水、ジメチルスルホキサイド(以下、D The solvent of the spinning solution at this time, the water PVA and starch are dissolved together, dimethyl sulfoxide (hereinafter, D
MSO)単独またはこれらの混合溶液が用いられる。 MSO) alone or a mixed solution thereof is used.

【0019】このような溶液紡糸法の具体例について説明する。 [0019] illustrating a specific example of such a solution spinning process. まず、重合度1500〜8000のPVAと澱粉とを重量比が90/10〜50/50重量%となるよう混合し、溶媒に原液濃度が10〜40重量%となるよう分散させ、80〜120℃に加熱溶解して原液ドープとする。 First, the weight ratio of PVA and starch having a degree of polymerization of from 1500 to 8000 were mixed so as to be 90 / 10-50 / 50 by weight%, is dispersed so that the stock concentration of 10 to 40 wt% solvent, 80 to 120 ℃ heating dissolved to obtain an undiluted doped. この時の原液粘度はPVAの重合度、原液濃度、PVAと澱粉との混合比率によって異なるが、この後の紡糸時の製糸性の観点から60℃における粘度が1 The degree of polymerization of the stock solution viscosity at this time PVA, stock concentration may vary depending mixing ratio of PVA and starch, a viscosity at 60 ° C. From the viewpoint of spinnability upon spinning after the 1
000〜4000ポイズのものが好ましい。 000-4000 things of poise is preferred.

【0020】また、該原液の水素イオン濃度(pH) Further, the hydrogen ion concentration of the stock solution (pH)
は、pH値が6より小さい領域で(強酸性)澱粉のエーテル結合が切断分解されるのを有効に防ぐ観点から、またpH値が9より大きい領域で(強アルカリ性)PVA Is, pH value of 6 smaller area from effectively prevent the standpoint that the ether coupling (strongly acidic) starch is broken disassembled, pH value of 9 larger area (strongly alkaline) PVA
の分子鎖が切断分解されるのを有効に防ぐ観点から、p From the viewpoint of the molecular chains of effectively prevented from being cut degraded, p
H値は6〜9の範囲でコントロールするのが好ましい。 H value is preferably controlled in the range of 6-9.
続いて、該原液ドープから繊維を形成させるには、公知の溶液紡糸法のいずれでも良く、口金からポリマを溶解した溶媒の沸点以上の雰囲気中に吐出して脱溶媒(乾燥)する乾式紡糸、口金からポリマを溶解した溶媒と相溶性があり、かつポリマとは非相溶性の溶媒中へ吐出して脱溶媒・凝固させる湿式紡糸、さらに口金から吐出し、一旦気相部を走行させたあと凝固浴へ導入する乾湿式紡糸のいずれの方法を用いても良い。 Subsequently, in order to form fibers from the stock solution doping, well known may be any of a solution spinning method, by discharging the atmosphere above the boiling point of the solvent to dissolve the polymer from the spinneret desolvation (dry) dry spinning, There are solvent compatible with the dissolved polymer from a die, and ejecting the polymer wet spinning to desolvation and solidified by discharging the immiscible solvents, the further die, once after was run gas phase portion any method of dry-wet spinning to be introduced into the coagulating bath may be used. その一例として水を溶媒に用いた通常の乾式紡糸装置を用いる製法の一例について説明する。 An example of a process using conventional dry spinning apparatus using water as an example in a solvent is described.

【0021】まず、該原液ドープを紡糸性を良好にする観点から約80〜120℃に保温された紡糸口金より、 Firstly, from the insulation has been spinneret at about 80 to 120 ° C. The stock solution dope from the viewpoint of improving the spinnability,
110〜140℃の雰囲気中に吐出して(紡糸ドラフトとして0.5〜4.0が好ましい)溶媒を除去した後、 (0.5 to 4.0 is preferred as spinning draft) is ejected into 110-140 of ℃ atmosphere after removal of the solvent,
適度の冷延伸を行い、さらに200〜240℃の空気または窒素雰囲気中で全延伸倍率が8〜14倍となるよう延伸・熱処理して巻取られる。 Perform moderate cold stretching, the total stretching ratio is taken up by drawing and heat treatment so as to be 8-14 times more at 200-240 ° C. in air or in a nitrogen atmosphere.

【0022】 [0022]

【実施例】以下、実施例によって本発明を具体的に説明する。 EXAMPLES The following specific examples illustrate the present invention. なお、本例中の各特性値は次のようにして測定されたものである。 Incidentally, respective characteristic values ​​in the examples are measured as follows.

【0023】<繊維の強度・伸度>JIS L 101 [0023] <strength and elongation of the fiber> JIS L 101
7に準じて行った。 It was carried out in accordance with 7.

【0024】すなわち、繊維サンプルを20℃、65% [0024] That is, the fiber sample 20 ° C., 65%
RHに温湿度調整された部屋で24時間放置後、10cm 24 hours after standing in temperature and humidity adjusted room to RH, 10cm
あたり10ターンの撚りを掛けたものを“テンシロン” Those multiplied by the twist per 10-turn "Tensilon"
DTM−4L型引張試験機(東洋ボールドウィン(株) DTM-4L type tensile testing machine (manufactured by Toyo Baldwin Co., Ltd.
製)を使用して、試長25cm、引張速度30cm/分で測定した。 Use the Etsu Chemical Co., Ltd.), was measured at a sample length of 25cm, a tensile speed of 30cm / minute. チャックにはコード用エアージョーを使用した。 The chuck using air for jaw code.

【0025】<繊維の土中強度保持率>繊維のサンプルを土中に埋没させ、所定日数が経過したものを取り出し、上記した方法で残強度を測定し、その強度保持率を算出した。 [0025] <soil strength retention ratio of the fiber> to obscure the sample fiber in the ground, take out what predetermined number of days, the residual strength by the above-described method was measured to calculate the strength retention.

【0026】(実施例1)重合度1800、ケン化度9 [0026] (Example 1) polymerization degree of 1800, saponification degree 9
9.9 mol%のPVAと澱粉(コーンスターチ)とを重量比で70/30となるよう混合し、全ポリマ濃度が3 And 9.9 mol% of PVA and starch (corn starch) were mixed so as to be 70/30 in a weight ratio, total polymer concentration of 3
0重量%となるよう水に分散溶解して原液を調整した。 0 was dispersed and dissolved in water so that the weight% stock solution was adjusted.
(90℃) 次いで該原液を孔径0.1mmφ、孔数50で100℃ (90 ° C.) then 100 ° C. The stock solution pore diameter 0.1 mm?, With holes of 50
に保温した口金から吐出し、130℃に保温された雰囲気中で溶媒である水を除去(乾燥)した後、約3倍の冷延伸を行い、続いて230℃の空気雰囲気中で3.8倍延伸して巻取った。 Discharged from the thermal insulation and the ferrule, after removal of the water as a solvent in an atmosphere which is maintained at 130 ° C. (dry), the approximately 3 times the cold stretching, followed by 230 ° C. in air atmosphere 3.8 It was wound with double stretching. 得られた繊維の単繊維繊度は3.7 Single fiber fineness of the fiber obtained was 3.7
d、引張強度5.9g/d、伸度4.6%であった。 d, the tensile strength of 5.9g / d, was elongation of 4.6%.

【0027】このあと、10ターン/10cmの撚りを掛けて溶融状態のポリカプロラクトン(以下、PCL)にディップ処理することでコード表面にコーティングした。 [0027] After this, 10 turn / 10cm twisted over in a molten state of polycaprolactone (hereinafter, PCL) was coated on the code surface by dipping into.

【0028】このサンプルを土中10cm下に埋没させ、その強度保持率を測定したところ、12ヵ月で94 [0028] In this sample was buried under the soil 10cm, it was measured its strength retention rate, 12 months 94
%、18ヵ月で42%と、分解による繊維の強度低下がみられた。 %, And 42% at 18 months, reduction in strength of the fiber due to the decomposition was observed.

【0029】(実施例2)重合度2300、ケン化度9 [0029] (Example 2) Polymerization degree 2300, saponification degree 9
9.9 mol%のPVAと澱粉(コーンスターチ)とを重量比で60/40となるよう混合し、全ポリマ濃度が2 And 9.9 mol% of PVA and starch (corn starch) were mixed so as to be 60/40 in a weight ratio, total polymer concentration of 2
5重量%となるよう水に分散溶解して原液を調整した。 5 dispersed dissolved in wt% and so as the water stock solution was adjusted.

【0030】次いで該原液を孔径0.1mmφ、孔数5 [0030] then pore size of the stock solution 0.1mmφ, hole number 5
0で110℃に保温した口金から吐出し、130℃に保温された雰囲気中で溶媒である水を除去した後約2.5 0 ejected from heat insulation the mouthpiece to 110 ° C., about after removal of water as a solvent in an atmosphere which is maintained at 130 ° C. 2.5
倍の冷延伸を行い、続いて220℃の空気雰囲気中で3.4倍延伸して巻取った。 It performs a multiple of the cold stretched, took followed by 3.4 times stretched in an air atmosphere of 220 ℃ winding. 得られた繊維の単繊維繊度は3.8d、引張強度5.1g/d、伸度4.1%であった。 Single fiber fineness of the resulting fibers is 3.8D, tensile strength 5.1 g / d, was elongation 4.1%.

【0031】このあと実施例1と同様にPCLを表面コーティングして評価用サンプルとした。 [0031] was an evaluation sample and surface coating the PCL in the same way as this after the first embodiment. このサンプルを土中10cm下に埋没させ、その強度保持率を測定したところ、12ヵ月で72%、18ヵ月で14%と分解による繊維の著しい強度低下がみられた。 The samples were buried under the soil 10 cm, the place where the strength retention ratio was measured, 72% at 12 months, 14% and significant strength reduction of the fiber by decomposition at 18 months was observed.

【0032】(比較例1)重合度2600、ケン化度9 [0032] (Comparative Example 1) polymerization degree of 2600, saponification degree 9
9.9 mol%のPVAと澱粉(コーンスターチ)とを重量比で98/2となるよう混合し、全ポリマ濃度が24 And 9.9 mol% of PVA and starch (corn starch) were mixed so as to be 98/2 in a weight ratio, total polymer concentration 24
重量%となるよう水に分散溶解して原液を調整した。 The stock solution was prepared by dispersing in water so that the weight%.

【0033】次いで該原液を孔径0.12mmφ、孔数50で105℃に保温した口金から吐出し、140℃に保温された雰囲気中で溶媒である水を除去した後約3倍の冷延伸を行い、続いて230℃の空気雰囲気中で4. [0033] Then pore size the stock solution 0.12Mmfai, ejected from a nozzle was kept at a number of pores 50 to 105 ° C., about three times the cold orientation after removal of the water as a solvent in an atmosphere which is maintained at 140 ° C. conducted, followed by 4 at 230 ° C. in air atmosphere.
4倍延伸して巻取った。 4 times stretched to the wound. 得られた繊維の単繊維繊度は3.2d、引張強度15.3g/d、伸度4.8%であった。 Single fiber fineness of the resulting fibers is 3.2D, tensile strength 15.3 g / d, was 4.8% elongation.

【0034】このあと実施例1と同様にPCLを表面コーティングして評価用サンプルとした。 [0034] was an evaluation sample and surface coating the PCL in the same way as this after the first embodiment. このサンプルを土中10cm下に埋没させ、その強度保持率を測定したところ、繊維表層部のPCLの分解は認められたが、1 Is buried the sample under soil 10 cm, was measured and the strength retention, degradation of PCL fibers surface layer portion was observed, 1
2ヵ月で98%、18ヵ月で95%と繊維強度は高く、 98% at two months, 95% at 18 months and fiber strength is high,
土中での分解による強度低下が非常に小さかった。 Strength reduction due to decomposition in the soil was very small.

【0035】(比較例2)重合度2600、ケン化度9 [0035] (Comparative Example 2) Polymerization degree 2600, saponification degree 9
9.5 mol%のPVAと澱粉(コーンスターチ)とを重量比で40/60となるよう混合し、全ポリマ濃度が2 And 9.5 mol% of PVA and starch (corn starch) were mixed so as to be 40/60 in a weight ratio, total polymer concentration of 2
3重量%となるよう水に分散溶解して原液を調整した。 3 dispersed in water so that the weight% to prepare a stock solution.

【0036】次いで該原液を孔径0.12mmφ、孔数50で120℃に保温した口金から吐出し、130℃に保温された雰囲気中で溶媒である水を除去した後、冷延伸を行ったが、延伸可能倍率は1.8倍と低く、さらに続いての乾熱延伸では充分な延伸ができなかった。 [0036] Then pore size the stock solution 0.12Mmfai, in number of pores 50 discharged from the heat retaining the cap to 120 ° C., after removal of the water as a solvent in an atmosphere which is maintained at 130 ° C., were subjected to cold stretching , stretchable ratio is as low as 1.8 times, it could not sufficiently stretched in yet followed by hot drawing.

【0037】(実施例3)重合度4200、ケン化度9 [0037] (Example 3) Polymerization degree 4200, saponification degree 9
9.9 mol%のPVAと澱粉(コーンスターチ)とを重量比で85/15となるよう混合し、全ポリマ濃度が2 And 9.9 mol% of PVA and starch (corn starch) were mixed so as to be 85/15 in a weight ratio, total polymer concentration of 2
4重量%となるよう水に分散溶解して原液を調整した。 4 dispersed in water so that the weight% to prepare a stock solution.

【0038】次いで該原液を孔径0.1mmφ、孔数5 [0038] then pore size of the stock solution 0.1mmφ, hole number 5
0で130℃に保温した口金から吐出し、140℃に保温された雰囲気中で溶媒である水を除去した後約2.7 0 ejected from heat insulation the spinneret to 130 ° C., about after removal of water as a solvent in an atmosphere which is maintained at 140 ° C. 2.7
倍の冷延伸を行い、続いて235℃の空気雰囲気中で5.2倍延伸して巻取った。 It performs a multiple of the cold stretched, took followed by 5.2 times stretched at 235 ℃ in the air atmosphere wound. 得られた繊維の単繊維繊度は2.6d、引張強度15.1g/d、伸度4.6%であった。 Single fiber fineness of the resulting fibers is 2.6D, tensile strength 15.1 g / d, was elongation 4.6%.

【0039】このあと実施例1と同様にPCLを表面コーティングして評価用サンプルとした。 [0039] was an evaluation sample and surface coating the PCL in the same way as this after the first embodiment. このサンプルを土中10cm下に埋没させ、その強度保持率を測定したところ、12ヵ月で96%、18ヵ月で55%と分解による繊維の著しい強度低下がみられた。 The samples were buried under the soil 10 cm, the place where the strength retention ratio was measured, 96% at 12 months, 55% and significant strength reduction of the fiber by decomposition at 18 months was observed.

【0040】(実施例4)重合度6000、ケン化度9 [0040] (Example 4) Polymerization degree 6000, saponification degree 9
9.9 mol%のPVAと澱粉(コーンスターチ)とを重量比で60/40となるよう混合し、全ポリマ濃度が2 And 9.9 mol% of PVA and starch (corn starch) were mixed so as to be 60/40 in a weight ratio, total polymer concentration of 2
0重量%となるよう水に分散溶解して原液を調整した。 0 was dispersed and dissolved in water so that the weight% stock solution was adjusted.

【0041】次いで該原液を孔径0.08mmφ、孔数50で130℃に保温した口金から吐出し、130℃に保温された雰囲気中で溶媒である水を除去した後約2. [0041] Then ejected from a nozzle which is kept at 130 ° C. The stock solution pore size 0.08Mmfai, with hole number 50, about 2 after removal of the water as a solvent in an atmosphere which is maintained at 130 ° C..
7倍の冷延伸を行い、続いて240℃の空気雰囲気中で5.4倍延伸して巻取った。 For 7 times the cold stretched, it took followed by 5.4 times stretched in an air atmosphere of 240 ℃ winding. 得られた繊維の単繊維繊度は2.2d、引張強度14.1g/d、伸度4.9%であった。 Single fiber fineness of the resulting fibers is 2.2d, tensile strength 14.1 g / d, was 4.9% elongation.

【0042】このあと実施例1と同様にPCLを表面コーティングして評価用サンプルとした。 [0042] was an evaluation sample and surface coating the PCL in the same way as this after the first embodiment. このサンプルを土中10cm下に埋没させ、その強度保持率を測定したところ、12ヵ月で81%、18ヵ月で24%と分解による繊維の著しい強度低下がみられた。 The samples were buried under the soil 10 cm, the place where the strength retention ratio was measured, 81% at 12 months, a significant reduction in strength of the fiber by decomposition with 24% 18 months were observed.

【0043】 [0043]

【発明の効果】本発明の釣糸は釣糸として十分な機械特性を有しながら生分解機能を有し、使用後、土中や海洋中に放棄された場合、バクテリヤや微生物などによって生分解されてしまうため、環境汚染に至らないといった効果を奏する。 Fishing line of the present invention, according to the present invention have a biodegradation function while having sufficient mechanical properties as fishing line, after use, when it is abandoned in the soil and marine, are biodegradable, such as by Bakuteriya and microorganisms since put away, an effect such does not lead to environmental pollution.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 5識別記号 庁内整理番号 FI 技術表示箇所 D06M 15/11 15/333 D06M 15/333 15/11 ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 5 in identification symbol Agency Docket No. FI art display portion D06M 15/11 15/333 D06M 15/333 15/11

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】平均重合度が1500〜8000のポリビニルアルコール系重合体と澱粉とが重量比で90/10 1. A average degree of polymerization and a polyvinyl alcohol polymer and starch 1500-8000 at a weight ratio of 90/10
    〜50/50の割合からなり、引張強度が5g/d以上、初期弾性率が150g/d以上の繊維からなる釣糸。 Consists to 50/50 ratio, tensile strength 5 g / d or more, an initial modulus consisting 150 g / d or more fibers fishing line.
  2. 【請求項2】繊維が加撚マルチフィラメントであり、その表面がポリカプロラクトン、ポリヒドロキシアルカノエート系重合体および脂肪族ポリエステルからなる群より選ばれた1種以上の樹脂で被覆されていることを特徴とする請求項1に記載の釣糸。 Wherein a multifilament twisted fiber pressure, that the surface is coated with polycaprolactone, one or more resins selected from the group consisting of polyhydroxyalkanoate polymers and aliphatic polyesters the fishing line according to claim 1, wherein.
JP6175693A 1993-03-22 1993-03-22 Fishing line Granted JPH06269239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6175693A JPH06269239A (en) 1993-03-22 1993-03-22 Fishing line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6175693A JPH06269239A (en) 1993-03-22 1993-03-22 Fishing line

Publications (1)

Publication Number Publication Date
JPH06269239A true true JPH06269239A (en) 1994-09-27

Family

ID=13180325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6175693A Granted JPH06269239A (en) 1993-03-22 1993-03-22 Fishing line

Country Status (1)

Country Link
JP (1) JPH06269239A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709526B1 (en) 1999-03-08 2004-03-23 The Procter & Gamble Company Melt processable starch compositions
US6723160B2 (en) 2002-02-01 2004-04-20 The Procter & Gamble Company Non-thermoplastic starch fibers and starch composition for making same
JP2009007573A (en) * 2000-03-07 2009-01-15 Procter & Gamble Co Melt processable starch composition
US7947766B2 (en) 2003-06-06 2011-05-24 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
US9017586B2 (en) 2004-04-29 2015-04-28 The Procter & Gamble Company Polymeric structures and method for making same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709526B1 (en) 1999-03-08 2004-03-23 The Procter & Gamble Company Melt processable starch compositions
US7524379B2 (en) 1999-03-08 2009-04-28 The Procter + Gamble Company Melt processable starch compositions
US9458556B2 (en) 1999-03-08 2016-10-04 The Procter & Gamble Company Fiber comprising polyvinylpyrrolidone
JP2009007573A (en) * 2000-03-07 2009-01-15 Procter & Gamble Co Melt processable starch composition
US6723160B2 (en) 2002-02-01 2004-04-20 The Procter & Gamble Company Non-thermoplastic starch fibers and starch composition for making same
US7947766B2 (en) 2003-06-06 2011-05-24 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
US8088843B2 (en) 2003-06-06 2012-01-03 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
US8129449B2 (en) 2003-06-06 2012-03-06 The Procter & Gabmle Company Crosslinking systems for hydroxyl polymers
US8357237B2 (en) 2003-06-06 2013-01-22 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
US9340657B2 (en) 2003-06-06 2016-05-17 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
US7960453B2 (en) 2003-06-06 2011-06-14 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
US9017586B2 (en) 2004-04-29 2015-04-28 The Procter & Gamble Company Polymeric structures and method for making same

Similar Documents

Publication Publication Date Title
US4144080A (en) Process for making amine oxide solution of cellulose
US6890872B2 (en) Fibers comprising starch and biodegradable polymers
US4367191A (en) Preparation of cellulose films or fibers from cellulose solutions
US4255300A (en) Composition and process for making precipitated cellulose-polyvinyl alcohol biconstituent composition
US6739344B2 (en) Biodegradable cellulose acetate structure and tobacco filter
US6020425A (en) Unmodified polyvinyl alcohol films and fibers and methods of making the same
US4029727A (en) Chitin films and fibers
US7012116B1 (en) Blend compositions of an unmodified poly vinyl alcohol and a thermoplastic elastomer
US5840423A (en) Polyvinyl alcohol-based fiber having excellent hot water resistance and production process thereof
US5584919A (en) Pelletized pre-dope granules of cellulose and tertiary amine oxide, spinning solution, of cellulose and process for making them
JP2004003049A (en) Method for producing compact meta type wholly aromatic polyamide fiber
Fujiwara et al. Preparation of high‐strength poly (vinyl alcohol) fibers by crosslinking wet spinning
US4999149A (en) Production of high strength cellulose fiber using zinc chloride, organic solvents and aqueous solution
JP2000265333A (en) Biodegradable conjugate fiber and its production
US4600407A (en) Process for the production of swellable filaments, fibers and shaped structures of acrylic polymers, and the products obtained thereby
US5951933A (en) Processes for precipitating tertiary amine oxide cellulose solutions containing water soluble polymers and products made therefrom
JPS59100710A (en) Production of yarn having high toughness
JP2000303335A (en) Absorbent and flexible structure comprising starch fibers
JP2002220741A (en) Conjugated fiber, hollow fiber and method for producing hollow fiber using the conjugated fiber
JP2008002037A (en) Fibrous structure containing ethylene-vinyl alcohol-based copolymer nano-fiber
JP2005299067A (en) Polylactic acid fiber
US5290349A (en) High strength cellulose fiber or film
JPH07300720A (en) Biodegradable fiber and its production
US2558793A (en) Mixtures comprising polyacrylonitrile and polyvinyl formate
JP2003238669A (en) Thermoplastic cellulose acetate and fiber made thereof