JPH03247748A - Plasma treating device - Google Patents

Plasma treating device

Info

Publication number
JPH03247748A
JPH03247748A JP4267390A JP4267390A JPH03247748A JP H03247748 A JPH03247748 A JP H03247748A JP 4267390 A JP4267390 A JP 4267390A JP 4267390 A JP4267390 A JP 4267390A JP H03247748 A JPH03247748 A JP H03247748A
Authority
JP
Japan
Prior art keywords
control
plasma
vacuum
vessels
treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4267390A
Other languages
Japanese (ja)
Other versions
JP2787503B2 (en
Inventor
Tatsuro Araki
達朗 荒木
Toshiyuki Sakami
俊之 酒見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP4267390A priority Critical patent/JP2787503B2/en
Publication of JPH03247748A publication Critical patent/JPH03247748A/en
Application granted granted Critical
Publication of JP2787503B2 publication Critical patent/JP2787503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently treat different materials with plasma in parallel by time-sharingly supplying a driving pulse voltage to plural treating chambers through a control means in accordance with the material in each treating chamber to generate a DC glow discharge. CONSTITUTION:The materials 7A and 7B respectively placed in plural vacuum vessels 1A and 1B are treated with plasma utilizing a DC glow discharge. In this plasma treating device, a driving pulse voltage is impressed on the vessels 1A and 1B from one DC power source 2 through switching circuits 3A and 3B. The driving pulse voltage is time-dividedly supplied by a control system consisting of a control unit 4 and a pulse control part 5 based on the predetermined voltage control pattern and signals from the temp. detectors 6A and 6B of the vessels 1A and 1B in accordance with the materials 7A and 7B. Consequently, different materials are treated in the plural treating chambers simultaneously and in parallel, and the surface treating process is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は直流グロー放電を利用したプラズマ処理装置1
例えばイオン窒化処理装置、ガス浸炭装置、イオンブレ
ーティング装置等のプラズマ処理装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a plasma processing apparatus 1 using DC glow discharge.
For example, the present invention relates to plasma processing apparatuses such as ion nitriding apparatuses, gas carburizing apparatuses, and ion brating apparatuses.

(従来の技術) この種装置の一例として、イオン窒化処理機能を有する
装置について第4図を参照して説明する。
(Prior Art) As an example of this type of apparatus, an apparatus having an ion nitriding function will be described with reference to FIG.

ここでは、処理室として3台の真空容器41A。Here, three vacuum containers 41A are used as processing chambers.

41B、41.Cを備え、これらの真空容器には1台の
直流電源42から選択的に直流電圧が供給される。
41B, 41. DC voltage is selectively supplied to these vacuum vessels from one DC power supply 42.

真空容器41Aには、バルブを介して荒引き用の真空ポ
ンプ43と常用の真空ポンプ44とが接続されると共に
、供給源毎にバルブ、流量コントローラを介してN2ガ
ス供給源45.Arガス供給源46.N2ガス供給源4
7が接続されている。
A vacuum pump 43 for rough pumping and a regular vacuum pump 44 are connected to the vacuum container 41A via valves, and an N2 gas supply source 45. Ar gas supply source 46. N2 gas supply source 4
7 is connected.

真空容器41B、41Cについても同様である。The same applies to the vacuum containers 41B and 41C.

真空容器41Aにおいてイオン窒化処理を行う場合1周
知のように、被処理材料を真空容器41A内に収容した
後、真空ポンプ42.43で真空引きを行う。所定の減
圧状態が得られたら、N2ガス供給源45.Arガス供
給源46.N2ガス供給源47より真空容器41AにH
2,Ar。
When performing ion nitriding treatment in the vacuum container 41A, as is well known, the material to be treated is placed in the vacuum container 41A and then evacuated using vacuum pumps 42 and 43. When a predetermined reduced pressure state is obtained, the N2 gas supply source 45. Ar gas supply source 46. H from the N2 gas supply source 47 to the vacuum container 41A.
2, Ar.

N2ガスを任意の比率にて供給し、その後直流電源42
から直流電圧を供給することでH2,Ar。
N2 gas is supplied at an arbitrary ratio, and then the DC power supply 42
H2, Ar by supplying DC voltage from.

N2ガス雰囲気中で直流グロー放電を生ぜしめ。Produces DC glow discharge in N2 gas atmosphere.

窒化処理が始まる。The nitriding process begins.

(発明か解決しようとする課題) ところで、この装置は、直流電源42がらスイッチの切
換えにより真空容器41A〜41Cのいずれかに電源を
供給するものであり、常時1台の真空容器だけが稼動可
能である。
(Problem to be solved by the invention) By the way, this device supplies power to any of the vacuum vessels 41A to 41C by switching a switch from the DC power supply 42, and only one vacuum vessel can be operated at any time. It is.

これに対して、複数の真空容器を備えた装置の場合には
、異なる被処理利料を並行処理できることか望ましい。
On the other hand, in the case of an apparatus equipped with a plurality of vacuum vessels, it is desirable to be able to process different amounts of interest in parallel.

しかしなから、被処理材料が異なると処理時間は勿論、
昇温速度や駆動電圧も異なる。例えば、ステンレス薄板
のような軽量物は昇温か早く駆動電圧も低くて済むが1
重量の大きいものは昇温か遅く高い駆動電圧を必要とす
る。このような理由で、これまでの装置では異なる被処
理材料の並行処理は不可能であった。
However, if the material to be processed differs, the processing time will of course change.
The temperature increase rate and driving voltage are also different. For example, lightweight materials such as thin stainless steel plates can be heated quickly and require low driving voltage;
Heavy weight devices require a slow rise and high drive voltage. For these reasons, it has not been possible to process different materials to be processed in parallel using conventional devices.

本発明の課題は、電源の供給手段を改良することにより
、複数の処理室において異なる被処理材料を並行処理で
きるようなプラズマ処理装置を提供することにある。
An object of the present invention is to provide a plasma processing apparatus that can process different materials to be processed in parallel in a plurality of processing chambers by improving a power supply means.

(課題を解決するための手段) 本発明によるプラズマ処理装置は、処理が同時進行する
複数の処理室を備え、これら複数の処理室に1つの電源
から各処理室の被処理材料に応じて時分割的にパルス状
の駆動電圧を供給する制御手段を備えたことを特徴とす
る。
(Means for Solving the Problems) A plasma processing apparatus according to the present invention includes a plurality of processing chambers in which processing proceeds simultaneously, and a single power supply is supplied to the plurality of processing chambers at a time according to the material to be processed in each processing chamber. The present invention is characterized in that it includes a control means that supplies a pulsed driving voltage in parts.

(作用) 本発明における制御手段は、各処理室の被処理材料に応
じてあらかじめ決められた制御パターンにもとづいて各
処理室に供給する電圧の制御を行う。電圧の制御は、パ
ルス状電圧の幅1発生周期や個数を変えることで行う。
(Function) The control means in the present invention controls the voltage supplied to each processing chamber based on a control pattern determined in advance according to the material to be processed in each processing chamber. The voltage is controlled by changing the generation period and the number of pulse voltages.

(実施例) 第1図〜第3図を参照して本発明の一実施例を説明する
(Example) An example of the present invention will be described with reference to FIGS. 1 to 3.

第1図において、ここでは説明をわかり易くするため処
理室としての真空容器が2台の場合について説明する。
In FIG. 1, in order to make the explanation easier to understand, a case will be described here in which there are two vacuum vessels as processing chambers.

真空容器IA、]、Bへの電源供給系として1台の直流
電源2を有し、スイッチング回路3A、3Bを介してパ
ルス状の駆動電圧が真空容器IA、IBに時分割的に供
給される。パルス状駆動電圧の制御は、後述するように
、制御ユニット4.パルス制御部5による制御系によっ
て行われる。制御ユニット4は、被処理材料に応じてあ
らかじめ決められた電圧制御パターンを描くような制御
を行うと共に、各真空容器IA、IBに設置された温度
検出器6A、6Bからの信号によって電圧制御を行う。
It has one DC power supply 2 as a power supply system to the vacuum vessels IA,], B, and a pulsed drive voltage is supplied to the vacuum vessels IA, IB in a time-sharing manner via switching circuits 3A, 3B. . The pulsed drive voltage is controlled by the control unit 4. as described later. This is performed by a control system based on the pulse control section 5. The control unit 4 performs control to draw a predetermined voltage control pattern depending on the material to be processed, and also performs voltage control based on signals from temperature detectors 6A and 6B installed in each vacuum vessel IA and IB. conduct.

各真空容器IA、IBの排気系、各種ガス供給系は第4
図に示したものと同じで良いので1図示説明は省略する
The exhaust system and various gas supply systems for each vacuum vessel IA and IB are in the fourth
Since it may be the same as that shown in the figure, the explanation of the illustration will be omitted.

制御ユニット4は、被処理材料に応じて複数種類の電力
供給パターンを設定できるようにされており、設定され
た電力供給パターンにもとづいてパルス制御部5を制御
し、スイッチング回路3A。
The control unit 4 is configured to be able to set a plurality of types of power supply patterns depending on the material to be processed, and controls the pulse control section 5 based on the set power supply pattern to control the switching circuit 3A.

3Bの出力であるパルス状駆動電圧の周期1個数を制御
する。なお、真空容器IAへのパルス発生時間域と真空
容器IBへのパルス発生時間域は重ならないようにされ
る。
Controls the number of cycles of the pulsed drive voltage that is the output of 3B. Note that the pulse generation time range for the vacuum vessel IA and the pulse generation time range for the vacuum vessel IB are made not to overlap.

第2図は制御ユニット4において設定される電力供給パ
ターンの例を示す。真空容器IAに収容された被処理材
料7Aに対して、真空容器IBに収容された被処理材料
7Bが大きい場合、真空容器IAに供給される電力供給
パターン(第2図a)に比して真空容器IBに供給され
る電力供給バタン(第2図b)も大きくなる。第2図中
、斜線領域は昇温あるいは降温過程を示し1時間軸に平
行な領域は均熱過程を示す。
FIG. 2 shows an example of a power supply pattern set in the control unit 4. As shown in FIG. When the material to be processed 7B accommodated in the vacuum container IB is larger than the material to be processed 7A accommodated in the vacuum container IA, the power supply pattern supplied to the vacuum container IA (Fig. 2 a) The power supply button (FIG. 2b) supplied to the vacuum vessel IB also becomes larger. In FIG. 2, the shaded area indicates the temperature increasing or decreasing process, and the area parallel to the 1-time axis indicates the soaking process.

次に、動作について説明する。Next, the operation will be explained.

真空容器]、A、1.8にそれぞれ被処理材料7A7B
を収容すると共に、電力供給パターンを設定し、所定の
排気動作、ガス供給動作を行った後。
Vacuum container], A, and 1.8 are the materials to be processed 7A and 7B, respectively.
After accommodating the gas, setting the power supply pattern, and performing predetermined exhaust operations and gas supply operations.

制御ユニット4は電源供給を開始する。制御ユニット4
は、まず、真空容器1Aが第2図(a)で示す上昇パタ
ーンを描くようにするために、パルス制御部5を制御し
て真空容器IAに単位時間当たりのパルス数の多いパル
ス状電圧を供給する。
The control unit 4 starts supplying power. control unit 4
First, in order to cause the vacuum vessel 1A to draw the rising pattern shown in FIG. 2(a), the pulse controller 5 is controlled to apply a pulsed voltage with a large number of pulses per unit time to the vacuum vessel IA. supply

真空容器IAの昇温か完了すると、制御ユニット4は真
空容器IAに対しては均熱処理が行われるように単位時
間当たりのパルス数を所定数だけ減らして供給する。
When the heating of the vacuum container IA is completed, the control unit 4 reduces the number of pulses per unit time by a predetermined number and supplies the vacuum container IA with a predetermined number so that the soaking process is performed.

制御ユニット4はまた。真空容器IBの昇温を始めるた
めに第2図(b)に示すようなパターンにもとづいてパ
ルス制御部5を制御してスイッチング回路3Aの制御時
間域とは重ならない時間域でスイッチング回路3Bをオ
ン、オフ制御する。
Control unit 4 also. In order to start raising the temperature of the vacuum vessel IB, the pulse controller 5 is controlled based on the pattern shown in FIG. On/off control.

第3図は真空容器IAが均熱処理中(第3図a)で、Q
空容器IBか昇温中(第3図b)のパルス状駆動電圧を
示す。
Figure 3 shows vacuum vessel IA undergoing soaking treatment (Figure 3a), and Q
The pulsed driving voltage during heating of the empty container IB (Fig. 3b) is shown.

制御ユニット4はまた。温度検出器6A、6Bからの検
出信号によりフィードバック制御を行う。
Control unit 4 also. Feedback control is performed using detection signals from temperature detectors 6A and 6B.

すなわち、何らかの原因で真空容器内の温度が変動した
時、この温度変動を補償するようにパルス制御部5を制
御する。なお、真空容器内の温度変動が少ない場合には
、上述のフィードバック系は不要である。
That is, when the temperature inside the vacuum container fluctuates for some reason, the pulse controller 5 is controlled to compensate for this temperature fluctuation. Note that if there is little temperature variation within the vacuum container, the above-mentioned feedback system is not necessary.

また1本発明は上記実施例に限らず、各処理室に供給す
るパルス状電圧の幅を時間的に重ならないように制御す
るようにしても実現され得る。この場合、パルス幅制御
はスイッチング回路34A。
Furthermore, the present invention is not limited to the above-mentioned embodiments, but can also be realized by controlling the widths of the pulsed voltages supplied to each processing chamber so that they do not overlap in time. In this case, the pulse width is controlled by the switching circuit 34A.

34Bの導通角を制御する点弧制御手段でも実現しつる
This can also be realized by an ignition control means that controls the conduction angle of 34B.

(発明の効果) 以上説明してきたように本発明によれば、複数の処理室
に対して1つの直流電源から個別に電圧制御可能な制御
手段を備えたことにより、形状や処理条件等の異なる被
処理材料でもこれを並行して同時に表面処理することが
でき1表面熱処理工程の大幅な短縮化が可能となる。
(Effects of the Invention) As described above, according to the present invention, by providing a control means that can individually control the voltage from one DC power supply to a plurality of processing chambers, Even the materials to be treated can be surface-treated in parallel and at the same time, making it possible to significantly shorten the number of steps required for one surface heat treatment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略構成図、第2図は第1
図に示された真空容器に供給する塩カバターンの一例を
示した図、第3図は第1図に示された真空容器に供給さ
れるパルス状電圧の一例を示した図、第4図は従来のプ
ラズマ熱処理装置の概略構成図。 図中、IA、IBは真空容器、2は直流電源。 3A、3Bはスイッチング回路、4は制御ユニット、5
はパルス制御部、6A、6Bは温度検出器。 7A、7Bは被処理材料。
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, and FIG.
A diagram showing an example of a salt cover turn supplied to the vacuum container shown in the figure, FIG. 3 is a diagram showing an example of a pulsed voltage supplied to the vacuum container shown in FIG. 1, and FIG. A schematic configuration diagram of a conventional plasma heat treatment apparatus. In the figure, IA and IB are vacuum containers, and 2 is a DC power supply. 3A and 3B are switching circuits, 4 is a control unit, 5
is a pulse control unit, and 6A and 6B are temperature detectors. 7A and 7B are materials to be processed.

Claims (1)

【特許請求の範囲】[Claims] 1)直流グロー放電を利用したプラズマ処理装置におい
て,処理が同時進行する複数の処理室を備え,これら複
数の処理室に1つの電源から各処理室の被処理材料に応
じて時分割的にパルス状の駆動電圧を供給する制御手段
を備えたことを特徴とするプラズマ処理装置。
1) A plasma processing apparatus that uses DC glow discharge is equipped with multiple processing chambers in which processing proceeds simultaneously, and pulses are applied to these multiple processing chambers from one power source in a time-sharing manner according to the material to be processed in each processing chamber. What is claimed is: 1. A plasma processing apparatus comprising: a control means for supplying a driving voltage of 1.
JP4267390A 1990-02-26 1990-02-26 Plasma processing equipment Expired - Lifetime JP2787503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4267390A JP2787503B2 (en) 1990-02-26 1990-02-26 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4267390A JP2787503B2 (en) 1990-02-26 1990-02-26 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JPH03247748A true JPH03247748A (en) 1991-11-05
JP2787503B2 JP2787503B2 (en) 1998-08-20

Family

ID=12642551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4267390A Expired - Lifetime JP2787503B2 (en) 1990-02-26 1990-02-26 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP2787503B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1074042A1 (en) * 1998-04-14 2001-02-07 Matrix Integrated Systems, Inc. Synchronous multiplexed near zero overhead architecture for vacuum processes
WO2018178289A1 (en) * 2017-03-31 2018-10-04 centrotherm international AG Plasma generator, plasma treatment device, and method for providing electric power in a pulsed manner
EP4005082A4 (en) * 2019-07-29 2023-08-09 AES Global Holdings, Pte. Ltd. Multiplexed power generator output with channel offsets for pulsed driving of multiple loads

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1074042A1 (en) * 1998-04-14 2001-02-07 Matrix Integrated Systems, Inc. Synchronous multiplexed near zero overhead architecture for vacuum processes
EP1074042A4 (en) * 1998-04-14 2004-12-29 Fusion Systems Corp Synchronous multiplexed near zero overhead architecture for vacuum processes
WO2018178289A1 (en) * 2017-03-31 2018-10-04 centrotherm international AG Plasma generator, plasma treatment device, and method for providing electric power in a pulsed manner
KR20190130019A (en) * 2017-03-31 2019-11-20 센트로테에름 인터내셔널 아게 Plasma Generator, Plasma Processing Apparatus, and Method for Pulsed Provision of Electrical Power
CN110494949A (en) * 2017-03-31 2019-11-22 商先创国际股份有限公司 Plasma generator, apparatus for processing plasma and power pulse Supply Method
EP3879558A1 (en) * 2017-03-31 2021-09-15 centrotherm international AG Plasma generator, plasma processing device, and method for pulsed provision of electrical energy
CN110494949B (en) * 2017-03-31 2022-04-29 商先创国际股份有限公司 Plasma generator, plasma processing apparatus, and power pulse supply method
US11355316B2 (en) 2017-03-31 2022-06-07 centrotherm international AG Plasma generator, plasma treatment device, and method for providing electric power in a pulsed manner
EP4005082A4 (en) * 2019-07-29 2023-08-09 AES Global Holdings, Pte. Ltd. Multiplexed power generator output with channel offsets for pulsed driving of multiple loads

Also Published As

Publication number Publication date
JP2787503B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
JP6325448B2 (en) Inert predominate pulsing in plasma processing systems.
RU2030811C1 (en) Solid body plasma processing plant
KR940022685A (en) Film Formation Method
KR970072182A (en) Plasma treatment method and apparatus
KR101764767B1 (en) Method and apparatus for plasma processing
JP2015092580A (en) Temperature controller for controlling sample temperature, sample stand for mounting sample, and plasma processing apparatus comprising them
JPH03247748A (en) Plasma treating device
TWI682045B (en) Reactive sputtering device and method for forming composite metal compound or mixed film using the device
KR102490189B1 (en) Plasma processing apparatus and plasma processing method
KR20230133885A (en) How to control the source frequency of the plasma processing device and source high-frequency power
US7025895B2 (en) Plasma processing apparatus and method
JP4474918B2 (en) Control device
JP2004096019A (en) Generating method of high-frequency plasma, and generator thereof
KR20200074032A (en) Substrate processing method
US7087443B2 (en) Optimized temperature controller for cold mass introduction
JP2001075605A (en) Feedback controller and semiconductor manufacturing device and method for controlling temperature therefor
JPH09191005A (en) Specimen temperature control method and vacuum treatment apparatus
US20230073489A1 (en) Method and apparatus for treating substrate
JP2019060005A (en) Plasma nitriding method
JPH05291155A (en) Plasma processor
KR970017926A (en) Vacuum device for semiconductor device
KR20180058534A (en) Method for controlling of substrate processing apparatus
JPH02172223A (en) Plasma etching apparatus
JP2000164516A (en) Microwave plasma processor
JPS5739167A (en) Glow discharge heat treatment apparatus