JP2787503B2 - Plasma processing equipment - Google Patents
Plasma processing equipmentInfo
- Publication number
- JP2787503B2 JP2787503B2 JP4267390A JP4267390A JP2787503B2 JP 2787503 B2 JP2787503 B2 JP 2787503B2 JP 4267390 A JP4267390 A JP 4267390A JP 4267390 A JP4267390 A JP 4267390A JP 2787503 B2 JP2787503 B2 JP 2787503B2
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- control unit
- vacuum vessel
- power supply
- processed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は直流グロー放電を利用したプラズマ処理装
置,例えばイオン窒化処理装置,ガス浸炭装置,イオン
プレーティング装置等のプラズマ処理装置に関する。Description: TECHNICAL FIELD The present invention relates to a plasma processing apparatus using a DC glow discharge, for example, a plasma processing apparatus such as an ion nitriding apparatus, a gas carburizing apparatus, and an ion plating apparatus.
(従来の技術) この種装置の一例として,イオン窒化処理機能を有す
る装置について第4図を参照して説明する。ここでは,
処理室として3台の真空容器41A,41B,41Cを備え,これ
らの真空容器には1台の直流電源42から選択的に直流電
圧が供給される。(Prior Art) As an example of this type of apparatus, an apparatus having an ion nitriding function will be described with reference to FIG. here,
The processing chamber includes three vacuum vessels 41A, 41B, and 41C, and a DC voltage is selectively supplied from one DC power supply 42 to these vacuum vessels.
真空容器41Aには,バルブを介して荒引き用の真空ポ
ンプ43と常用の真空ポンプ44とが接続されると共に,供
給源毎にバルブ,流量コントローラを介してH2ガス供給
源45,Arガス供給源46,N2ガス供給源47が接続されてい
る。真空容器41B,41Cについても同様である。A vacuum pump 43 for roughing and a vacuum pump 44 for ordinary use are connected to the vacuum vessel 41A via a valve, and an H 2 gas supply source 45 and an Ar gas are supplied via a valve and a flow rate controller for each supply source. A supply source 46 and an N 2 gas supply source 47 are connected. The same applies to the vacuum containers 41B and 41C.
真空容器41Aにおいてイオン窒化処理を行う場合,周
知のように,被処理材料を真空容器41A内に収容した
後,真空ポンプ42,43で真空引きを行う。所定の減圧状
態が得られたら、H2ガス供給源45,Arガス供給源46,N2ガ
ス供給源47より真空容器41AにH2,Ar,N2ガスを任意の比
率にて供給し,その後直流電源42から直流電圧を供給す
ることでH2,Ar,N2ガス雰囲気中で直流グロー放電を生ぜ
しめ,窒化処理が始まる。When performing the ion nitriding process in the vacuum vessel 41A, as is well known, the material to be processed is accommodated in the vacuum vessel 41A, and then the vacuum pumps 42 and 43 evacuate. After a predetermined reduced pressure state is obtained, H 2, Ar, N 2 gas was supplied at any ratio from the H 2 gas supply source 45, Ar gas supply source 46, N 2 gas supply source 47 to the vacuum chamber 41A, Thereafter, a DC voltage is supplied from the DC power supply 42 to generate a DC glow discharge in an H 2 , Ar, N 2 gas atmosphere, and the nitriding process starts.
(発明が解決しようとする課題) ところで,この装置は,直流電源42からスイッチの切
換えにより真空容器41A〜41Cのいずれかに電源を供給す
るものであり,常時1台の真空容器だけが稼動可能であ
る。(Problems to be Solved by the Invention) This device supplies power from the DC power supply 42 to one of the vacuum vessels 41A to 41C by switching a switch, and only one vacuum vessel can be operated at any time. It is.
これに対して,複数の真空容器を備えた装置の場合に
は,異なる被処理材料を並行処理できることが望まし
い。しかしながら,被処理材料が異なると処理時間は勿
論,昇温速度や駆動電圧も異なる。例えば,ステンレス
薄板のような軽量物は昇温が早く駆動電圧も低くて済む
が,重量の大きいものは昇温が遅く高い駆動電圧を必要
とする。このような理由で,これまでの装置では異なる
被処理材料の並行処理は不可能であった。On the other hand, in the case of an apparatus having a plurality of vacuum vessels, it is desirable that different materials to be processed can be processed in parallel. However, when the materials to be processed are different, not only the processing time but also the heating rate and the driving voltage are different. For example, a light-weight material such as a stainless steel plate is quickly heated and requires a low driving voltage, but a heavy material is slow and requires a high driving voltage. For this reason, parallel processing of different materials to be processed has not been possible with conventional devices.
本発明の課題は,電源の供給手段を改良することによ
り,複数の処理室において異なる被処理材料を並行処理
できるようなプラズマ処理装置を提供することにある。An object of the present invention is to provide a plasma processing apparatus capable of processing different materials to be processed in a plurality of processing chambers in parallel by improving a power supply means.
(課題を解決するための手段) 本発明によるプラズマ処理装置は,処理が同時進行す
る複数の処理室を備え,これら複数の処理室に1つの電
源から各処理室の被処理材料に応じて時分割的にパルス
状の駆動電圧を供給する制御手段を備えたことを特徴と
する。(Means for Solving the Problems) The plasma processing apparatus according to the present invention includes a plurality of processing chambers in which processing proceeds simultaneously, and the plurality of processing chambers are supplied from one power source according to the material to be processed in each processing chamber. Control means for supplying a pulsed drive voltage in a divided manner is provided.
(作用) 本発明における制御手段は,処理室の被処理材料に応
じてあらかじめ決められた制御パターンにもとづいて各
処理室に供給する電圧の制御を行う。電圧の制御は,パ
ルス状電圧の幅,発生周期や個数を変えることで行う。(Operation) The control means in the present invention controls the voltage supplied to each processing chamber based on a control pattern predetermined according to the material to be processed in the processing chamber. The voltage is controlled by changing the width, generation cycle, and number of the pulse-like voltages.
(実施例) 第1図〜第3図を参照して本発明の一実施例を説明す
る。(Embodiment) An embodiment of the present invention will be described with reference to FIGS.
第1図において,ここでは説明をわかり易くするため
処理室としての真空容器が2台の場合について説明す
る。真空容器1A,1Bへの電流供給系として1台の直流電
源2を有し,スイッチング回路3A,3Bを介してパルス状
の駆動電圧が真空容器1A,1Bに時分割的に供給される。
パルス状駆動電圧の制御は,後述するように,制御ユニ
ット4,パルス制御部5による制御系によって行われる。
制御ユニット4は,被処理材料に応じてあらかじめ決め
られた電圧パターンを描くような制御を行うと共に,各
真空容器1A,1Bに設置された温度検出器6A,6Bからの信号
によって電圧制御を行う。各真空容器1A,1Bの排気系、
各種ガス供給系は第4図に示したものと同じで良いの
で、図示説明は省略する。In FIG. 1, the case where there are two vacuum chambers as processing chambers will be described here for easy understanding. One DC power supply 2 is provided as a current supply system to the vacuum vessels 1A and 1B, and a pulsed driving voltage is supplied to the vacuum vessels 1A and 1B in a time-division manner via switching circuits 3A and 3B.
The control of the pulse-like drive voltage is performed by a control system including a control unit 4 and a pulse control unit 5 as described later.
The control unit 4 performs control such that a predetermined voltage pattern is drawn in accordance with the material to be processed, and performs voltage control based on signals from the temperature detectors 6A and 6B installed in each of the vacuum vessels 1A and 1B. . Exhaust system of each vacuum vessel 1A, 1B,
The various gas supply systems may be the same as those shown in FIG.
制御ユニット4は,被処理材料に応じて複数種類の電
力供給パターンを設定できるようにされており,設定さ
れた電力供給パターンにもとづいてパルス制御部5を制
御し,スイッチング回路3A,3Bの出力であるパルス状駆
動電圧の周期,個数を制御する。なお真空容器1Aへのパ
ルス発生は時間域と真空容器1Bへのパルス発生時間域は
重ならないようにされる。The control unit 4 can set a plurality of types of power supply patterns according to the material to be processed. The control unit 4 controls the pulse control unit 5 based on the set power supply pattern, and controls the output of the switching circuits 3A and 3B. The cycle and the number of the pulse-like drive voltages are controlled. The time range for pulse generation to the vacuum vessel 1A does not overlap with the time range for pulse generation to the vacuum vessel 1B.
第2図は制御ユニット4において設定される電力供給
パターンの例を示す。真空容器1Aに収容された被処理材
料7Aに対して,真空容器1Bに収容された被処理材料7Bが
大きい場合、真空容器1Aに供給される電力供給パターン
(第2図a)に比して真空容器1Bに供給される電力供給
パターン(第2図b)も大きくなる。第2図中,斜線領
域は昇温あるいは降温過程を示し,時間軸に平行な領域
は均熱過程を示す。FIG. 2 shows an example of a power supply pattern set in the control unit 4. When the material 7B accommodated in the vacuum vessel 1B is larger than the material 7A accommodated in the vacuum vessel 1A, the electric power supply pattern supplied to the vacuum vessel 1A (FIG. 2A) The power supply pattern (FIG. 2b) supplied to the vacuum vessel 1B also becomes large. In FIG. 2, a hatched area indicates a heating or cooling process, and a region parallel to the time axis indicates a soaking process.
次に、動作について説明する。 Next, the operation will be described.
真空容器1A,1Bにそれぞれ被処理材料7A,7Bを収容する
と共に,電力供給パターンを設定し,所定の排気動作,
ガス供給動作を行った後,制御ユニット4は電源供給を
開始する。制御ユニット4は,まず,真空容器1Aが第2
図(a)で示す上昇パターンを描くようにするために,
パルス制御部5を制御して真空容器1Aに単位時間当たり
のパルス数の多いパルス状電圧を供給する。真空容器1A
の昇温が完了すると,制御ユニット4は真空容器1Aに対
しては均熱処理が行われるように単位時間当たりのパル
ス数を所定数だけ減らして供給する。The materials 7A and 7B to be processed are accommodated in the vacuum vessels 1A and 1B, respectively, and a power supply pattern is set so that a predetermined evacuation operation is performed.
After performing the gas supply operation, the control unit 4 starts power supply. First, the control unit 4 has the vacuum vessel 1A
In order to draw the rising pattern shown in FIG.
The pulse controller 5 is controlled to supply a pulsed voltage having a large number of pulses per unit time to the vacuum vessel 1A. Vacuum container 1A
Is completed, the control unit 4 supplies a reduced number of pulses per unit time to the vacuum vessel 1A by a predetermined number so as to perform the soaking process.
制御ユニット4はまた,真空容器1Bの昇温を始めるた
めに第2図(b)に示すようなパターンにもとづいでパ
ルス制御部5を制御してスイッチング回路3Aの制御時間
域とは重ならない時間域でスイッチング回路3Bをオン,
オフ制御する。The control unit 4 also controls the pulse control unit 5 based on a pattern as shown in FIG. 2 (b) in order to start raising the temperature of the vacuum vessel 1B, so that the time does not overlap with the control time range of the switching circuit 3A. Switching circuit 3B is turned on in the
Control off.
第3図は真空容器1Aが均熱処理中(第3図a)で、真
空容器1Bが昇温中(第3図b)のパルス状駆動電圧を示
す。FIG. 3 shows the pulse-shaped drive voltage when the vacuum vessel 1A is performing the soaking process (FIG. 3a) and the vacuum vessel 1B is increasing the temperature (FIG. 3b).
制御ユニット4はまた,温度検出器6A,6Bからの検出
信号によりフィードバック制御を行う。すなわち,何ら
かの原因で真空容器内の温度が変動した時,この温度変
動を補償するようにパルス制御部5を制御する。なお真
空容器内の温度変動が少ない場合には、上述のフィード
バック系は不要である。The control unit 4 also performs feedback control based on detection signals from the temperature detectors 6A and 6B. That is, when the temperature in the vacuum vessel fluctuates for some reason, the pulse control unit 5 is controlled so as to compensate for this temperature fluctuation. When the temperature fluctuation in the vacuum vessel is small, the above-mentioned feedback system is unnecessary.
また,本発明は上記実施例に限らず,各処理室に供給
するパルス状電圧の幅を時間的に重ならないように制御
するようにしても実現され得る。この場合,パルス幅制
御はスイチング回路34A,34Bの導通角を制御する点弧制
御手段でも実現しうる。Further, the present invention is not limited to the above embodiment, and may be realized by controlling the widths of the pulsed voltages supplied to the respective processing chambers so that they do not overlap with time. In this case, the pulse width control can also be realized by the ignition control means for controlling the conduction angle of the switching circuits 34A and 34B.
(発明の効果) 以上説明してきたように本発明によれば,複数の処理
室に対して1つの直流電源から個別に電圧制御可能な制
御手段を備えたことにより,形状や処理条件等の異なる
被処理材料でもこれを並行して同時に表面処理すること
ができ,表面熱処理工程の大幅な短縮化が可能となる。(Effects of the Invention) As described above, according to the present invention, since a plurality of processing chambers are provided with control means capable of individually controlling the voltage from one DC power supply, the shape, processing conditions, and the like differ. The material to be treated can be subjected to the surface treatment in parallel and the surface heat treatment step can be greatly shortened.
第1図は本発明の一実施例の概略構成図,第2図は第1
図に示された真空容器に供給する電力パターンの一例を
示した図,第3図は第1図に示された真空容器に供給さ
れるパルス状電圧の一例を示した図,第4図は従来のプ
ラズマ熱処理装置の概略構成図, 図中,1A,1Bは真空容器,2は直流電源,3A,3Bはスイッチン
グ回路,4は制御ユニット,5はパルス制御部,6A,6Bは温度
検出器,7A,7Bは被処理材料。FIG. 1 is a schematic configuration diagram of one embodiment of the present invention, and FIG.
FIG. 3 shows an example of a power pattern supplied to the vacuum vessel shown in FIG. 3, FIG. 3 shows an example of a pulsed voltage supplied to the vacuum vessel shown in FIG. 1, and FIG. Schematic configuration of conventional plasma heat treatment equipment, where 1A and 1B are vacuum vessels, 2 is a DC power supply, 3A and 3B are switching circuits, 4 is a control unit, 5 is a pulse control unit, and 6A and 6B are temperature detectors. , 7A, 7B are materials to be processed.
Claims (1)
置において,処理が同時進行する複数の処理室を備え,
これら複数の処理に1つの電源から各処理室の被処理材
料に応じて時分割的にパルス状の駆動電圧を供給する制
御手段を備えたことを特徴とするプラズマ処理装置。1. A plasma processing apparatus using a DC glow discharge, comprising a plurality of processing chambers in which processing proceeds simultaneously.
A plasma processing apparatus comprising a control unit for supplying a pulsed driving voltage in a time-division manner from one power supply to one of the plurality of processes in accordance with a material to be processed in each processing chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4267390A JP2787503B2 (en) | 1990-02-26 | 1990-02-26 | Plasma processing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4267390A JP2787503B2 (en) | 1990-02-26 | 1990-02-26 | Plasma processing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03247748A JPH03247748A (en) | 1991-11-05 |
JP2787503B2 true JP2787503B2 (en) | 1998-08-20 |
Family
ID=12642551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4267390A Expired - Lifetime JP2787503B2 (en) | 1990-02-26 | 1990-02-26 | Plasma processing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2787503B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6228773B1 (en) * | 1998-04-14 | 2001-05-08 | Matrix Integrated Systems, Inc. | Synchronous multiplexed near zero overhead architecture for vacuum processes |
DE102018204585A1 (en) * | 2017-03-31 | 2018-10-04 | centrotherm international AG | Plasma generator, plasma treatment apparatus and method for pulsed supply of electrical power |
CN114424447A (en) * | 2019-07-29 | 2022-04-29 | 先进工程解决方案全球控股私人有限公司 | Multiplexed power generator output with channel offset for pulsed driving of multiple loads |
-
1990
- 1990-02-26 JP JP4267390A patent/JP2787503B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03247748A (en) | 1991-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5110437A (en) | Plasma processing apparatus | |
KR102279088B1 (en) | Plasma processing apparatus | |
KR970072182A (en) | Plasma treatment method and apparatus | |
RU2030811C1 (en) | Solid body plasma processing plant | |
JPH06113561A (en) | Circuit device for power supply to plasma and apparatus of surface technique | |
JPH09157846A (en) | Temperature controller | |
WO2014064779A1 (en) | Plasma treatment device and method | |
KR101764767B1 (en) | Method and apparatus for plasma processing | |
KR20190019205A (en) | RF power distribution method in a multi-zone electrode array | |
JP2787503B2 (en) | Plasma processing equipment | |
TWI682045B (en) | Reactive sputtering device and method for forming composite metal compound or mixed film using the device | |
US6033586A (en) | Apparatus and method for surface treatment | |
WO2003036681A3 (en) | Methods and apparatus for plasma doping by anode pulsing | |
JP2001207259A (en) | Surface modification method and system | |
JP2002319577A5 (en) | Plate for plasma processing equipment | |
JP2000232098A (en) | Control method for sample temperature and vacuum process device | |
JP6726010B2 (en) | Atmospheric pressure plasma generator | |
US7025895B2 (en) | Plasma processing apparatus and method | |
JP2656658B2 (en) | Sample temperature control method and vacuum processing device | |
RU2777250C1 (en) | Installation for ion nitridation in glow discharge plasma | |
KR102521387B1 (en) | Plasma processing device and plasma processing method | |
JPH09191005A (en) | Specimen temperature control method and vacuum treatment apparatus | |
JPH04293235A (en) | Plasma generating equipment | |
JPH04329626A (en) | Processor of semiconductor device | |
JPH05287559A (en) | Plasma generator |