JPH03247545A - Fire-resisting heat insulation material and fire-resisting heat insulating structure - Google Patents

Fire-resisting heat insulation material and fire-resisting heat insulating structure

Info

Publication number
JPH03247545A
JPH03247545A JP4336190A JP4336190A JPH03247545A JP H03247545 A JPH03247545 A JP H03247545A JP 4336190 A JP4336190 A JP 4336190A JP 4336190 A JP4336190 A JP 4336190A JP H03247545 A JPH03247545 A JP H03247545A
Authority
JP
Japan
Prior art keywords
fire
castable
ceramic foam
ceramic
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4336190A
Other languages
Japanese (ja)
Inventor
Yuji Narita
成田 雄司
Masaharu Anezaki
姉崎 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4336190A priority Critical patent/JPH03247545A/en
Publication of JPH03247545A publication Critical patent/JPH03247545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the material of high fire-resistance and high heat insulation having high mechanical strength by casting ceramic foams of specified composition and specified void into a fire-resistant castable to carry out formation. CONSTITUTION:The ceramic foams 2 which consists of the single or the mixture of Al2O3, ZrO2, SiO2 and have 60-90% void are casted into the fire-resisting castable 3 to form into a fire-resisting heat-insulating material. By this method, the low mechanical strength, the defect of ceramic foam, is reinforced by the fire-resisting castable filled around the ceramic foams, and moreover, the high fire-resistance and the low thermal conductivity, the merits of ceramic foam, are kept as it is, so that the material excellent in fire resistance, heat insulation and mechanical strength is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、各種工業用窯炉の内張耐火物のパーマ層に
断熱能を付与し、同時に構造強度を高めることのできる
耐火断熱材ならびに耐火断熱構造に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention provides a fire-resistant insulation material and a fire-resistant insulation material that can impart heat insulation ability to the permanent layer of the refractory lining of various industrial kilns and at the same time increase structural strength. Regarding structure.

従来の技術 各種工業窯炉の内張耐火物のパーマ層としては、一般に
1200℃以上の窯炉においては、耐火煉瓦の裏張とし
て耐火性を有する断熱材料のうち、耐火断熱煉瓦が使用
され、窯炉からの放熱によるエネルギーロスを防止して
いる。
BACKGROUND OF THE INVENTION As a permanent layer of the refractory lining of various industrial kilns, fireproof insulating bricks are generally used as the lining of refractory bricks in kilns of 1200° C. or higher. This prevents energy loss due to heat radiation from the kiln.

近年、耐火材料として不定形耐火物の利用が拡大し、種
々の断熱キャスタブルが開発されている。
In recent years, the use of monolithic refractories as refractory materials has expanded, and various heat-insulating castables have been developed.

これらの耐火断熱材は、内部に天然あるいは人工の無数
の気孔を有しており、一般に嵩比重が小さい。この結果
、熱伝導率は低く、圧縮強さが低いため、特別に荷重の
加わる箇所を避け、あるいは膨張に対しては緩衝材を入
れるなど、過大な偏荷重を受けないように十分配慮した
内張施工を余儀なくされている。
These fireproof insulation materials have numerous natural or artificial pores inside and generally have a small bulk specific gravity. As a result, the thermal conductivity is low and the compressive strength is low, so careful consideration must be taken to avoid excessive unbalanced loads, such as avoiding areas where special loads are applied or adding cushioning material to prevent expansion. Construction work has been forced.

また、耐火断熱材の大半は、多孔質断熱型骨材を用いて
いるため、一部を除くと融点が低く、常用使用温度とし
ては、1400℃以下のものが主体となっている。
In addition, since most fireproof insulation materials use porous insulation type aggregates, their melting points are low, with some exceptions, and their normal operating temperatures are typically 1400° C. or lower.

一方、最近の工業窯炉、特に鉄鋼プロセスにおける内張
耐火物においては、耐火物の改善が進み、大幅に耐食性
が向上し、炉命の延長に大きく寄与している。例えば、
混銑車におけるAl2O−一5iC−C煉瓦の使用、転
炉におけるMg0−C煉瓦の使用、あるいは取鍋におけ
るAl*O−−MgO系不定形耐火物の使用等が挙げら
れる。
On the other hand, in recent industrial furnaces, particularly in the refractory linings used in steel processes, progress has been made in improving the refractories, resulting in significantly improved corrosion resistance and greatly contributing to extending the life of the furnace. for example,
Examples include the use of Al2O-15iC-C bricks in pig iron mixers, the use of Mg0-C bricks in converters, and the use of Al*O--MgO type monolithic refractories in ladles.

しかしながら、これらの耐火物は、いずれも熱伝導率が
高く、炉体からの熱放散が従来使用されていた耐火物に
比較して大きく、操業工種々の問題を招来している。
However, all of these refractories have high thermal conductivity, and the heat dissipation from the furnace body is greater than that of conventionally used refractories, leading to various operational problems.

このような内張耐火物において、現状の内張構造で断熱
性を確保する必要があるが、前記耐火断熱材では十分満
足できるものではない。また、パーマ層を現状より厚く
する方法が考えられるが、この方法では炉の容積が小さ
くなり、逆に蓄熱損失を増大させることになり、抜本的
な対策とはなり得ない。特にパーマ層を断熱主体の耐火
物にすると、前記のとおり機械的強度の低い材料となる
ため、構造上の安定性を欠くばかりでなく、漏鋼等のト
ラブルが発生した場合、セフティ−ライニングとしての
耐火性が劣り、これらの緒特性を具備した耐火断熱材な
らびに耐火断熱構造の必要が生じている。
In such a refractory lining, it is necessary to ensure heat insulation with the current lining structure, but the above-mentioned fireproof and heat insulating materials are not fully satisfactory. Another possible method is to make the permanent layer thicker than it currently is, but this method would reduce the volume of the furnace and conversely increase heat storage loss, so it cannot be a drastic measure. In particular, if the permanent layer is made of a refractory material that mainly uses heat insulation, it will not only lack structural stability, but also be used as a safety lining in the event of problems such as steel leakage. However, there is a need for fire-resistant insulation materials and fire-resistant insulation structures that have these properties.

また、耐火性に関連して耐火断熱材の使用条件を決定す
る性状値として、再加熱収縮率があるが、これは従来の
耐火断熱材がある一定温度以上に加熱した場合、収縮す
ることに対する耐用限界を示すもので、内張耐火物の材
質変更に伴い、耐用温度の高いもの、すなわち、耐火性
に優れたものが必要とされる。
In addition, reheating shrinkage rate is a property value that determines the usage conditions of fireproof insulation materials in relation to fire resistance, and this is the rate at which conventional fireproof insulation materials shrink when heated above a certain temperature. It indicates the service life limit, and as the material of the refractory lining changes, a material with a high service temperature, that is, a material with excellent fire resistance is required.

前記緩衝材として多用される低熱伝導材料は、ウール状
をなす無機繊維集合体で、可撓性あるいは加圧収縮性に
富んではいるが、長期間使用しているとガラス化や結晶
化による熱収縮や劣化により粉化し、容積安定性の点か
ら使用に耐えられない。
The low thermal conductivity material that is often used as a cushioning material is a wool-like inorganic fiber aggregate that is highly flexible or shrinkable under pressure. It turns into powder due to shrinkage and deterioration, making it unusable due to its volumetric stability.

この対策として、耐火原料に対し、無機および/または
有機繊維、合成樹脂エマルジョンおよび/またはゴムラ
テックスを樹脂分として所定割合で添加してなる、乾燥
後に可撓性を示す耐火可撓性および加圧圧縮性を有する
耐火可撓性ボードと無機繊維集合体からなる複合耐火断
熱材(特公昭59−48779号公報)などの提案も行
なわれている。
As a countermeasure to this problem, fire-resistant flexible and pressure-resistant materials that exhibit flexibility after drying are produced by adding inorganic and/or organic fibers, synthetic resin emulsions, and/or rubber latex as resin components to fire-resistant raw materials at a predetermined ratio. A composite fire-resistant heat insulating material (Japanese Patent Publication No. 59-48779) consisting of a compressible fire-resistant flexible board and an inorganic fiber aggregate has also been proposed.

しかし、特公昭59−48779号公報に開示の複合耐
火断熱材は、厚み方向での断熱性を有しているが、可撓
性に富むため、熱サイクルの激しく3軸方向で発生する
熱応力に対しては、構造的にアンバランスを生じ易く、
適用することはできない。
However, although the composite fire-resistant heat insulating material disclosed in Japanese Patent Publication No. 59-48779 has heat insulating properties in the thickness direction, it is highly flexible, so thermal stress occurs in three axial directions during intense thermal cycles. , structural imbalance tends to occur,
cannot be applied.

発明が解決しようとする課題 工業窯炉、特に溶鋼用取鍋等のパーマ層で断熱を強化す
る場合、断熱煉瓦のパーマ層を厚肉にすると、炉容積が
ノドさくなり、蓄熱損失が増大するため、地金付きが発
生し易くなり、予熱のためのエネルギー消費が大きくな
る。また、低熱伝導率(λ= 0.2kcal/m、 
hr、 ’C)の断熱材では、圧縮強度が低いため、内
張煉瓦の重量を十分に支持できず、しかも、耐用温度が
低く、再加熱収縮率のの点で内張構造が不安定になり易
い。さらに、断熱キャスタブルは、配合する耐火骨材の
断熱能によって昇温し難く、乾燥不十分になり易く、受
鋼後の受熱で水蒸気爆裂の危険があり、安全性の点で信
頼性に乏しい。
Problems to be Solved by the Invention When reinforcing insulation with a permanent layer in an industrial kiln, especially in a ladle for molten steel, if the permanent layer of the insulating brick is made thicker, the furnace volume becomes smaller and heat storage loss increases. Therefore, metal adhesion is likely to occur, and energy consumption for preheating increases. In addition, it has low thermal conductivity (λ = 0.2 kcal/m,
hr, 'C)'s insulation material has low compressive strength, so it cannot sufficiently support the weight of the lining bricks, and its service temperature is low, making the lining structure unstable in terms of reheating shrinkage rate. It's easy. Furthermore, heat-insulating castables are difficult to raise in temperature due to the heat-insulating ability of the refractory aggregates they are mixed with, tend to dry insufficiently, and are at risk of steam explosion due to heat received after receiving the steel, making them unreliable in terms of safety.

この発明は、前記工業用窯炉、特に溶鋼用取鍋等のパー
マ暦月の耐火断熱材として適する低熱伝導性で、しかも
高耐火度と高強度の断熱材ならびに断熱構造を提供する
ことを目的とするものであ。
The object of the present invention is to provide a heat insulating material and a heat insulating structure which have low thermal conductivity, high fire resistance and high strength and are suitable as a permanent fire insulating material for the industrial kiln, especially a ladle for molten steel. That is.

る。Ru.

課題を解決するための手段 本発明者らは、工業用窯炉、特に現状の鉄鋼プロセスの
中でも、断熱化促進要求の特に高い溶鋼取鍋の底部、い
わゆる敷構造の断熱強化を′対象として種々検討の段階
で、セラミックフオームからなるディーゼルエンジンの
排フィルター(A I =Os 99%、嵩比重0.6
0、空隙率80%、圧縮強度35kg/cm”)に着目
し、このセラミックフオームと耐火キャスタブルを組合
せ、第1図に示すとおりボード状の耐火材を作成した。
Means for Solving the Problems The present inventors have developed various methods to strengthen the insulation of the bottom of the molten steel ladle, the so-called bed structure, which requires particularly high insulation promotion in industrial kilns, especially in the current steel process. At the study stage, a diesel engine exhaust filter made of ceramic foam (A I =Os 99%, bulk specific gravity 0.6) was selected.
0, porosity 80%, and compressive strength 35 kg/cm"), this ceramic foam and refractory castable were combined to create a board-shaped refractory material as shown in FIG.

すなわち、セラミックフオームを厚さ35mm、直径1
00mmの円板状に加工し、高さ40mmで一片が90
0mmの四辺形の木枠(1)に、円板状に加工したセラ
ミックフオーム(2)を複数個ハニカム状に設置し、A
1.0375%のキャスタブル(3)を流し込み、養生
したのち、脱枠して300℃で10時間乾燥させ、ハニ
カム状のボードを得た。これを800℃で2時間熱処理
したのち、直径700mmに加工し、機械的強度を測定
すると共に、容量2.5Lの取鍋に底部パ。
That is, the ceramic foam has a thickness of 35 mm and a diameter of 1
Processed into a disc shape of 00mm, with a height of 40mm and a piece of 90mm.
A plurality of disc-shaped ceramic foams (2) are placed in a honeycomb shape in a 0 mm quadrilateral wooden frame (1).
After pouring 1.0375% castable (3) and curing, the frame was removed and dried at 300°C for 10 hours to obtain a honeycomb-shaped board. After heat-treating it at 800°C for 2 hours, it was processed into a diameter of 700 mm, the mechanical strength was measured, and the bottom part was placed in a ladle with a capacity of 2.5 L.

−マ層として内張し、断熱性を測定した。そして比較の
ため、前記キャスタブルのみで作成した円板と比較した
- It was lined as a thermal layer and the insulation properties were measured. For comparison, a comparison was made with a disc made only of the above-mentioned castable.

その結果、キャスタブルのみの円板に比較し、セラミッ
クフオームとキャスタブルからなるハニカム状の円板は
、耐圧強度が3〜5倍、取鍋中の溶鋼の温度が平均で3
℃高く、鍋底鉄皮の温度が10℃低かった。すなわち、
低熱伝導性で、しかも機械的強度に優れ、高耐火度を有
する耐火断熱材が得られていることを究明し、この発明
を完成させたのである。
As a result, compared to a disc made only of castable material, a honeycomb-shaped disc made of ceramic foam and castable material has 3 to 5 times the compressive strength, and the temperature of molten steel in the ladle is 3 to 5 times higher on average.
The temperature of the iron skin at the bottom of the pot was 10°C lower. That is,
They discovered that it was possible to obtain a fire-resistant insulation material with low thermal conductivity, excellent mechanical strength, and high fire resistance, and completed this invention.

すなわちこの発明は、AI!03、Zr0z、5iO=
の単独または混合物からなる空隙率60〜90%のセラ
ミックフオームを、耐火キャスタブルで鋳込み成形して
なる耐火断熱材。
In other words, this invention is AI! 03, Zr0z, 5iO=
A fire-resistant heat insulating material made by casting a ceramic foam with a porosity of 60 to 90% consisting of one or a mixture of the above with fire-resistant castable.

また、A l xos、 Z r Ox、5iO−の単
独または混合物からなる空隙率60〜90%のセラミッ
クフオームを核とし、耐火キャスタブルを流し込み施工
してなる耐火断熱ブロックを、パーマ層にライニングす
るのである。
In addition, a fireproof insulation block made of ceramic foam with a porosity of 60 to 90% made of Alxos, ZrOx, and 5iO- alone or in a mixture as a core and poured with fireproof castable is lined with a permanent layer. be.

この発明において使用するセラミックフオームは、A 
I 、0.、Zr0z、5iftの単独または混合物か
らなり、空隙率65〜90%のものである。空隙率が6
5%未満では断熱性が劣り、90%を超えるとセラミッ
クフオームの機械的強度が低下し、パーマ層として使用
できない。
The ceramic foam used in this invention is A
I, 0. , Zr0z, and 5ift, singly or as a mixture, and has a porosity of 65 to 90%. Porosity is 6
If it is less than 5%, the heat insulation properties will be poor, and if it exceeds 90%, the mechanical strength of the ceramic foam will decrease and it cannot be used as a permanent layer.

セラミックフオームの大きさは、50mmφ〜250m
mφ、好ましくは100−200mm≠である。50m
m H未満では施工が煩雑であると共に、生成する耐熱
体としての乾燥に長時間を要する。250mm≠を超え
ると、他のライニング材からの偏荷重で損傷する場合が
あり好ましくない。また、厚みは、25mm〜150m
mが好ましい。厚みが25mm未満では生成する耐火断
熱材の絶対厚みが小さく、構造上の偏荷重により損傷す
る危険があり、150mmを超えるとパーマ層の厚さを
超えるからである。
The size of the ceramic form is 50mmφ ~ 250m
mφ, preferably 100-200 mm≠. 50m
If it is less than mH, construction will be complicated and it will take a long time to dry the resulting heat resistant body. If it exceeds 250 mm≠, damage may occur due to unbalanced loads from other lining materials, which is not preferable. Also, the thickness is 25mm to 150m
m is preferred. This is because if the thickness is less than 25 mm, the absolute thickness of the produced fireproof insulation material is small and there is a risk of damage due to unbalanced structural loads, and if it exceeds 150 mm, it exceeds the thickness of the permanent layer.

セラミックフオームの形状は、円形または楕円形の曲面
を有する板状である。多角形では施工体の昇温、加熱状
態の応力集中で亀裂の発生や損傷を引起こす。
The shape of the ceramic foam is a plate having a circular or elliptical curved surface. Polygonal shapes can cause cracks and damage due to increased temperature of the construction object and stress concentration in the heated state.

このようなセラミックフオームは、任意に発泡させて固
化したのち、形状を整えた軟質ポリウレタンフォームに
、セラミックのスラリーを含浸させ、乾燥、焼成したも
ので、連続した気孔を有する三次元骨格構造を有する。
This kind of ceramic foam is made by foaming arbitrarily, solidifying it, and then shaping it into a flexible polyurethane foam that is impregnated with ceramic slurry, dried, and fired, and has a three-dimensional skeletal structure with continuous pores. .

使用するセラミックとしては、Al201、Z r Q
 t、5iftの単独または混合物の微粉末を原料とす
る。このため、セラミックフオームは、使用したセラミ
ックと同じ融点を持つため、極めて高い耐熱性を示し、
熱収縮する温度も高いが、多孔質であるため圧縮強度は
100kg/cm”以下と低い性質を有する耐火材であ
る。
The ceramics used are Al201, Z r Q
The raw material is fine powder of t, 5ift alone or as a mixture. For this reason, ceramic foam has the same melting point as the ceramic used, so it exhibits extremely high heat resistance.
Although it has a high heat shrinkage temperature, it is porous and has a low compressive strength of 100 kg/cm" or less.

一方、不定形耐火物としては、内張耐火物に応じて高ア
ルミナ質あるいは高マグネシア質の耐火度34以上のキ
ャスタブルを使用する。不定形耐火物の施工時の水分は
、使用する材料の粒度構成で異なるが、稠度150〜3
50に調整して使用する。
On the other hand, as the monolithic refractory, high alumina or high magnesia castable having a refractory rating of 34 or higher is used depending on the lining refractory. The moisture content during construction of monolithic refractories varies depending on the particle size composition of the material used, but the consistency is 150 to 3.
Adjust to 50 and use.

稠度150未満では流動性が悪く、セラミックフオーム
の固定が不完全で機械的強度が低くなる。また、稠度3
50を超えるとキャスタブルそのものが多孔質で脆弱で
あると共に、流し込み後の養生、乾燥に時間を要し、作
業性が悪くなる。
If the consistency is less than 150, the fluidity is poor, the fixation of the ceramic foam is incomplete, and the mechanical strength is low. Also, consistency 3
If it exceeds 50, the castable itself is porous and fragile, and it takes time to cure and dry after pouring, resulting in poor workability.

キャスタブルの施工は、材料の流動状態に応じて流し込
みまたはコテでの塗り込みにより行う。
Castable construction is done by pouring or troweling, depending on the fluidity of the material.

窯炉炉底部等は予め平滑にしておけば、直接施工が可能
である。直立した側壁に対しては、事前に所要形状に組
みあげた木枠または金枠内に、セラミックフオームを配
置し、そこにキャスタブルを鋳込み成形して形状を整え
た煉瓦状またはブロック状のものをモルタルで仮留めし
ながら組み上げる。しかるのち、内張耐火物をライニン
グしてバーナー乾燥し、操業に供する。
Direct construction is possible if the bottom of the kiln is smoothed in advance. For upright side walls, ceramic foam is placed inside a wooden or metal frame that has been pre-assembled into the desired shape, and then castable is cast and molded into the brick or block shape. Assemble by temporarily fixing with mortar. Thereafter, the refractory lining is lined, dried with a burner, and used for operation.

なお、セラミックフオームの表面には防水性の有機質の
皮膜を与え、キャスタブル流し込み時点で水分や一部ス
ラリ状となったキャスタブル中の粗、微粒の骨材の浸透
や侵入を防止する。具体的な処置としては、ビニールテ
ープ等でセラミックフオームの表面を被覆することによ
り、これらの侵入の大半が回避でき、本来の目的である
耐熱性にほとんど悪影響を与えない。
Furthermore, a waterproof organic film is applied to the surface of the ceramic foam to prevent penetration and intrusion of moisture and coarse and fine aggregate in the castable, which is partly in the form of a slurry at the time of pouring into the castable. As a specific measure, most of these intrusions can be avoided by covering the surface of the ceramic foam with vinyl tape or the like, and the heat resistance, which is the original objective, is hardly affected.

ハニカム状断熱材の平面に占めるセラミックフオームの
面積比は、60〜90%となるように調整する。ハニカ
ム状断熱材の平面に占めるセラミックフオームの面積比
が60%未満の場合は、所望の断熱性が得られず、また
、90%を超えると、互いに隣接するセラミックフオー
ム間を充填するキャスタブルの厚みが5mm未満となり
、構造上機械的強度が低下する。この互いに隣接するセ
ラミックフオーム間を充填するキャスタブルの厚みは、
5mm以上、望ましくは7〜10mmが適当である。
The area ratio of the ceramic foam to the plane of the honeycomb-shaped heat insulating material is adjusted to be 60 to 90%. If the area ratio of the ceramic foam to the plane of the honeycomb-shaped insulation material is less than 60%, the desired insulation properties cannot be obtained, and if it exceeds 90%, the thickness of the castable filling between adjacent ceramic foams will increase. is less than 5 mm, resulting in a decrease in structural mechanical strength. The thickness of the castable filling between adjacent ceramic forms is
A suitable length is 5 mm or more, preferably 7 to 10 mm.

したがって、キャスタブル部分を補強するには、無機質
あるいは有機質の耐熱性を有する繊維、例えば、ステン
レス鋼等の金属製ワイヤ、セラミック繊維あるいは炭素
繊維等が適当で、直径1m+n以下のものが有効に作用
する。
Therefore, to reinforce the castable part, heat-resistant inorganic or organic fibers such as stainless steel or other metal wires, ceramic fibers, or carbon fibers are suitable, and those with a diameter of 1m+n or less work effectively. .

作    用 この発明の耐火断熱材は、高耐火性、低熱伝導率のセラ
ミックフオームを耐火キャスタブルによって鋳込み成形
しているので、セラミックフオームの欠点である低機械
的強度が周囲に充填した耐火キャスタブルによって補強
され、しかも、セラミックフオームの利点である高耐火
性と低熱伝導率がそのまま承継され、耐火性ならびに断
熱性に優れた耐火断熱材を与えるのである。
Function: The fire-resistant heat insulating material of this invention is made by casting ceramic foam with high fire resistance and low thermal conductivity using fire-resistant castable, so the low mechanical strength, which is a drawback of ceramic foam, is reinforced by the fire-resistant castable filled around it. Furthermore, the advantages of ceramic foam, such as high fire resistance and low thermal conductivity, are inherited as they are, providing a fire-resistant heat insulating material with excellent fire resistance and heat insulation properties.

また、この発明の上記耐火断熱材をパーマ層に使用し、
その上に耐火材をライニングした工業窯炉用の耐火断熱
構造は、耐火性ならびに断熱性に優れた耐火断熱材をパ
ーマ層として使用したから、従来の断熱煉瓦や断熱キャ
スタブルを使用する場合に比較し、比較的薄い層で高い
断熱効率が得られる。
Further, the fireproof insulation material of the present invention is used for a permanent layer,
The refractory insulation structure for industrial furnaces, which is lined with refractory material, uses a refractory insulation material with excellent fire resistance and insulation properties as a permanent layer, compared to the case of using conventional insulating bricks or insulating castables. However, high insulation efficiency can be achieved with a relatively thin layer.

実施例 実施例1 縦500m+n、横500mm、厚さ65m+nの金枠
に、直径50amφで厚さ65mmのアルミナ質セラミ
ックフオームの複数個を、全体に占める面積比を変えて
設置し、アルミナ質キャスタブルを流し込み施工し、ハ
ニカム状ブロックを製作した。
Examples Example 1 A plurality of alumina ceramic foams each having a diameter of 50 amφ and a thickness of 65 mm were installed in a metal frame measuring 500 m + n in length, 500 mm in width, and 65 m + n in thickness, with the area ratios of the whole being changed, and alumina castables were installed. A honeycomb-shaped block was created by pouring.

使用したアルミナ質キャスタブルのA I z03量は
80%で、直径1 mm、長さ20mmの5US304
のステンレスワイヤを3%添加し、稠度を250に調整
して使用した。キャスタブルを流し込み、振動成形し、
金枠を外し、150℃で20時間乾燥したしたのち、8
00℃で5時間熱硬化させた。
The A I z03 content of the alumina castable used was 80%, and the diameter was 1 mm and the length was 20 mm.
3% of stainless steel wire was added and the consistency was adjusted to 250 before use. Pour castable, vibration molding,
After removing the metal frame and drying at 150℃ for 20 hours,
It was heat cured at 00°C for 5 hours.

比較のため、セラミックフオームを設置しない以外は、
上記と同一操作によりブロックを製作した。
For comparison, except for not installing ceramic foam,
A block was manufactured by the same operation as above.

そして製作した各ブロックについて、圧縮強度と側面強
度を15007onのプレスを用いて測定した。
The compressive strength and side strength of each manufactured block were measured using a 15007 on press.

その結果をセラミックフオームを設置しないキャスタブ
ルのみからなるブロックの測定結果を1とした場合の比
率で第2図に示す。
The results are shown in FIG. 2 as a ratio, with the measurement result of a block consisting only of castables without ceramic foam installed as 1.

第2図に示すとおり、この発明のハニカム状ブロックは
、セラミックフオームの全体に占める面積比が40〜9
0%の場合、いずれも比較例以上の強度を有している。
As shown in Fig. 2, the honeycomb block of the present invention has an area ratio of 40 to 9 in the total area of the ceramic foam.
In the case of 0%, both have strength greater than that of the comparative example.

実施例2 敷部耐火煉瓦としてA I *O−78%の焼成煉瓦を
用いている容量70Tonの溶鋼取鍋のパーマ層に、こ
の発明のハニカム状ブロックで厚さ80mmのパーマ層
を施工した。
Example 2 A permanent layer with a thickness of 80 mm was constructed using the honeycomb-shaped block of the present invention on a permanent layer of a molten steel ladle having a capacity of 70 tons using fired bricks of A I *O-78% as the refractory refractory bricks.

使用したハニカム状ブロックは、空隙率85%、嵩比重
0.85で、直径50mmと150mmのセラミックフ
オーム(A 1 to z 90%、Zr0z8%)の
表面にアルミナモルタルを1mmの厚さで塗布したのち
乾燥させたものを、各セラミックフオーム間の間隔が7
mm以上となるよう配置し、A l gos 65%の
キャスタブルを稠度200〜270の範囲に調整したも
のを、平滑面を整えながら流し込み、24時間養生した
のち、200℃の熱風で48時間乾燥した。
The honeycomb block used had a porosity of 85% and a bulk specific gravity of 0.85, and was made of ceramic foam (A 1 to z 90%, Zr0z 8%) with a diameter of 50 mm and 150 mm, and alumina mortar was applied to a thickness of 1 mm. After drying, the distance between each ceramic form is 7.
mm or more, castable with Al gos 65% adjusted to have a consistency in the range of 200 to 270 was poured while smoothing the surface, cured for 24 hours, and then dried with hot air at 200°C for 48 hours. .

上記ハニカム状ブロックのパーマ層の上に前記AI!0
−78%の焼成煉瓦その他をライニングし、操業に復帰
させて受鋼した。
The above AI! on the perm layer of the above honeycomb block! 0
- Lined with 78% fired bricks and others, returned to operation and received steel.

そして比較のため、従来どおりの流込み工法で厚さ80
mmのパーマ層を施工した取鍋について、それぞれ新鍋
状態からマス煉瓦交換に至る35chの受鋼における底
部鉄皮温度を測定し、その平均値を求めた。その結果、
平均受鋼温度1680℃に対し、比較取鍋では底部鉄皮
温度の平均値が325℃であったのに対し、この発明の
ハニカム状ブロックのパーマ層を施工した取鍋では、3
09℃と大幅に低下しており、熱放散量が大幅に軽減さ
れていることが確認された。
For comparison, the thickness was 80mm using the conventional pouring method.
For each ladle with a permanent layer of mm thick, the bottom steel skin temperature was measured in 35 channels of receiving steel from the new ladle state to the time of mass brick replacement, and the average value was determined. the result,
In contrast to the average receiving temperature of 1680°C, the average value of the bottom skin temperature of the comparison ladle was 325°C, whereas in the ladle with the permanent layer of honeycomb-shaped blocks of this invention, the average value of the bottom skin temperature was 325°C.
It was confirmed that the temperature was significantly lowered to 09°C, and the amount of heat dissipated was significantly reduced.

実施例3 容量250Tonの溶鋼取鍋の側壁にパーマ層として、
この発明のハニカム状ブロックを厚さ65mm施工した
Example 3 As a permanent layer on the side wall of a molten steel ladle with a capacity of 250 tons,
The honeycomb block of this invention was constructed to a thickness of 65 mm.

従来のパーマ層は、耐火度30のロウ石煉瓦を厚さ65
mm施工していた。
The conventional permanent layer is made of waxite bricks with a fire resistance rating of 30 and a thickness of 65
mm was being constructed.

使用したハニカム状ブロックは、縦500mm、横50
0mm、厚さ60mmの大きさで、空隙率83%、嵩比
重0.92で、直径50mmと70mmのMgO系セラ
ミックフオームを、全体に占めるセラミックフオームの
面積比が85%となるよう配置し、A l *O−80
%のキャスタブルに直径1mm、長さ20mmの5US
304のファイバーを3%添加し、稠度250に調整し
て流し込み、以降は実施例1と同一操作により製作した
ものである。
The honeycomb block used is 500mm long and 50mm wide.
MgO-based ceramic foams with a size of 0 mm and a thickness of 60 mm, a porosity of 83%, a bulk specific gravity of 0.92, and a diameter of 50 mm and 70 mm are arranged so that the area ratio of the ceramic foams to the whole is 85%, A l *O-80
% castable with diameter 1mm and length 20mm 5US
304 fiber was added at 3%, the consistency was adjusted to 250, and the rest was poured in the same manner as in Example 1.

ハニカム状ブロックの施工は、鉄皮に高アルミナモルタ
ルで内張すし、さらに中子を装入し、スピネル系流し込
み材を充填し、48時間養生したのち、中子を取出して
300℃で48時間乾燥し、雰囲気温度1100℃で予
熱したのち、操業に復帰せしめた。
To construct a honeycomb block, the steel shell is lined with high alumina mortar, the core is inserted, and spinel-based pouring material is filled, and after curing for 48 hours, the core is removed and heated at 300℃ for 48 hours. After drying and preheating at an ambient temperature of 1100°C, operation was resumed.

また、比較のため従来と同じ耐火度30のろう石煉瓦を
パーマ層とする取鍋について、それぞれ新鍋状態から最
初のマス煉瓦の交換に至る35chの受鋼を繰返した。
In addition, for comparison, 35 channels of steel receiving from the new ladle state to the first mass brick replacement were repeated for ladles whose permanent layer was made of the same conventional 30-degree refractory stone bricks.

鋳込みまでのキリングタイムの平均は120秒で、鍋中
温度は、この発明のハニカム状ブロックを施工した取鍋
が1608℃、従来法の取鍋は1594℃であった。す
なわち鍋中温度を14℃上昇できたので、マス煉瓦交換
後、この発明による取鍋では、出鋼温度を平均10℃低
下させて受鋼した。その結果、この発明のハニカム状ブ
ロックを施工した取鍋は、従来法の取鍋の耐用回数12
0chに対し、138chに延長できた。
The average killing time until casting was 120 seconds, and the temperature inside the pot was 1608°C for the ladle made with the honeycomb block of the present invention, and 1594°C for the conventional ladle. That is, since the temperature in the ladle could be raised by 14°C, after the mass brick was replaced, steel was received with the tapping temperature lowered by an average of 10°C in the ladle according to the present invention. As a result, the ladle constructed with the honeycomb-shaped block of the present invention has a service life of 12 times less than that of the conventional ladle.
We were able to extend the channel from 0ch to 138ch.

発明の効果 この発明の耐火断熱材は、従来の耐火断熱材に比較し、
高耐火性と高断熱性を有し、しかも機械的強度が大きい
から工業窯炉、特に溶鋼用取鍋の内張耐火物として好適
であり、特に取鍋のパーマ層の施工に適しており、地金
付きを回避しなから受鋼温度を下げて鋳込めるから、取
鍋耐用寿命を大幅に延長できる。
Effects of the invention Compared to conventional fire-resistant insulation materials, the fire-resistant insulation material of this invention has the following advantages:
It has high fire resistance and high heat insulation properties, as well as high mechanical strength, so it is suitable as a refractory lining for industrial furnaces, especially ladle for molten steel, and is especially suitable for construction of permanent layer of ladle. Since it is possible to lower the temperature of the receiving steel and cast without avoiding metal sticking, the service life of the ladle can be greatly extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はハニカム状ブロック試作の概略説明図で、(a
)は平面図、(b)は(a)図のA−A断面図、2図は
実施例1におけるハニカム状ブロックの全体に占めるセ
ラミックフオームの面積率と圧縮強度および側面強度の
関係を、比較例の圧縮強度と側面強度をそれぞれ1 とした比率で示すグラフで ある。 1・・・木枠、 2・・・セラミックフオーム、 3・・・キャスタブル、 出 願 人 住友金属工業株式会社 側面強度比 茗I睡珈田
Figure 1 is a schematic explanatory diagram of the prototype honeycomb block;
) is a plan view, (b) is a sectional view taken along line A-A in figure (a), and figure 2 is a comparison of the relationship between the area ratio of ceramic foam in the entire honeycomb-shaped block, compressive strength, and side strength in Example 1. It is a graph showing the ratio of compressive strength and lateral strength of an example with each being 1. 1... Wooden frame, 2... Ceramic foam, 3... Castable, Applicant: Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】 1 Al_2O_3、ZrO_2、SiO_3の単独ま
たは混合物からなる空隙率60〜90%のセラミックフ
ォームを、耐火キャスタブルで鋳込み成形してなる耐火
断熱材。 2 Al_2O_3、ZrO_2、SiO_3の単独ま
たは混合物からなる空隙率60〜90%、直径50〜2
50mmのセラミックフォームをハニカム状に配置し、
耐火キャスタブルを流し込み施工してなる耐火断熱材。 3 Al_2O_3、ZrO_2、SiO_3の単独ま
たは混合物からなる空隙率60〜90%のセラミックフ
ォームを核とし、耐火キャスタブルを流し込み施工して
なる耐火断熱ブロックを、パーマ層としてライニングす
ることを特徴とする耐火断熱構造。
[Scope of Claims] 1. A fire-resistant heat insulating material made by casting a ceramic foam with a porosity of 60 to 90% consisting of Al_2O_3, ZrO_2, and SiO_3 alone or in a mixture using a fire-resistant castable. 2 Consisting of Al_2O_3, ZrO_2, SiO_3 alone or in a mixture, porosity 60-90%, diameter 50-2
50mm ceramic foam arranged in a honeycomb shape,
A fireproof insulation material made by pouring fireproof castable. 3 A fire-resistant insulation block made of a ceramic foam with a porosity of 60 to 90% made of Al_2O_3, ZrO_2, and SiO_3 alone or in a mixture as a core, and constructed by pouring fire-resistant castable, and lining it as a permanent layer. structure.
JP4336190A 1990-02-23 1990-02-23 Fire-resisting heat insulation material and fire-resisting heat insulating structure Pending JPH03247545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4336190A JPH03247545A (en) 1990-02-23 1990-02-23 Fire-resisting heat insulation material and fire-resisting heat insulating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4336190A JPH03247545A (en) 1990-02-23 1990-02-23 Fire-resisting heat insulation material and fire-resisting heat insulating structure

Publications (1)

Publication Number Publication Date
JPH03247545A true JPH03247545A (en) 1991-11-05

Family

ID=12661718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4336190A Pending JPH03247545A (en) 1990-02-23 1990-02-23 Fire-resisting heat insulation material and fire-resisting heat insulating structure

Country Status (1)

Country Link
JP (1) JPH03247545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557579A (en) * 2011-12-06 2012-07-11 天津大学 Silica-based porous composite heat insulation material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557579A (en) * 2011-12-06 2012-07-11 天津大学 Silica-based porous composite heat insulation material and preparation method thereof

Similar Documents

Publication Publication Date Title
US4182466A (en) Wear part for sliding gates and process for the production of such wear parts and sliding gate with such wear parts
JP4847400B2 (en) Manufacturing method of heat insulating material, alumina-spinel refractory heat insulating material, kiln furnace, heat insulating material construction method, and heat insulating material recycling method
US4343989A (en) Magnesium oxide based heat storage device
JP5907312B2 (en) Method for manufacturing lining structure of molten metal container
JPH03247545A (en) Fire-resisting heat insulation material and fire-resisting heat insulating structure
CN111704473A (en) Heat-preservation refractory castable and preparation method, pouring method and application thereof
JPH0446077A (en) Fireproof heat insulating material and fireproof heat insulating structure
CN110054498B (en) Prefabricated building block for furnace and kiln and preparation method thereof
JPS61238909A (en) Lance for treating molten metal
AU742062B2 (en) Castable refractory composition and methods of making refractory bodies
JPS6077182A (en) Lightweight refractory heat-insulating block
JPS5919905B2 (en) Fireproof insulation board
JP4480203B2 (en) Lining structure of aluminum melting furnace and its lining construction method
WO2020203426A1 (en) Crown structure and production method therefor
JPH09301779A (en) Castable refractory, application method therefor and industrial furnace using the same
JPH0755351A (en) Structure and method for lining molten metal container
JPS5941483B2 (en) Lining method for hot blast furnace for blast furnace
JPH02103395A (en) Method of constructing ladle hearth well
JP2000288720A (en) Molten metal vessel having joining interface between monolithic refractories and manufacture thereof
JPH0671422A (en) Method for lining bottom part in ladle
SU699017A1 (en) Method of lining metallurgical aggregates
US20090020926A1 (en) Insulating refractory lining
RU2051877C1 (en) Refractory moulding self-hardening material
CN87214698U (en) Pottery and porcelain combined cooling wall
RU1785508C (en) Multilayer heat-insulating construction unit