JPH03247553A - Aluminum oxide-based ceramic having high strength and toughness and its production - Google Patents

Aluminum oxide-based ceramic having high strength and toughness and its production

Info

Publication number
JPH03247553A
JPH03247553A JP2042979A JP4297990A JPH03247553A JP H03247553 A JPH03247553 A JP H03247553A JP 2042979 A JP2042979 A JP 2042979A JP 4297990 A JP4297990 A JP 4297990A JP H03247553 A JPH03247553 A JP H03247553A
Authority
JP
Japan
Prior art keywords
powder
less
aluminum oxide
particle size
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2042979A
Other languages
Japanese (ja)
Other versions
JP2805957B2 (en
Inventor
Akio Nishiyama
昭雄 西山
Takashi Koyama
孝 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12651159&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03247553(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2042979A priority Critical patent/JP2805957B2/en
Priority to US07/658,914 priority patent/US5188908A/en
Priority to EP91102673A priority patent/EP0443624B1/en
Priority to DE69104862T priority patent/DE69104862T2/en
Publication of JPH03247553A publication Critical patent/JPH03247553A/en
Priority to US07/932,195 priority patent/US5275981A/en
Application granted granted Critical
Publication of JP2805957B2 publication Critical patent/JP2805957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve the strength of the ceramic by mixing the powder of the oxide of a specified metal or rare-earth element, the powder of the carbide, nitride and oxide of a group 4a metal and Al2O3 powder, compacting the mixture, sintering the green compact and then heat-treating the compact. CONSTITUTION:The Al2O3 powder having <=0.6mum average particle diameter, 0.05-2wt.% of the powder of the oxide of a metal consisting of >=1 kind among Y, Mg, Cr, Ni, Co and rare-earth elements and having <=1mum average particle diameter and 5-50wt.% of the powder of the carbide, nitride and oxide of a group 4a metal consisting of >=1 kind among the carbide, nitride, carbonitride, carboxide, nitrooxide and carbonitrooxide of Ti, Zr and Hf, having <=1.5mum average particle diameter and in which the content of the particles having <=0.3mum diameter is controlled to >=10% are mixed, and the mixture is compacted to obtain the green compact. The compact is sintered at 1680-1830 deg.C for 10-40min in the Ar or gaseous mixture of Ar and an inert gas kept at 0.8-5atm, and then held at 1300-1450 deg.C for 2-10hr in the Ar or gaseous mixture of Ar and an inert gas kept at 100-2000atm to obtain an Al2O3 ceramic having high strength and toughness and in which the particle diameter of the hard dispersed phase in the Al2O3 base is controlled to <=0.3mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高強度および高靭性を有し、特に苛酷な条
件下での切削に切削工具として用いた場合にすぐれた性
能を発揮する酸化アルミニウム(以下、Ag2O3で示
す)基セラミックスおよびその製造法に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] This invention provides an oxidized material that has high strength and toughness and exhibits excellent performance when used as a cutting tool for cutting under especially severe conditions. This invention relates to aluminum (hereinafter referred to as Ag2O3)-based ceramics and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来、例えば特開昭53−118410号公報に記載さ
れるAl2O3基セラミツクスおよびその製造法が知ら
れている。
BACKGROUND ART Conventionally, Al2O3-based ceramics and a method for producing the same are known, which are described, for example, in Japanese Patent Application Laid-open No. 118410/1983.

このAg2O3基セラミツクスは、原料粉末として、こ
の発明のA II 20 a基セラミックスの製造と対
応して示せば、Af1203粉末、Y、Mg、Cr、C
o、Ni 、および希土類元素の酸化物(以下、それぞ
れY  OMgO,Cr2O3゜2 3 ′ Cod、Nip、およびR2O3で示す、たたしR:希
土類元素)粉末のうちの1種または2種以上からなる金
属酸化物粉末、さらにTi、Zr。
This Ag2O3-based ceramic has raw material powders such as Af1203 powder, Y, Mg, Cr, C
o, Ni, and rare earth element oxides (hereinafter referred to as YOMgO, Cr2O3゜23' Cod, Nip, and R2O3, respectively, TashiR: rare earth element) powders. metal oxide powder, as well as Ti and Zr.

およびHf(周期律表の4a族金属)の炭化物、窒化物
、炭窒化物、炭酸化物、窒酸化物、および炭窒酸化物(
以下、それぞれMc、MN、MCN。
and carbides, nitrides, carbonitrides, carbonates, nitoxides, and carbonitoxides of Hf (group 4a metal of the periodic table)
Hereafter, Mc, MN, and MCN, respectively.

MCO,MNO,およびMCN0で示す、ただしMはT
i、Zr、およびHfのうちの1種または2種以上から
なる)の粉末のうちの1種または2種以上からなる周期
律表4a族金属の炭・窒・酸化物(以下、M−C−N・
0で示す)粉末を用意し、これら原料粉末を、重量%で
(以下%は重量%を示す)、 金属酸化物粉末:10%以下、 M赤CψN−0粉末=10〜90%、 へp203粉末:残り、 からなる配合組成に配合し、通常の条件で、混合し、圧
粉体に成形した後、同じく通常の条件である、例えば1
00torrの窒素分圧雰囲気中、温度:1580℃、
圧カニ30気圧、保持時間;10〜30分の条件でホッ
トプレスを施すことにより製造されるものであり、上記
金属酸化物が結合相を構成し、上記A 120 sおよ
びM−C−N−0が分散相を構成する組織をもち、かつ
実質的に配合組成と同じ成分組成をもつものである。
Indicated by MCO, MNO, and MCN0, where M is T
Carbon-nitrogen-oxides (hereinafter referred to as M-C -N・
0) are prepared, and these raw material powders are expressed in weight% (hereinafter % indicates weight%): Metal oxide powder: 10% or less, M Red CψN-0 powder = 10 to 90%, Go to page 203 Powder: The remainder is blended into a composition consisting of, mixed under normal conditions, and formed into a green compact, and then mixed under normal conditions, for example 1.
In a nitrogen partial pressure atmosphere of 00 torr, temperature: 1580°C,
It is manufactured by hot pressing under the conditions of pressure crab 30 atm and holding time: 10 to 30 minutes, the above metal oxide constitutes the binder phase, and the above A 120 s and M-C-N- 0 has a structure constituting a dispersed phase, and has substantially the same component composition as the blended composition.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一方、近年の各種産業分野における省力化および高性能
化、さらに高速化に対する要求は厳しく、例えば切削機
械の分野においても同様であって、これに伴ない切削工
具の使用条件も増々苛酷にならざるを得す、このため切
削工具にもより一層の強度向上と靭性向上が求められる
傾向にあるが、上記の従来Al2O3基セラミツクスは
じめ、その他の多くのAl2O3基セラミツクスは、強
度および靭性不足が原因で切刃に欠けやチッピングが発
生し易く、これに十分満足して対応することができない
のが現状である。
On the other hand, in recent years, demands for labor saving, higher performance, and higher speed have been severe in various industrial fields, and the same is true in the field of cutting machines, for example, and the conditions for using cutting tools are becoming increasingly harsh. For this reason, cutting tools are required to have even greater strength and toughness. However, the conventional Al2O3 ceramics mentioned above and many other Al2O3 ceramics have been found to be lacking in strength and toughness. The cutting edge is prone to chipping and chipping, and at present it is not possible to deal with this problem satisfactorily.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、A I
! 20 a基セラミツクスに着目し、これの強度と靭
性の向上をはかるべく研究を行なった結果、原料粉末と
して、平均粒径:0.6μm以下のAl1203粉末、
同1血以下の上記金属酸化物粉末、さらに平均粒径:1
.5am以下にして、0.3uIa以下の粒径が10%
以上を占める上記M−C−N・0粉末を用い、これら原
料粉末を、 上記金属酸化物粉末70.05〜2%、上記M−C−N
−0粉末:5〜50%、AlI2O3粉末:残り、 からなる配合組成に配合し、通常の条件で、混合し、圧
粉体に成形した後、この圧粉体に、0.8〜5気圧のA
rまたはArと不活性ガスの混合ガス雰囲気中、温度7
1880〜1830℃に10〜40分間保持、 の条件で高温短時間焼結を施すと、この高温焼結で上記
金属酸化物がA 1) 203中に完全に固溶し、上記
金属酸化物が完全固溶したA 1120 aからなる素
地に、硬質分散相に占める割合で10%以上が0,3血
以下の粒径で、平均粒径が1.5血以下のM−C−N−
0が硬質分散相として分布した組織をもったAl2O3
基セラミツクスが形成され、さらに、これに前記高温短
時間焼結に連続して、あるいは断続的に、 100〜2000気圧のArまたはArと不活性ガスの
混合ガス雰囲気中、温度: 1300〜1450℃に2
〜10時間保持、 の条件で熱処理を施すと、この熱処理で、AII O中
に固溶する金属酸化物がAI 2033 の結晶粒成長を促進することと合まって、A lt 2
0 aが前記M−C−N・0のうちの微細な粒径:0.
3m以下のM−C−N・0を結晶粒内に取り込みながら
粒成長し、A il 20 sからなる素地の結晶粒界
に硬質分散相としてM−C−N・0が分布するが、Ag
2O3結晶粒内にも0.311N以下の微細な粒径のM
−C−N・0が分布した組織をもつようになり、この結
果のAg2O3基セラミツクスは、Ag2O3の結晶粒
内に分布した微細なM−C−N・0によって、これの存
在しないA11203基セラミツクスに比して著しく高
い強度と靭性をもつようになるという研究結果を冑たの
である。
Therefore, from the above-mentioned viewpoint, the present inventors
! 20 We focused on a-based ceramics and conducted research to improve their strength and toughness. As a result, we found that the raw material powder was Al1203 powder with an average particle size of 0.6 μm or less,
The above metal oxide powder with a particle size of 1 or less, and an average particle size of 1
.. 5am or less, 10% particle size is 0.3uIa or less
Using the above M-C-N.0 powder which accounts for 70.05-2% of the above metal oxide powder,
-0 powder: 5 to 50%, AlI2O3 powder: balance, and after mixing and forming into a green compact under normal conditions, apply 0.8 to 5 atm of pressure to the green compact. A of
In a mixed gas atmosphere of r or Ar and inert gas, temperature 7
When high-temperature and short-time sintering is performed under the conditions of holding at 1880-1830°C for 10-40 minutes, the above-mentioned metal oxide is completely dissolved in A1) 203 by this high-temperature sintering, and the above-mentioned metal oxide is M-C-N- with a particle size of 0.3 or less and an average particle size of 1.5 or less in a proportion of the hard dispersed phase of 10% or more of the solid dispersed A 1120a in a completely solid solution.
Al2O3 with a structure in which 0 is distributed as a hard dispersed phase
A base ceramic is formed, and this is further sintered continuously or intermittently after the high temperature short time sintering in an atmosphere of Ar or a mixed gas of Ar and an inert gas at a pressure of 100 to 2000 atm at a temperature of 1300 to 1450°C. to 2
When heat treatment is performed under the conditions of holding for ~10 hours, in this heat treatment, the metal oxide dissolved in AlIO promotes the crystal grain growth of AI 2033, and Alt 2
0 a is the fine particle size of the above M-C-N.0: 0.
Grain growth occurs while incorporating M-C-N.0 of 3 m or less into the crystal grains, and M-C-N.0 is distributed as a hard dispersed phase at the grain boundaries of the substrate made of Ail 20s.
M with a fine grain size of 0.311N or less is also present in the 2O3 crystal grains.
The resulting Ag2O3-based ceramics have a structure in which -C-N・0 is distributed, and due to the fine M-C-N・0 distributed within the Ag2O3 crystal grains, the Ag2O3-based ceramics have a structure in which -C-N・0 is distributed. They were surprised by the research results showing that it has significantly higher strength and toughness compared to other materials.

この発明は、上記研究結果にもとづいてなされたもので
あって、 原料粉末として、平均粒径:0.8m以下のAlI2O
3粉末、同1如以下の上記金属酸化物粉末、および平均
粒径:1.5m以下にして、0,3如以下の粒径が10
%以上含有の上記M−C−N・0粉末を用い、これら原
料粉末を、 上記金属酸化物: 0.05〜2%、 上記M−C−N・0:5〜50%、 Ag2O3:残り、 からなる配合組成に配合し、通常の条件で、混合し、圧
粉体に成形した後、この圧粉体を、0.8〜5気圧のA
rまたはArと不活性ガスの混合ガス雰囲気中、温度:
 1B80〜1830℃に10〜40分間保持、 の条件で高温短時間焼結し、引続いて連続的に、あるい
は断続的に、 100〜2000気圧のArまたはArと不活性ガスの
混合ガス雰囲気中、温度: 1300〜1450℃に2
〜10時間保持、 の条件でAjl1203結晶粒成長熱処理を施すことに
よりAg2O3基セラミツクスを製造する方法、並びに
この方法で製造された、 全体割合で0.05〜2%の上記金属酸化物が固溶した
A 120 sからなる素地の結晶粒内および結晶粒界
に、同じく全体割合で5〜50%の上記M・C−N・0
が硬質分散相として分布した組織を有し、かつ上記結晶
粒内に分布する硬質分散相の粒径が0.3血以下である
A 120 a基セラミックスに特徴を有するものであ
る。
This invention was made based on the above research results, and uses AlI2O as a raw material powder with an average particle size of 0.8 m or less.
3 powder, the above-mentioned metal oxide powder of 1 or less, and the average particle size: 1.5 m or less, and the particle size of 0.3 or less is 10
Using the above M-C-N.0 powder containing % or more, these raw material powders are: the above metal oxide: 0.05 to 2%, the above M-C-N.0: 5 to 50%, Ag2O3: the remainder , mixed under normal conditions and formed into a green compact, and then heated to an A of 0.8 to 5 atm.
In a mixed gas atmosphere of r or Ar and inert gas, temperature:
1B Hold at 80-1830℃ for 10-40 minutes, sinter at high temperature for a short period of time, and then sinter continuously or intermittently in Ar or a mixed gas atmosphere of Ar and inert gas at 100-2000 atm. , Temperature: 2 to 1300-1450℃
A method for producing Ag2O3-based ceramics by carrying out an Ajl1203 grain growth heat treatment under the conditions of holding for ~10 hours, and a method in which 0.05 to 2% of the above metal oxides in the total proportion are solid solution. The above M C-N
The A 120 a-based ceramic has a structure in which A 120 is distributed as a hard dispersed phase, and the grain size of the hard dispersed phase distributed within the crystal grains is 0.3 or less.

つぎに、この発明のセラミックスおよびその製造法にお
いて、各種条件を上記の通りに限定した理由を説明する
Next, the reason why various conditions are limited as described above in the ceramics and the manufacturing method thereof of the present invention will be explained.

(a)Ag203粉末の平均粒径 その平均粒径が0.6血を越えて大きくなると、セラミ
ックスにおけるA 120 s結晶粒の平均粒径を0.
9I11a以下に抑制することが困難になり、Ag2O
3結晶粒が0.9卯を越えたセラミックスは強度低下が
著しくなることから、その平均粒径を0.6血以下と定
めた。
(a) Average grain size of Ag203 powder When the average grain size becomes larger than 0.6%, the average grain size of A 120 s crystal grains in ceramics is reduced to 0.6%.
It becomes difficult to suppress the level below 9I11a, and Ag2O
Since the strength of ceramics with 3 crystal grains exceeding 0.9 μm is markedly reduced, the average grain size was determined to be 0.6 μm or less.

(b)M−C−N・0粉末の配合割合 M−C−N・0には、Ag2O3結晶粒界に硬質分散相
として分布してセラミックスの耐摩耗性を向上させ、か
つAg2O3結晶粒内にも分布してセラミックスの強度
と靭性を向上させる作用かあるが、その配合割合が5%
未満ではセラミックスにおける含有割合も5%未満にな
って前記作用に所望の効果が得られず、一方その配合割
合が50%を越えると焼結性が低下し、セラミックスに
おける含有割合も50%を越えて高くなり、強度が低下
するようになることから、配合割合、すなわち含有割合
を5〜50%と定めた。この場合、粉末の平均粒径が1
.5uMを越えると、セラミックスにおける平均粒径も
1.5tlJmを越えて粗くなり、強度低下の原因とな
ることから、その平均粒径を1.5血以下にしなければ
ならない。また、A I 203結晶粒成長熱処理時に
A II 203結晶粒内にM・C−N・0を取込み、
分布させ易くするには、その粒径を0.3aIe以下に
しなければならず、さらにこの場合0.31ua以下の
粒径のものをM −C−N・0粉末に占める割合で10
%以上にすると、M・C−N・0のA M 20 s結
晶粒成長時における結晶粒内への取込みが活発になり、
セラミックスの強度と靭性の著しい向上かはかれるよう
になる。
(b) Blending ratio of M-C-N・0 powder M-C-N・0 is distributed as a hard dispersed phase at the Ag2O3 grain boundaries to improve the wear resistance of ceramics, and inside the Ag2O3 grains. It also has the effect of improving the strength and toughness of ceramics, but its blending ratio is 5%.
If the content is less than 5%, the desired effect cannot be obtained in the above action, while if the content exceeds 50%, the sinterability decreases, and the content in the ceramic exceeds 50%. Therefore, the blending ratio, that is, the content ratio, was set at 5 to 50%. In this case, the average particle size of the powder is 1
.. If it exceeds 5 uM, the average particle size in the ceramic will exceed 1.5 tlJm and become coarse, causing a decrease in strength, so the average particle size must be 1.5 tlJm or less. In addition, M・C−N・0 is incorporated into the A II 203 crystal grains during the A I 203 crystal grain growth heat treatment,
In order to facilitate distribution, the particle size must be 0.3aIe or less, and in this case, the particle size of 0.31ua or less should be 10% of the M-C-N.0 powder.
% or more, the incorporation of M・C−N・0 into the crystal grains during A M 20 s crystal grain growth becomes active,
Significant improvements in the strength and toughness of ceramics can now be seen.

(c)  金属酸化物粉末の配合割合 金属酸化物には、高温短時間焼結時にA i120 s
に固溶して焼結性を向上させ、もってセラミックスの強
度を向上させるほか、Ag2o3結晶粒成長熱処理時に
0.3iIJ@以下の微細なM−C−N・0を結晶粒内
に取込みながらAN 20 aが粒成長するのを促進す
る作用があるが、その配合割合が0.05%未満では前
記作用に所望の効果が得られず、一方その配合割合が2
%を越えると、セラミックス中に残留するようになって
、特に高温での硬さおよび強度が低下するようになるこ
とから、その配合割合を0.05〜2%と定めた(この
当然の結果としてセラミックスにおける含有割合も0.
05〜2%となる)。また、その平均粒径が1血を越え
ると、A I’ 20 aへの固溶が困難になり、粒界
に残留するようになって、セラミックスの高温での強度
および硬さ低下の原因となることから、その平均粒径を
111M以−ドに定めた。
(c) Blending ratio of metal oxide powder The metal oxide has an A i120 s during high-temperature and short-time sintering.
In addition to improving the sinterability and thereby improving the strength of ceramics, it also improves the strength of ceramics by incorporating fine M-C-N. 20a has the effect of promoting grain growth, but if its proportion is less than 0.05%, the desired effect cannot be obtained;
%, it will remain in the ceramic and reduce the hardness and strength, especially at high temperatures. Therefore, the blending ratio was set at 0.05 to 2% (this is a natural result). The content ratio in ceramics is also 0.
05-2%). In addition, when the average particle size exceeds 1 liter, solid solution in A I' 20 a becomes difficult, and it remains at the grain boundaries, causing a decrease in the strength and hardness of ceramics at high temperatures. Therefore, the average particle size was determined to be 111M or larger.

(d)  高温短時間焼結条件 その雰囲気圧力が0.8気圧未満でも、また温度および
保持時間がそれぞれ1680℃未満および10分未満で
も満足な焼結を行なうことができず、この結果金属酸化
物のAg2O3への固溶および緻密化が不十分となり、
一方その雰囲気圧力が5気圧を越えると、焼結時に発生
したガスが内在するようになって、緻密な焼結体を得る
ことができず、また温度が1830℃を越えると原料粉
末に分解が起るようになり、この分解により発生したガ
スにより焼結性が低下するようになり、さらに保持時間
が40分を越えると、特にM−C−N−0のうちの微細
な0.3IIA以下の粒径に粒成長が起り、後工程での
A p 20 a結晶粒内への取り込みが十分に行なわ
れなくなることから、その条件を、雰囲気圧力=0.5
〜5気圧、温度: 1eso〜1830℃、保持時間:
工0〜40分と定めた。
(d) High-temperature, short-time sintering conditions Satisfactory sintering cannot be achieved even if the atmospheric pressure is less than 0.8 atm, or if the temperature and holding time are less than 1680°C and less than 10 minutes, respectively, resulting in metal oxidation. Solid solution and densification of substances into Ag2O3 become insufficient,
On the other hand, if the atmospheric pressure exceeds 5 atm, gases generated during sintering will be present, making it impossible to obtain a dense sintered body, and if the temperature exceeds 1830°C, the material will decompose into powder. The sinterability deteriorates due to the gas generated by this decomposition, and if the holding time exceeds 40 minutes, especially fine particles of 0.3IIA or less of M-C-N-0. Grain growth occurs to a grain size of
~5 atm, temperature: 1eso~1830℃, holding time:
It was set as 0 to 40 minutes.

(e)Ag203の結晶粒成長熱処理 この熱処理は、セラミックス中のボアを減少させて、こ
れを真密度に近いものとすると共に、A 120 s結
晶粒の成長をはかり、同時にAg2O3結晶粒界に存在
するM−C−N・0のうちの粒径が0.3wa以下の微
細なM−C−N・0を取込んで、これを結晶粒内に分布
せしめ、もってセラミックスの強度と靭性を向上させる
ために行なわれるが、その雰囲気圧力が100気圧未満
ではボアの除去が不十分であり、また温度が1300℃
未満ではA!I2O3結晶粒の成長がきわめて遅く、実
用的でなく、さらに保持時間が2時間未満ではAg2O
3結晶粒内に分布するM−C−N−0の割合をM −C
−N・0に占める割合で5%以上とすることができず、
一方2000気圧を越えた雰囲気圧力は技術的実用的に
無意味であり、また1450℃を越えた温度は、Ap2
03結晶粒の成長と同時に、M−C−N・0を粒成長し
てしまい、Ag2O3結晶粒内に分布するM−C−N・
0の割合が著しく少なくなり、さらに10時間を越えた
保持時間は技術的に無意味で、コスト高の原因となるこ
とから、その条件を、雰囲気圧力=100〜2000気
圧、温度+ 1300〜1450℃、保持時間・2〜J
O時間と定めた。
(e) Grain growth heat treatment of Ag203 This heat treatment reduces the bore in the ceramic to bring it close to the true density, and also aims to grow A 120 s grains, which are present at the Ag2O3 grain boundaries. Incorporating fine M-C-N-0 with a particle size of 0.3 wa or less from the M-C-N-0 that is produced, and distributing it within the crystal grains, thereby improving the strength and toughness of ceramics. However, if the atmospheric pressure is less than 100 atm, the removal of the bore will be insufficient, and if the temperature is 1300°C
Less than A! The growth of I2O3 crystal grains is extremely slow, making it impractical, and furthermore, if the holding time is less than 2 hours, Ag2O
3 The proportion of M-C-N-0 distributed within the crystal grains is M -C
- The proportion of N・0 cannot be more than 5%,
On the other hand, atmospheric pressure exceeding 2000 atm is technically and practically meaningless, and temperature exceeding 1450°C is Ap2
At the same time as the 03 crystal grains grow, M-C-N・0 grains grow, resulting in M-C-N・0 distributed within the Ag2O3 crystal grains.
The ratio of 0 is significantly reduced, and a holding time exceeding 10 hours is technically meaningless and causes high costs. Therefore, the conditions are as follows: atmospheric pressure = 100 to 2000 atm, temperature + 1300 to 1450. °C, holding time 2~J
It was set as O time.

なお、この発明の方法において、0.3血以下の微細粒
径を10%以上含有する平均粒径二1.5111a以下
のM−C−N・0粉末は、平均粒径:0.7〜2血のM
−C−N・0粉末を直径:1〜3血のWCC超超硬合金
製ボール一緒にアトライターに装入し、10〜100時
間の粉砕を施すことにより調製される。
In addition, in the method of this invention, the M-C-N.0 powder with an average particle size of 21.5111a or less containing 10% or more of fine particle sizes of 0.3 blood or less has an average particle size of 0.7 to 2 Blood M
-C-N.0 powder is charged into an attritor together with WCC cemented carbide balls having a diameter of 1 to 3 mm, and is prepared by grinding for 10 to 100 hours.

〔実 施 例〕〔Example〕

つぎに、この発明のセラミックスおよびその製造法を実
施例により具体的に説明する。
Next, the ceramics of the present invention and the method for producing the same will be specifically explained using examples.

原料粉末として、それぞれ第1表に示される各種のA 
D 20 a粉末、M −C−N・0粉末、および金属
酸化物粉末を用い、これら原料粉末を同じく第1表に示
される配合組成に配合し、ボールミルで72時時間式混
合し、乾燥した後、平面:30mmX30mm、厚さ=
10關の寸法をもった圧粉体、並びにI S O−S 
NGN1204(18の切削チップ形状の圧粉体に1t
on/cdの圧力にてプレス成形し、ついでこれらの圧
粉体に同じく第1表に示される条件で高温短時間焼結お
よびAg2O3結晶粒成長熱処理を施すことにより本発
明法1〜15を実施し、本発明セラミックス1〜15を
それぞれ製造した。
Various types of A shown in Table 1 were used as raw material powders.
Using D20a powder, M-C-N・0 powder, and metal oxide powder, these raw material powders were blended into the composition shown in Table 1, mixed for 72 hours in a ball mill, and dried. Back, plane: 30mm x 30mm, thickness =
Green compacts with dimensions of 10 degrees, and IS O-S
NGN1204 (1 ton for 18 cutting chip shaped green compacts)
Methods 1 to 15 of the present invention were carried out by press-forming at a pressure of on/cd, and then subjecting these compacts to high-temperature short-time sintering and Ag2O3 crystal grain growth heat treatment under the conditions also shown in Table 1. Ceramics 1 to 15 of the present invention were produced respectively.

また、比較の目的で、第1表に示される原料粉末を用い
、同じく第1表に示される配合組成に配合し、さらに上
記の高温短時間焼結およびA 1120 a結晶粒成長
熱処理に代って、同じく第1表に示される条件でホット
プレスを行なう以外は同一の条件で従来法1〜5を実施
し、従来セラミックス1〜5をそれぞれ製造した。
In addition, for the purpose of comparison, the raw material powders shown in Table 1 were blended to the compositions also shown in Table 1, and further, instead of the above-mentioned high-temperature short-time sintering and A 1120 a grain growth heat treatment, Conventional methods 1 to 5 were carried out under the same conditions except that hot pressing was performed under the conditions shown in Table 1, and conventional ceramics 1 to 5 were manufactured, respectively.

つぎに、この結果得られた各種のセラミックスについて
、成分組成、理論密度比、ロックウエル硬さ(Aスケー
ル)、抗折力、およびインデンテーション法(1M法)
による破壊靭性値を測定した。また、 被削材: J l5−5UJ2 (焼入れ鋼、硬さ:H
RC61)の穴あき角材、 切削速度: 200 m/■in 。
Next, for the various ceramics obtained as a result, the component composition, theoretical density ratio, Rockwell hardness (A scale), transverse rupture strength, and indentation method (1M method)
The fracture toughness value was measured. In addition, work material: J l5-5UJ2 (quenched steel, hardness: H
RC61) perforated square material, cutting speed: 200 m/■in.

切込み=0.3龍、 送  り二〇、2鰭/rev、、 の条件で焼入れ鋼の湿式断続切削試験を行ない、切刃に
欠損(チッピング)が発生するまでの切削時間を測定し
た。これらの測定結果を第2表に示した。
A wet interrupted cutting test was conducted on hardened steel under the conditions of depth of cut = 0.3 mm, feed rate of 20 mm, and 2 mm/rev, and the cutting time until chipping occurred on the cutting edge was measured. The results of these measurements are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

第1表および第2表に示される結果から、本発明法1〜
15で製造された本発明セラミックス1〜15は、いず
れも99%以上の理論密度比をもち、緻密で、マイクロ
ポアの形成もきわめて少なく、従来法1〜5で製造され
た従来セラミックス1〜5に比して一段とすぐれた強度
と靭性を有し、かつ高硬度をも合せもつので、これらの
特性が要求される苛酷な条件下での切削に切削工具とし
て)IILIた場合にすぐれた耐欠損性を示し、長期に
亘ってすぐれた切削性能を発揮することが明らかである
From the results shown in Tables 1 and 2, it can be seen that methods 1 to 1 of the present invention
The ceramics 1 to 15 of the present invention manufactured by the conventional methods 1 to 15 all have a theoretical density ratio of 99% or more, are dense, and have extremely few micropores, and are superior to the conventional ceramics 1 to 5 manufactured by the conventional methods 1 to 5. It has superior strength and toughness, as well as high hardness, so it has excellent fracture resistance when used as a cutting tool for cutting under severe conditions that require these characteristics. It is clear that the material exhibits excellent cutting performance over a long period of time.

上述のように、この発明の方法によれば、高強度および
高靭性を有し、さらに耐摩耗性にもすぐれたA 、Q 
20 a基セラミックスを製造することができ、しかも
この結果得られたこの発明のAl2O3基セラミツクス
は上記の通りのすくれた特性を有するので、切削分野は
勿論のこと、その他の産業技術分野の高速化および高性
能化、さらに省力化に寄与するところ大であるなどの工
業上有用な効果がもたらされるのである。
As mentioned above, according to the method of the present invention, A and Q having high strength and toughness as well as excellent wear resistance can be obtained.
20A-based ceramics can be produced, and the resulting Al2O3-based ceramics of the present invention have the excellent properties as described above, so they can be used not only in the cutting field but also in high-speed applications in other industrial technology fields. This brings about industrially useful effects such as improved performance and improved performance, and a significant contribution to labor savings.

出 願 人 二 三菱金属株式会社 代 理 人 昌 田 和 夫 外1名Out wish Man 2. Mitsubishi Metals Co., Ltd. teenager Reason Man Chang Field sum husband 1 other person

Claims (2)

【特許請求の範囲】[Claims] (1)全体割合で0.05〜2重量%のY,Mg,Cr
,Ni,Co,および希土類元素の酸化物のうちの1種
または2種以上が固溶した酸化アルミニウムからなる素
地の結晶粒内および結晶粒界に、同じく全体割合で5〜
50重量%のTi,Zr,およびHfの炭化物、窒化物
、炭窒化物、炭酸化物、窒酸化物、および炭窒酸化物の
うちの1種または2種以上が硬質分散相として分布した
組織を有し、かつ上記結晶粒内に分布する硬質分散相の
もつ粒径が0.3μm以下であることを特徴とする高強
度および高靭性を有する酸化アルミニウム基セラミック
ス。
(1) Y, Mg, Cr in a total proportion of 0.05 to 2% by weight
, Ni, Co, and one or more of rare earth element oxides in the crystal grains and grain boundaries of the substrate made of aluminum oxide in which one or more of oxides of rare earth elements are dissolved.
A structure in which one or more of 50% by weight of Ti, Zr, and Hf carbides, nitrides, carbonitrides, carbonates, nitrides, and carbonitrides are distributed as a hard dispersed phase. An aluminum oxide-based ceramic having high strength and high toughness, characterized in that the hard dispersed phase distributed within the crystal grains has a particle size of 0.3 μm or less.
(2)原料粉末として、平均粒径:0.6μm以下の酸
化アルミニウム粉末、同1μm以下のY,Mg,Cr,
Co,Ni,および希土類元素の酸化物粉末のうちの1
種または2種以上からなる金属酸化物粉末、並びに平均
粒径:1.5μm以下にして、0.3μm以下の粒径が
10重量%以上含有のTi,Zr,およびHfの炭化物
粉末、窒化物粉末、炭窒化物粉末、炭酸化物粉末、窒酸
化物粉末、および炭窒酸化物のうちの1種または2種以
上からなる周期律表4a族金属の炭・窒・酸化物粉末を
用意し、これら原料粉末を、重量%で、 金属酸化物粉末:0.05〜2%、 周期律表4a族金属の炭・窒・酸化物粉末:5〜50%
、酸化アルミニウム粉末:残り、からなる配合組成に配
合し、通常の条件で、混合し、圧粉体に成形した後、こ
の圧粉体を、0.8〜5気圧のArまたはArと不活性
ガスの混合ガス雰囲気中、温度:1680〜1830℃
に10〜40分間保持、の条件で高温短時間焼結し、引
続いて連続的あるいは断続的に、100〜2000気圧
のArまたはArと不活性ガスの混合ガス雰囲気中、温
度:1300〜1450℃に2〜10時間保持、の条件
で酸化アルミニウムの結晶粒成長熱処理を施すことを特
徴とする高強度および高靭性を有する酸化アルミニウム
基セラミックスの製造法。
(2) As raw material powder, aluminum oxide powder with an average particle size of 0.6 μm or less, Y, Mg, Cr, with an average particle size of 1 μm or less,
One of the oxide powders of Co, Ni, and rare earth elements
Metal oxide powder consisting of a species or two or more species, and carbide powders and nitrides of Ti, Zr, and Hf with an average particle size of 1.5 μm or less and containing 10% by weight or more of particle sizes of 0.3 μm or less Prepare a carbon/nitrogen/oxide powder of a group 4a metal of the periodic table consisting of one or more of powder, carbonitride powder, carbonate powder, nitride powder, and carbonitoxide, These raw material powders, in weight percent, are: metal oxide powder: 0.05-2%, carbon/nitrogen/oxide powder of group 4a metals of the periodic table: 5-50%.
, aluminum oxide powder: the remainder, mixed under normal conditions and formed into a green compact, and then this green compact is heated with Ar or Ar inert at 0.8 to 5 atm. In a mixed gas atmosphere, temperature: 1680-1830℃
Sintering is carried out at a high temperature for a short period of time under the conditions of holding for 10 to 40 minutes, followed by continuous or intermittent sintering in an atmosphere of Ar or a mixed gas of Ar and inert gas at a pressure of 100 to 2000 atm, at a temperature of 1300 to 1450. 1. A method for producing aluminum oxide-based ceramics having high strength and toughness, which comprises subjecting aluminum oxide to grain growth heat treatment under the conditions of holding the aluminum oxide at a temperature of 2 to 10 hours.
JP2042979A 1990-02-23 1990-02-23 Aluminum oxide based ceramic cutting tool with high strength and high toughness Expired - Lifetime JP2805957B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2042979A JP2805957B2 (en) 1990-02-23 1990-02-23 Aluminum oxide based ceramic cutting tool with high strength and high toughness
US07/658,914 US5188908A (en) 1990-02-23 1991-02-22 Al2 O3 Based ceramics
EP91102673A EP0443624B1 (en) 1990-02-23 1991-02-23 Alumina based ceramics
DE69104862T DE69104862T2 (en) 1990-02-23 1991-02-23 Ceramic material based on alumina.
US07/932,195 US5275981A (en) 1990-02-23 1992-08-20 Al2 O3 based ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2042979A JP2805957B2 (en) 1990-02-23 1990-02-23 Aluminum oxide based ceramic cutting tool with high strength and high toughness

Publications (2)

Publication Number Publication Date
JPH03247553A true JPH03247553A (en) 1991-11-05
JP2805957B2 JP2805957B2 (en) 1998-09-30

Family

ID=12651159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2042979A Expired - Lifetime JP2805957B2 (en) 1990-02-23 1990-02-23 Aluminum oxide based ceramic cutting tool with high strength and high toughness

Country Status (1)

Country Link
JP (1) JP2805957B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174165A (en) * 1985-01-25 1986-08-05 株式会社 リケン Alumina-silicon carbide heat-resistant composite sintered body and manufacture
JPS6259567A (en) * 1985-09-06 1987-03-16 日本タングステン株式会社 Ceramic material excellent in abrasion resistance
JPH01119558A (en) * 1987-10-30 1989-05-11 Kyocera Corp Alumina-based sintered compact for cutting tool and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174165A (en) * 1985-01-25 1986-08-05 株式会社 リケン Alumina-silicon carbide heat-resistant composite sintered body and manufacture
JPS6259567A (en) * 1985-09-06 1987-03-16 日本タングステン株式会社 Ceramic material excellent in abrasion resistance
JPH01119558A (en) * 1987-10-30 1989-05-11 Kyocera Corp Alumina-based sintered compact for cutting tool and its production

Also Published As

Publication number Publication date
JP2805957B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
JP3476507B2 (en) Method for producing cubic boron nitride-containing sintered body
JP2007084382A (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
JPS61141672A (en) Manufacture of cubic boron nitride base sintered body for cutting tool
JP2775298B2 (en) Cermet tool
JPS5918157A (en) Aluminum oxide ceramic for cutting tool
JPH03247553A (en) Aluminum oxide-based ceramic having high strength and toughness and its production
JP3359481B2 (en) Cermet for cutting tools
JP2502322B2 (en) High toughness cermet
JPS61146763A (en) Manufacture of sintered body for cutting tool
JP2805969B2 (en) Aluminum oxide based ceramics with high toughness and high strength
JPH10324942A (en) Ultra-fine cemented carbide, and its manufacture
JPS63100055A (en) Alumina base ceramic for cutting tool and manufacture
JP3232599B2 (en) High hardness cemented carbide
JPH09227981A (en) Cemented carbide
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JP2001179508A (en) Cutting tool
JP2712737B2 (en) Silicon nitride based sintered material with high toughness and high strength
JPH07172924A (en) Highly tough sintered compact for tool and its production
JPS6389459A (en) Manufacture of silicon nitride sintered body
JPS6245291B2 (en)
JPH01119558A (en) Alumina-based sintered compact for cutting tool and its production
JP3366696B2 (en) Manufacturing method of high strength cermet
JP2932738B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material having high toughness
JPH0545549B2 (en)
JPS6253474B2 (en)