JP4847400B2 - Manufacturing method of heat insulating material, alumina-spinel refractory heat insulating material, kiln furnace, heat insulating material construction method, and heat insulating material recycling method - Google Patents

Manufacturing method of heat insulating material, alumina-spinel refractory heat insulating material, kiln furnace, heat insulating material construction method, and heat insulating material recycling method Download PDF

Info

Publication number
JP4847400B2
JP4847400B2 JP2007152125A JP2007152125A JP4847400B2 JP 4847400 B2 JP4847400 B2 JP 4847400B2 JP 2007152125 A JP2007152125 A JP 2007152125A JP 2007152125 A JP2007152125 A JP 2007152125A JP 4847400 B2 JP4847400 B2 JP 4847400B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
mass
parts
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007152125A
Other languages
Japanese (ja)
Other versions
JP2008013430A (en
Inventor
泰次郎 松井
法生 新田
智 伊藤
安成 長崎
晶 寺沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HINOMARU YOGYO CO Ltd
Nippon Steel Corp
Original Assignee
HINOMARU YOGYO CO Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HINOMARU YOGYO CO Ltd, Nippon Steel Corp filed Critical HINOMARU YOGYO CO Ltd
Priority to JP2007152125A priority Critical patent/JP4847400B2/en
Publication of JP2008013430A publication Critical patent/JP2008013430A/en
Application granted granted Critical
Publication of JP4847400B2 publication Critical patent/JP4847400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は溶鋼、溶融金属や塩基性スラグ等に対しての侵食に強く、熱伝導率の低いアルミナ−スピネル質耐火断熱材及び断熱材の製造方法、窯炉容器、断熱材の施工方法、及び断熱材のリサイクル方法に関するものである。   The present invention is resistant to erosion to molten steel, molten metal, basic slag, etc., and has a low thermal conductivity alumina-spinel refractory heat insulating material and heat insulating material manufacturing method, kiln furnace container, heat insulating material construction method, and The present invention relates to a method for recycling the heat insulating material.

耐火断熱レンガは高温に耐える耐火性と、熱を遮断して外部に逃がさないと言う断熱性を兼ね備えたレンガで、省エネルギーレンガとして、直接熱面に或いは耐火レンガの背面に広く使用される。
しかし、一般的に耐火断熱レンガは気孔率が高いため、耐食性に劣る上に、材質もSiO−Al質(ムライト質)が基本であり、溶融金属や溶融塩基性スラグに対して耐食性が不足していた。そのため、混銑車、転炉、溶銑・溶鋼鍋、脱ガス炉及びタンディシュ等の溶銑・溶鋼を取り扱う炉にはあまり使用されていない。
The fire-resistant and heat-insulating brick is a brick that has both fire resistance that can withstand high temperatures and heat insulation that blocks heat and does not escape to the outside, and is widely used as an energy-saving brick directly on the hot surface or on the back of the fire-resistant brick.
However, in general, fireproof heat-insulating bricks have high porosity, so they are inferior in corrosion resistance and are basically made of SiO 2 -Al 2 O 3 (mullite), which is resistant to molten metal and molten basic slag. Corrosion resistance was insufficient. For this reason, it is rarely used in furnaces that handle hot metal / molten steel such as kneading wheels, converters, hot metal / molten steel pans, degassing furnaces, and tundishes.

また、従来の断熱材は強度が低い為に、耐火レンガの熱膨張に伴う圧縮応力により破壊されやすいものであった。その上、加熱冷却を繰り返すことにより、線収縮が起因と考えられる粉化が発生するという諸問題を有していた。従って、溶銑・溶鋼を取り扱う炉を断熱するため、溶銑・溶鋼や溶融スラグに浸食されにくく、高強度の耐火断熱材、特に耐火断熱パネルの早期の開発が、製銑・製鋼等の溶融金属を取り扱う業界から強く要望されていた。   Moreover, since the conventional heat insulating material is low in strength, it is easily broken by the compressive stress accompanying the thermal expansion of the refractory brick. In addition, repeated heating and cooling have various problems that pulverization is considered to be caused by linear shrinkage. Therefore, in order to insulate the furnace that handles hot metal and molten steel, the early development of high-strength fire-resistant insulation, especially fire-resistant and heat-insulated panels, is difficult to be eroded by molten metal and molten steel and molten slag. There was a strong demand from the handling industry.

そこで、低熱伝導性でかつ熱衝撃に対する抵抗性が強いアルミナ−スピネル質耐火断熱レンガの製造方法として、マグネシアクリンカー粉末、焼結アルミナ粉末、及び結合粘土を所定の割合で混合した後、気孔形成材を所定量混合し、水を加えた後成形し、乾燥焼成仕上加工を行った耐火断熱レンガの製造方法が提案されている(例えば、特許文献1参照)。   Therefore, as a method for producing an alumina-spinel refractory insulating brick with low thermal conductivity and strong resistance to thermal shock, after mixing magnesia clinker powder, sintered alumina powder, and bonded clay in a predetermined ratio, a pore forming material Has been proposed, a method for producing a heat-resistant and heat-insulating brick in which water is added and then molded and subjected to a dry firing finish (for example, see Patent Document 1).

特開昭53−39308号公報JP-A-53-39308

しかし、前記特許文献1に開示されている製造方法では、結合剤として耐火粘土を用いているために、得られる断熱レンガにはSiOを多く含有しており、この為、上述の様な、耐食性の不足、及び再加熱収縮に起因する粉化発生の課題は、依然として残っていた。 However, in the manufacturing method disclosed in Patent Document 1, since refractory clay is used as a binder, the heat insulating brick obtained contains a large amount of SiO 2 , and as described above, The problem of the occurrence of pulverization due to insufficient corrosion resistance and reheating shrinkage still remained.

本発明では、かかる諸課題を解決するために、高強度でも断熱性能が高く、さらに高耐食性でかつ再加熱収縮率が小さい断熱材の製造方法、およびその断熱材、窯炉容器、断熱材の施工方法、及び断熱材のリサイクル方法を提供することを目的とする。   In the present invention, in order to solve such problems, a method for producing a heat insulating material having high heat insulation performance even at high strength, high corrosion resistance and low reheat shrinkage, and its heat insulating material, kiln furnace container, heat insulating material It aims at providing the construction method and the recycling method of a heat insulating material.

本発明の要旨は、以下の通りである。
(1)純度95質量%以上で最大粒径100μm以下のマグネシアクリンカー粉末4〜17質量部と、純度99質量%以上で最大粒径310μm以下のアルミナ粉末70〜82質量部と、アルミナセメント10〜20質量部を加えて混合して、MgOを4〜16質量部、Alを80〜93質量部、CaOを2〜4質量部の範囲とし、かつ、MgO:Alの質量比を1:5〜25としたのち、
気孔形成材を添加し、熱処理を行うことを特徴とする断熱材の製造方法。
(2)気孔形成材に加えて、過酸化水素水、又は、過酸化水素水と製泡剤を添加し、鋳込み成形することにより、鋳込み面から垂直方向に見掛け気孔率を連続的または段階的に変化させた後、熱処理を行うことを特徴とする(1)に記載の断熱材の製造方法。
The gist of the present invention is as follows.
(1) 4 to 17 parts by mass of magnesia clinker powder having a purity of 95% by mass or more and a maximum particle size of 100 μm or less; 70 to 82 parts by mass of alumina powder having a purity of 99% by mass or more and a maximum particle size of 310 μm or less; and mixed with 20 parts by weight, 4-16 parts by weight of MgO, Al 2 O 3 and 80 to 93 parts by weight, in the range of 2 to 4 parts by weight of CaO, and, MgO: mass of Al 2 O 3 After setting the ratio to 1: 5-25,
A method for producing a heat insulating material, comprising adding a pore forming material and performing a heat treatment.
(2) In addition to the pore forming material, hydrogen peroxide solution or hydrogen peroxide solution and a foaming agent are added, and the apparent porosity is continuously or stepwise in the vertical direction from the casting surface by casting. (1) The method for manufacturing a heat insulating material according to (1), wherein the heat treatment is performed after the change.

(3)MgOが4〜16質量部、Alが80〜93質量部、CaOが2〜4質量部の範囲で、SiO を不可避的不純物以外で含まず、かつ、MgO:Alの質量比が1:5〜25であり、見掛け気孔率が50容量%以上、350℃における熱伝導率が0.7W/(m・K)以下、圧縮強度が5MPa以上、1500℃における再加熱収縮率が−0.05%以上であることを特徴とするアルミナ−スピネル質耐火断熱材。
(4)見掛け気孔率が連続的または段階的に変化していることを特徴とする(3)に記載のアルミナ−スピネル質耐火断熱材。
(3) 4 to 16 parts by mass of MgO, 80 to 93 parts by mass of Al 2 O 3 and 2 to 4 parts by mass of CaO, SiO 2 is not contained except for inevitable impurities, and MgO: Al 2 The mass ratio of O 3 is 1: 5 to 25, the apparent porosity is 50% by volume or more, the thermal conductivity at 350 ° C. is 0.7 W / (m · K) or less, and the compressive strength is 5 MPa or more and 1500 ° C. An alumina-spinel refractory heat insulating material having a reheat shrinkage of -0.05% or more.
(4) The alumina-spinel refractory heat insulating material according to (3), wherein the apparent porosity changes continuously or stepwise.

(5)煉瓦状又はパネル状に成形加工された(3)又は(4)に記載の断熱材が少なくとも一部に張り付けられたことを特徴とする窯炉容器。
(6)前記断熱材に設けられた固定用孔を介して、ボルトで窯炉容器の鉄皮に該断熱材が固定され、かつ、該ボルト頭部が耐火キャスタブル又はモルタルで被覆されていることを特徴とする(5)に記載の窯炉容器。
(5) A furnace vessel characterized in that the heat insulating material according to (3) or (4) molded into a brick shape or a panel shape is attached to at least a part.
(6) The heat insulating material is fixed to the iron skin of the kiln vessel with a bolt through a fixing hole provided in the heat insulating material, and the bolt head is covered with a refractory castable or mortar. The kiln container as described in (5) characterized by these.

(7)(3)または(4)に記載の断熱材を、窯炉容器の少なくとも一部に張り付ける断熱材の施工方法であって、
前記断熱材を煉瓦状またはパネル状に成形加工し、
該断熱材に固定用孔を設け、該孔を介してボルトで窯炉容器の鉄皮に該断熱材を固定し、
該ボルト頭部を耐火キャスタブル又はモルタルで被覆することを特徴とする断熱材の施工方法。
(8)(5)または(6)に記載の窯炉容器で熱間で使用された断熱材の廃材を、耐火原料として活用することを特徴とする断熱材のリサイクル方法。
(7) A heat insulating material construction method for attaching the heat insulating material according to (3) or (4) to at least a part of a kiln container,
The heat insulating material is molded into a brick shape or a panel shape,
A fixing hole is provided in the heat insulating material, and the heat insulating material is fixed to the iron skin of the furnace vessel with a bolt through the hole.
A method for constructing a heat insulating material, wherein the bolt head is covered with a fireproof castable or mortar.
(8) A method for recycling a heat insulating material, wherein the waste material of the heat insulating material used hot in the kiln vessel described in (5) or (6) is utilized as a refractory raw material.

本発明により、高耐食性でしかも高強度の断熱材が製造可能となる。従って、本発明の断熱材を窯炉容器の一部又は全面に張り付けることにより、窯炉容器の永久張りや準永久張りとして適用することができるため、窯炉容器の鉄皮からの放熱が抑制され、省エネが実現可能となるばかりでなく、ウェア材の損耗時に本発明のライニングを施すことにより、漏銑・漏鋼の防止強化が図れる。   According to the present invention, a heat insulating material having high corrosion resistance and high strength can be manufactured. Therefore, since the heat insulating material of the present invention can be applied as a permanent or semi-permanent tension of the kiln container by sticking to a part or the entire surface of the kiln container, the heat radiation from the iron skin of the kiln container is prevented. In addition to being suppressed and energy saving can be realized, the lining of the present invention is applied when the wear material is worn, thereby preventing leakage and leakage of steel.

また、本発明の断熱材は、再加熱収縮率が小さいため、溶融金属容器の加熱冷却を繰り返しても、線収縮が起因と考えられる粉化及び亀裂の発生を抑制でき、長寿命化が図れる。
一方、これまで一般に永久張り材や準永久張り材についてはリサイクルされていなかったが、本発明の断熱材は、素材そのものが十分に熱履歴を受け容積変化が無くなっており、しかもアルミナ−スピネル質となっているため、高耐火性骨材としてリサイクルが可能となる。
In addition, since the heat-insulating material of the present invention has a small reheating shrinkage rate, even if heating and cooling of the molten metal container is repeated, the occurrence of powdering and cracking, which are considered to be caused by linear shrinkage, can be suppressed, and the life can be extended. .
On the other hand, the permanent tension material and the semi-permanent tension material have not been recycled so far. However, the heat insulating material of the present invention has received a sufficient heat history so that there is no change in volume, and the alumina-spinel quality. Therefore, it can be recycled as a high fire-resistant aggregate.

前記の通り、断熱材を製造するに際して従来から行われていた方法では、得られた断熱レンガにSiOを多く含有していることにより、耐食性が不足する等の課題があったため、本発明者は、SiOを極力含有させない様にすることに着目して、耐火粘土の代わりにアルミナセメントを用いることで、高強度や高耐食性を確保できる上に、高温時の再加熱収縮を抑えることも可能であることを新たに見出した。 As described above, the conventional method for producing a heat insulating material has a problem such as insufficient corrosion resistance due to containing a large amount of SiO 2 in the obtained heat insulating brick. Focusing on not containing SiO 2 as much as possible, by using alumina cement instead of refractory clay, high strength and high corrosion resistance can be secured, and reheating shrinkage at high temperatures can be suppressed. I found out that it was possible.

具体的には、耐火粘土の代わりにアルミナセメントを用いることで、以下の2点が改良された。
第1点は、SiO成分を結合剤として意図的に配合することがなく、一般耐火煉瓦と同等、又はそれ以上に耐食性の向上が図られ、熱間での強度も向上した。
第2点は、アルミナセメント中のCaO成分の反応によって生じる膨張性を利用し、高温時の再加熱収縮を抑えることも可能になった。この高温時の膨張反応により、実炉使用時に目地が開かなくなるため、目地からの湯差しを防ぐ効果がある。
以下、本発明の構成について詳細に説明する。
Specifically, the following two points were improved by using alumina cement instead of refractory clay.
The first point, without having to deliberately blending SiO 2 component as a binder, equivalent to general refractory bricks, or more improvement in corrosion resistance is achieved in, was also improved strength at hot.
The second point is that it is possible to suppress reheating shrinkage at high temperatures by utilizing the expandability generated by the reaction of the CaO component in the alumina cement. Due to the expansion reaction at the high temperature, the joint is not opened when the actual furnace is used, so that there is an effect of preventing the hot water from the joint.
Hereinafter, the configuration of the present invention will be described in detail.

本発明のアルミナ−スピネル質耐火断熱材の製造に際し、純度95質量%以上で最大粒径100μm以下のマグネシアクリンカー粉末4〜17質量部と、純度99質量%以上で最大粒径310μm以下のアルミナ粉末70〜82質量部と、アルミナセメント10〜20質量部を加えて混合する。
ここで、混合した後の化学組成は、MgOを4〜16質量部、Alを80〜93質量部、CaOを2〜4質量部の範囲とし、かつ、MgO:Alの質量比を1:5〜25となる様に配合する。
上記混合原料100kgに対して、気孔形成材を例えば10〜20L加えて混合し、所定の水を添加して混練したのち、鋳込み成形して脱型後、乾燥し、あるいは乾燥した後に次いでトンネルキルンで例えば1500℃程度の条件で焼成する等の熱処理を行う。
気孔形成材としては、オガクズ、ポリスチレンなど焼成時に消失する可燃性物質、又はパーライト等の中空耐火粒子等が好ましい。
In the production of the alumina-spinel refractory heat insulating material of the present invention, 4 to 17 parts by mass of magnesia clinker powder having a purity of 95% by mass or more and a maximum particle size of 100 μm or less, and alumina powder having a purity of 99% by mass or more and a maximum particle size of 310 μm or less 70 to 82 parts by mass and 10 to 20 parts by mass of alumina cement are added and mixed.
Here, the chemical composition after mixing is 4 to 16 parts by mass of MgO, 80 to 93 parts by mass of Al 2 O 3 , 2 to 4 parts by mass of CaO, and MgO: Al 2 O 3 It mix | blends so that mass ratio may be set to 1: 5-25.
For example, 10 to 20 L of pore forming material is added to and mixed with 100 kg of the above mixed raw material, kneaded after adding predetermined water, cast-molded, demolded, dried, or dried and then tunnel kiln Then, for example, a heat treatment such as firing at about 1500 ° C. is performed.
As the pore forming material, flammable materials such as sawdust and polystyrene that disappear upon firing, or hollow refractory particles such as pearlite are preferable.

マグネシアクリンカー粉末およびアルミナ粉末の最大粒径の上限値を、それぞれ前記の如く規定したのは、それぞれ規定した最大粒径を超えるものを用いると、最大粒径が粗くなり過ぎて、スピネル化の生成反応を大幅に遅延させるため長時間の焼成を要し、不経済となるばかりか、一般的な耐火物製品に比べて、カサ比重と圧縮強さの相関性が低下するためである。
ここで、カサ比重と圧縮強さの相関については、通常、一般的な耐火物製品については、この相関性が高位であるため、カサ比重を把握することにより、圧縮強さの指標とすることができる。しかし、前記の通り、最大粒径が粗くなり過ぎると、カサ比重と圧縮強さの相関性が低下し、カサ比重を圧縮強さの指標とすることができないため、製造管理上、不都合となる。
従って、最大粒径の上限値を、それぞれ前記の如く規定することで、熱処理工程においてスピネルの生成反応を短時間で良好に行わせると共に、熱処理後のカサ比重と圧縮強さの相関を高位に安定させることができる。
The upper limit values of the maximum particle size of the magnesia clinker powder and alumina powder are specified as described above. When the particles exceeding the specified maximum particle size are used, the maximum particle size becomes too coarse and the formation of spinel This is because, since the reaction is greatly delayed, prolonged firing is required, which is not economical, and the correlation between the specific gravity of the bulk and the compressive strength is lower than that of a general refractory product.
Here, the correlation between the bulk density and compression strength is generally high for general refractory products. Therefore, by grasping the bulk density, it should be used as an index of compression strength. Can do. However, as described above, if the maximum particle size becomes too coarse, the correlation between the bulk density and the compressive strength decreases, and the bulk density cannot be used as an index of the compressive strength, which is inconvenient in production management. .
Therefore, by defining the upper limit of the maximum particle size as described above, the spinel formation reaction can be carried out in a short time in the heat treatment step, and the correlation between the bulk density and the compressive strength after the heat treatment is increased. It can be stabilized.

また、マグネシアクリンカー粉末およびアルミナ粉末の粒径は、小さくても特に問題にはならないため、下限値は特に規定するものではなく、粉砕コスト等を考慮して、適宜設定するのが良い。
さらに、マグネシアクリンカー粉末およびアルミナ粉末の純度を、それぞれ前記の如く規定したのは、マグネシアクリンカーの純度が95質量%未満であると、製法と出発原料上SiO、Feなどが混入し、耐火性を低下させる要因となる。
一方、アルミナ粉末が純度99質量%未満であると、アルカリ成分の混入が増え熱処理時のスピネル化反応により異常膨張が発生するためである。
Further, since the particle diameters of the magnesia clinker powder and the alumina powder are not particularly problematic even if they are small, the lower limit value is not particularly defined, and is preferably set appropriately in consideration of the pulverization cost and the like.
Furthermore, the purities of the magnesia clinker powder and the alumina powder are respectively defined as described above. When the purity of the magnesia clinker is less than 95% by mass, SiO 2 , Fe 2 O 3 and the like are mixed on the production method and starting materials. It becomes a factor that lowers fire resistance.
On the other hand, if the alumina powder has a purity of less than 99% by mass, the alkali component is mixed and abnormal expansion occurs due to the spinelization reaction during the heat treatment.

また、原料の配合を、マグネシアクリンカー粉末4〜17質量部と、アルミナ粉末70〜82質量部と、アルミナセメント10〜20質量部としたのは、熱処理時にマグネシアがアルミナと反応しスピネルを生成させ、アルミナと未反応でフリ−のマグネシアを残留させないためである。   The raw materials were blended in 4-17 parts by mass of magnesia clinker powder, 70-82 parts by mass of alumina powder, and 10-20 parts by mass of alumina cement because magnesia reacted with alumina during heat treatment to produce spinel. This is because no free magnesia is left unreacted with alumina.

次に、各原料を混合した後の化学組成について、MgOを4〜16質量部としたのは、MgOが4質量部未満であると耐食性が劣り、16質量部を超えると熱処理時に未反応のMgOが残留し、消化の問題及び繰り返し熱処理時に容積安定性に欠けるためである。
Alを80〜93質量部としたのは、アルミナセメント中のアルミナ成分も含め上記の理由によりMgOとの配合比から設定したものである。
CaOを2〜4質量部としたのは、アルミナセメント中のCaO成分が2質量部未満だと強度発現が弱く亀裂破損を招き、4質量部を超えると使用中に過焼結となるとともに耐食性が劣化するということによる。
Next, about the chemical composition after mixing each raw material, MgO was made into 4-16 mass parts, when MgO is less than 4 mass parts, corrosion resistance is inferior, and when it exceeds 16 mass parts, it is unreacted at the time of heat processing. This is because MgO remains and lacks digestion problems and volume stability during repeated heat treatment.
The reason why 80 to 93 parts by mass of Al 2 O 3 is set based on the mixing ratio with MgO for the above-mentioned reason including the alumina component in the alumina cement.
The reason why the CaO content is 2 to 4 parts by mass is that if the CaO component in the alumina cement is less than 2 parts by mass, the strength development is weak and crack breakage occurs, and if it exceeds 4 parts by mass, oversintering occurs during use and the corrosion resistance is increased. Is due to deterioration.

さらに、MgOとAlの質量比と溶鋼耐食性との関係を調べた結果、MgO:Alの質量比が1:5〜25の場合、耐食性が良好であった。
さらに、MgO:Alの質量比が1:5〜13の範囲では、耐食性が最も高く、亀裂の発生や変形もなく、かつ焼結も良好であるため好ましい。
特に、MgO:Alの質量比が1:5〜8の範囲では、1500℃における再加熱収縮率がわずかに膨張するため、より好ましい。
Furthermore, as a result of investigating the relationship between the mass ratio of MgO and Al 2 O 3 and the corrosion resistance of molten steel, the corrosion resistance was good when the mass ratio of MgO: Al 2 O 3 was 1: 5 to 25.
Furthermore, when the mass ratio of MgO: Al 2 O 3 is in the range of 1: 5 to 13, the corrosion resistance is the highest, no cracks are generated or deformed, and sintering is favorable, which is preferable.
In particular, when the mass ratio of MgO: Al 2 O 3 is in the range of 1: 5 to 8, the reheating shrinkage rate at 1500 ° C. slightly expands, which is more preferable.

本発明の原料の配合において、マグネシアクリンカーと焼結アルミナの一部を、本製品の切削粉に置換することも何等差し支えない。
また、焼結アルミナの一部を仮焼アルミナに置き換えると、熱処理温度を緩和することができるため、好ましい。
さらに、本発明のアルミナ−スピネル質耐火断熱材の製造において、スピネル化促進のための鉱化剤、例えば弗化アルカリ、炭酸リチウム、ホウ酸等を添加することは何等差し支えない。
In the blending of the raw material of the present invention, it is possible to replace part of the magnesia clinker and sintered alumina with the cutting powder of the product.
Moreover, it is preferable to replace part of the sintered alumina with calcined alumina because the heat treatment temperature can be relaxed.
Further, in the production of the alumina-spinel refractory heat insulating material of the present invention, it is possible to add a mineralizer for promoting spinelization, such as alkali fluoride, lithium carbonate, boric acid and the like.

本発明のアルミナ−スピネル質耐火断熱材は、MgOが4〜16質量部、Alが80〜93質量部、CaOが2〜4質量部の範囲で、かつ、MgO:Alの質量比が1:5〜25であり、見掛け気孔率が50容量%以上、350℃における熱伝導率が0.7W/(m・K)以下、圧縮強度が5MPa以上、1500℃における再加熱収縮率が−0.05%以上である。
ここで、MgOが4〜16質量部、Alが80〜93質量部、CaOが2〜4質量部の範囲で、かつ、MgO:Alの質量比が1:5〜25と規定した理由は、上述の通りである。
また、SiOは不可避不純物として混入する程度のものは、許容できるが、極力含有させないことが好ましい。
The alumina-spinel refractory heat insulating material of the present invention has MgO in the range of 4 to 16 parts by mass, Al 2 O 3 in the range of 80 to 93 parts by mass, CaO in the range of 2 to 4 parts by mass, and MgO: Al 2 O 3. The mass ratio is 1: 5 to 25, the apparent porosity is 50% by volume or more, the thermal conductivity at 350 ° C. is 0.7 W / (m · K) or less, the compressive strength is 5 MPa or more, and reheating at 1500 ° C. Shrinkage is -0.05% or more.
Here, MgO is in the range of 4 to 16 parts by mass, Al 2 O 3 is in the range of 80 to 93 parts by mass, CaO is in the range of 2 to 4 parts by mass, and the mass ratio of MgO: Al 2 O 3 is 1: 5 to 25. The reason for the definition is as described above.
In addition, SiO 2 can be allowed to be mixed as an unavoidable impurity, but it is preferable not to contain it as much as possible.

次に、見掛け気孔率を50容量%以上としたのは、50容量%未満であると必然的に熱伝導率が上昇し断熱性を損なうということによる。
見掛け気孔率の上限値は、特に規定するものではないが、強度を考慮すると、70容量%以下とすることが好ましい。
また、350℃における熱伝導率を0.7W/(m・K)以下としたのは、マグネシア質耐火断熱材の熱伝導率1.3W/(m・K)、アルミナ質耐火断熱材の熱伝導率1.0W/(m・K)に比べて大幅に小さく、その耐食性と併せて、混銑車、転炉、溶銑・溶鋼鍋、脱ガス炉及びタンディシュ等の溶融金属を取り扱う炉の断熱材として使用することにより、優れた断熱効果を発揮し、大幅にエネルギーを節約することが出来るからである。尚、熱伝導率の下限値は、特に規定するものではないが、強度を考慮すると、0.2W/(m・K)以上とすることが好ましい。
Next, the reason why the apparent porosity is set to 50% by volume or more is that if it is less than 50% by volume, the thermal conductivity inevitably increases and the heat insulating property is impaired.
The upper limit of the apparent porosity is not particularly specified, but is preferably 70% by volume or less considering the strength.
The thermal conductivity at 350 ° C. was set to 0.7 W / (m · K) or less because the thermal conductivity of the magnesia refractory heat insulating material was 1.3 W / (m · K) and the heat of the alumina refractory heat insulating material. Heat conductivity of furnaces that handle molten metals such as kneading cars, converters, hot metal / molten steel pans, degassing furnaces, and tundishes, with a conductivity that is significantly smaller than that of 1.0 W / (m · K). It is because it can exhibit an excellent heat insulation effect and can greatly save energy. The lower limit of the thermal conductivity is not particularly specified, but is preferably 0.2 W / (m · K) or more in view of strength.

また、圧縮強度を5MPa以上としたのは、従来強度的に安定使用して来ているJIS規格の断熱煉瓦のA、B、C類と同等以上となることを考慮したことによる。
圧縮強度の上限値は、高いほど好ましいため、特に規定するものではない。
さらに、1500℃における再加熱収縮率を−0.05%以上としたのは、使用時に収縮亀裂が発生せずに且つ膨張性目地モルタルにてパネル間に隙間を発生させないことが可能であるということによる。再加熱収縮率の上限値は、特に規定するものではないが、−0.01%以下とすることが好ましい。
The reason why the compressive strength is set to 5 MPa or more is that the compressive strength is considered to be equal to or higher than those of A, B, and C of JIS standard heat insulating bricks that have been used stably in terms of strength.
Since the upper limit of the compressive strength is preferably as high as possible, it is not particularly specified.
Furthermore, the reason why the reheat shrinkage rate at 1500 ° C. is set to −0.05% or more is that shrinkage cracks do not occur at the time of use, and it is possible to prevent gaps from being generated between panels in the expandable joint mortar. It depends. The upper limit value of the reheating shrinkage rate is not particularly specified, but is preferably set to -0.01% or less.

本発明の別の形態として、上記の本発明の方法を行うに際し、気孔形成材に加えて、過酸化水素水、又は、過酸化水素水と製泡剤を添加し、鋳込み成形することにより、鋳込み面から垂直方向に見掛け気孔率を連続的または段階的に変化させた後、熱処理を行うことでも良い。
具体的には、例えば、まず水だけで混練後、過酸化水素水、又は、過酸化水素水と製泡剤を添加し、均一混合し、その後45℃の乾燥器に入れ24時間養生硬化させる。その後、更に乾燥、焼成を行う。
また、製泡剤としては、発泡する泡を微細なまま安定にするものであれば特に限定されるものではないが、例として、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、マイレン酸亜鉛、マイレン酸カルシウムなどの脂肪酸金属塩、ひまし油系の界面活性剤、ガゼインなど動物系蛋白質等を用いることができる。
As another embodiment of the present invention, in performing the above-described method of the present invention, in addition to the pore forming material, hydrogen peroxide water, or hydrogen peroxide water and a foaming agent are added, and cast molding is performed. Heat treatment may be performed after the apparent porosity is changed continuously or stepwise in the vertical direction from the casting surface.
Specifically, for example, after first kneading only with water, hydrogen peroxide solution or hydrogen peroxide solution and foaming agent are added, mixed uniformly, and then cured in a dryer at 45 ° C. for 24 hours. . Thereafter, drying and baking are further performed.
Further, the foaming agent is not particularly limited as long as foaming foam is stabilized as fine as possible, but examples include zinc stearate, calcium stearate, aluminum stearate, zinc maleate, and maleene. Fatty acid metal salts such as calcium acid, castor oil surfactants, animal proteins such as casein, and the like can be used.

この様な方法により、見掛け気孔率が連続的または段階的に変化している断熱材(以降、傾斜材と記載することがある。)を得ることができる。
この傾斜材は、溶銑、溶鋼に近い稼動面側では緻密とし、より耐食性が高く鉄皮側では見掛け気孔率が高く熱伝導率が低い為に断熱性を保持できるという利点があり、溶銑、溶鋼を保持する窯炉設備の永久張りや準永久張り等に用いることができる。
By such a method, it is possible to obtain a heat insulating material whose apparent porosity is changed continuously or stepwise (hereinafter, sometimes referred to as an inclined material).
This graded material has the advantage that it is dense on the working surface side close to the hot metal and molten steel, and has higher corrosion resistance and higher apparent porosity and lower thermal conductivity on the iron skin side, so it can retain heat insulation. Can be used for permanent or semi-permanent tensioning of kiln furnace facilities that hold

本発明の断熱材を、窯炉容器の少なくとも一部に張り付ける断熱材の施工方法は、断熱材を煉瓦状またはパネル状に成形加工し、該断熱材に固定用孔を設け、該孔を介してボルトで窯炉容器の鉄皮に該断熱材を固定し、該ボルト頭部を耐火キャスタブル又はモルタルで被覆して施工しても良い。
ここで、ボルト頭部を被覆する耐火キャスタブル、又は高アルミナ系プラスチック材等の材料のものが好適である。
The construction method of the heat insulating material for attaching the heat insulating material of the present invention to at least a part of the kiln container is to form the heat insulating material into a brick shape or a panel shape, provide a fixing hole in the heat insulating material, The heat insulating material may be fixed to the iron shell of the furnace vessel with a bolt, and the bolt head may be covered with a refractory castable or mortar.
Here, a material such as a refractory castable covering the bolt head or a high alumina plastic material is suitable.

この様な施工方法によれば、本発明の断熱材が煉瓦状またはパネル状に成形加工されたものを、窯炉容器の一部又は全面について、永久張り又は準永久張り用の耐火物として適用できるため、築炉作業の簡素化及び窯炉容器の傾動や反転時の脱落防止を実現できるという利点がある。
また、この断熱材に設けられた固定用孔を介して、ボルトで窯炉容器の鉄皮に該断熱材が固定され、かつ、該ボルト頭部が耐火キャスタブル又はモルタルで被覆されているので、煉瓦施工のように目地部に溶銑・溶鋼が差し込むような漏れには至らないと同時に局部的な損傷部の交換が熟練を要せずに可能であるという利点がある。
According to such a construction method, the heat insulating material of the present invention formed into a brick shape or a panel shape is applied as a refractory for permanent tension or semi-permanent tension on a part or the whole surface of the furnace vessel. Therefore, there is an advantage that simplification of the furnace construction work and prevention of falling off during tilting and reversal of the furnace vessel can be realized.
Also, through the fixing holes provided in this heat insulating material, the heat insulating material is fixed to the iron skin of the furnace vessel with bolts, and the bolt head is covered with refractory castable or mortar, There is an advantage that, unlike brick construction, no molten metal or molten steel is inserted into the joints, and at the same time, the locally damaged parts can be replaced without skill.

また、本発明の断熱材は、前記の窯炉容器で熱間で使用され、所定時間使用された後に寿命を迎え、廃材となってしまう。
一般に、永久張り材又は準永久張り材についてはSiO成分の高いろう石質煉瓦やシャモット質煉瓦のために、リサイクルされていなかった。
しかし、本発明の断熱材の廃材は、素材そのものが十分に熱履歴を受け容積変化が無くなっており、しかもアルミナ−スピネル質となっているため、高耐火性骨材として活用することが可能となる。従って、この廃材を粉砕および整粒することで、耐火原料としてリサイクルすることができる。
耐火原料は、例えばウェア材や吹付け補修材等にリサイクルすることができる。
Moreover, the heat insulating material of the present invention is used hot in the above-mentioned kiln furnace container, reaches the end of its life after being used for a predetermined time, and becomes a waste material.
In general, permanent or semi-permanent materials have not been recycled because of the high content of SiO 2 in the form of a waxy brick or chamotte brick.
However, the waste material of the heat insulating material according to the present invention can be utilized as a highly fire-resistant aggregate because the material itself has received a sufficient heat history and has no volume change, and has an alumina-spinel quality. Become. Therefore, the waste material can be recycled as a refractory raw material by pulverizing and sizing.
The refractory raw material can be recycled into, for example, a wear material or a spray repair material.

(実施例1)
純度95質量%で最大粒径100μm(全通)のマグネシアクリンカー粉末を13質量部、純度99質量%で最大粒径310μm(全通)の焼結アルミナを22質量部、仮焼アルミナの粗粉平均粒径50μmを20質量部、仮焼アルミナの微粉平均粒径4μmを30質量部に、アルミナセメント15質量部を添加したのち、気孔形成材として前記混合原料100kgに対して発泡ポリスチレンを15L添加混合し、添加水分29質量部を加えて混練後、内寸250mm×130mm×85mmに流し込み成型し脱型後、ドライヤーで乾燥させたのちトンネルキルンで1500℃で焼成した。
Example 1
13 parts by mass of magnesia clinker powder with a purity of 95% by mass and a maximum particle size of 100 μm (all), 22 parts by mass of sintered alumina with a purity of 99% by mass and a maximum particle size of 310 μm (all), coarse powder of calcined alumina After adding 15 parts by mass of alumina cement to 15 parts by mass of alumina cement and 15 parts by mass of alumina cement after adding 20 parts by mass of average grain size of 50 μm, 30 parts by mass of average particle diameter of 4 μm calcined alumina, and adding 15 L of expanded polystyrene as a pore-forming material After mixing and adding 29 parts by mass of added moisture, the mixture was kneaded, cast into an inner size of 250 mm × 130 mm × 85 mm, demolded, dried with a dryer, and then fired at 1500 ° C. in a tunnel kiln.

得られた実施例1に係るアルミナ−スピネル質耐火断熱材の物性は、下記表1の通り、見掛け気孔率が50容量%以上、350℃における熱伝導率が0.7W/(m・K)以下、圧縮強度が5MPa以上、1500℃における再加熱収縮率が−0.05%以上とすることができた。尚、各物性値の測定は、下記表1に示されるJISに準拠して行なった。   The physical properties of the resulting alumina-spinel refractory heat insulating material according to Example 1 are as shown in Table 1 below. The apparent porosity is 50% by volume or more, and the thermal conductivity at 350 ° C. is 0.7 W / (m · K). Hereinafter, the reheating shrinkage rate at a compressive strength of 5 MPa or more and 1500 ° C. could be −0.05% or more. Each physical property value was measured in accordance with JIS shown in Table 1 below.

Figure 0004847400
Figure 0004847400

(実施例2)
純度95質量%で最大粒径100μm(全通)のマグネシアクリンカー粉末15質量部、純度99質量%で最大粒径310μm(全通)の焼結アルミナ20質量部、仮焼アルミナの粗粉平均粒径50μmを24質量部、仮焼アルミナの微粉平均粒径4μmを28質量部に、アルミナセメント13質量部を添加したのち、気孔形成材として前記混合原料100kgに対して発泡ポリスチレンを17L添加混合し、添加水分29質量部を加えて混練後、内寸250mm×130mm×85mmに流し込み成型し脱型後、ドライヤーで乾燥させたのちトンネルキルンで1500℃で焼成した。
(Example 2)
15 parts by mass of magnesia clinker powder with a purity of 95% by mass and a maximum particle size of 100 μm (all through), 20 parts by mass of sintered alumina with a purity of 99% by mass and a maximum particle size of 310 μm (all through), and coarse particles of calcined alumina After adding 24 parts by mass of 50 μm in diameter, 28 parts by mass of the average particle size of calcined alumina 4 μm, and 13 parts by mass of alumina cement, 17 L of expanded polystyrene was added to and mixed with 100 kg of the mixed raw material as a pore forming material. After adding and kneading 29 parts by mass of added water, the mixture was cast into an internal size of 250 mm × 130 mm × 85 mm, demolded, dried with a dryer, and then fired at 1500 ° C. in a tunnel kiln.

得られた実施例2に係るアルミナ−スピネル質耐火断熱材の物性は下記表2の通り、見掛け気孔率が50容量%以上、350℃における熱伝導率が0.7W/(m・K)以下、圧縮強度が5MPa以上、1500℃における再加熱収縮率が−0.05%以上とすることができた。   The physical properties of the obtained alumina-spinel refractory heat insulating material according to Example 2 are as shown in Table 2 below. The apparent porosity is 50% by volume or more, and the thermal conductivity at 350 ° C. is 0.7 W / (m · K) or less. Further, the compressive strength was 5 MPa or more, and the reheating shrinkage rate at 1500 ° C. could be −0.05% or more.

Figure 0004847400
Figure 0004847400

(スラグ回転侵食法による評価)
実施例1及び実施例2で製造された断熱材と一般耐火煉瓦との耐食性試験を、スラグ回転侵食法(例えば、耐火物手帳‘99.P.64耐火物技術協会編(1999)を参照)を用いて比較した。試験条件としては、ガスバーナ温度を1550℃に調節し、4時間、塩基度(質量ベースでCaO/SiO)が3.2の溶鋼鍋スラグを投入して、損耗量を調査した。尚、比較例として用いた一般耐火煉瓦は、アルミナ−スピネル質、高アルミナ質、ろう石質のものを採用した。実施例1、2及び比較例の評価結果を表3に示す。
(Evaluation by slag rotation erosion method)
The slag rotation erosion method (for example, see the Refractory Notebook '99. P.64 Refractory Technology Association (1999)) for the corrosion resistance test of the heat insulating material manufactured in Example 1 and Example 2 and general refractory bricks. Were used for comparison. As test conditions, the gas burner temperature was adjusted to 1550 ° C., and molten steel pan slag having a basicity (CaO / SiO 2 on a mass basis) of 3.2 was added for 4 hours, and the amount of wear was investigated. In addition, the general refractory brick used as a comparative example employ | adopted the thing of the alumina spinel quality, the high alumina quality, and the wax quality. Table 3 shows the evaluation results of Examples 1 and 2 and the comparative example.

Figure 0004847400
Figure 0004847400

この結果によれば、実施例1及び実施例2に係る耐火断熱材は、見掛け気孔率が50容量%以上、350℃における熱伝導率が0.7W/(m・K)以下、圧縮強度が5MPa以上、1500℃における再加熱収縮率が−0.05%以上と優れた断熱特性を有するとともに耐食性にも優れ、亀裂防止の観点からも非常に優れた特性を示していた。
これに対し、比較例のアルミナ−スピネル質耐火煉瓦では、熱伝導率は満足するものの、強度特性や再加熱収縮率が大きく侵食試験後の亀裂発生を招いていた。
一方、比較例の高アルミナ質耐火煉瓦、ろう石質耐火煉瓦では熱伝導率の点で断熱性を満足出来ていない。
According to this result, the refractory insulation according to Example 1 and Example 2 has an apparent porosity of 50% by volume or more, a thermal conductivity at 350 ° C. of 0.7 W / (m · K) or less, and a compressive strength. The reheat shrinkage rate at 5 MPa or more and 1500 ° C. was −0.05% or more, had excellent heat insulation properties, was excellent in corrosion resistance, and exhibited excellent properties from the viewpoint of crack prevention.
On the other hand, in the alumina-spinel refractory brick of the comparative example, although the thermal conductivity was satisfactory, the strength characteristics and the reheating shrinkage ratio were large, and the cracks were generated after the erosion test.
On the other hand, the high alumina refractory bricks and the fauxite refractory bricks of the comparative examples do not satisfy the heat insulation in terms of thermal conductivity.

(実施例3)
実施例1の配合の原料に、気孔形成材として前記混合原料100kgに対して発泡ポリスチレン3Lを添加混合し、添加水分29質量部を加えて混練後、発泡剤として過酸化水素水(濃度10質量%)5質量部を速やかに添加し、均一になった段階で、養生温度を30℃に保持し、鋳込み方向に見掛け気孔率を連続的に変化させ厚み60mm、高さ400mm、幅500mmのパネル板を製作した。
その結果、実施例3に係るパネル板の稼動面側約30mmの見掛け気孔率は58%で、背面では70%であった。
(Example 3)
3 L of expanded polystyrene is added to and mixed with 100 kg of the mixed raw material as a pore forming material to the raw material blended in Example 1, and after adding 29 parts by mass of added water and kneading, hydrogen peroxide (concentration of 10 mass) as a blowing agent. %) When 5 parts by mass are quickly added and uniform, the curing temperature is maintained at 30 ° C., the apparent porosity is continuously changed in the casting direction, and the panel has a thickness of 60 mm, a height of 400 mm, and a width of 500 mm. I made a board.
As a result, the apparent porosity of the panel plate according to Example 3 on the operating surface side of about 30 mm was 58% and the back surface was 70%.

この実施例3に係るパネル板を300トン溶鋼鍋の永久張り材に適用した。この結果、300回(溶鋼の受け入れと払い出しを1回とする)後に寿命を迎えた際にも、溶鋼漏れはなく、永久張りの損傷もなく適用が出来た。
この間の溶鋼温度ロスについては、一般のろう石質煉瓦を適用した場合と比較し、溶鋼受鋼から鋳造完了までの溶鋼温度低下が、一炉代通じて平均5.5℃/ヒ−ト、少ないことが判った。
The panel board which concerns on this Example 3 was applied to the permanent tension material of a 300-ton molten steel pan. As a result, even when the end of the service life was reached after 300 times (accepting and discharging the molten steel once), the molten steel did not leak and could be applied without permanent damage.
About the molten steel temperature loss during this period, compared with the case of applying general waxy brick, the molten steel temperature drop from molten steel receiving steel to the completion of casting averaged 5.5 ° C / heat throughout the furnace. It turns out that there are few.

(実施例4)
次に、前記の実施例3に適用した永久張り材の一部を解体回収し、破砕、磁選後、1〜3mm粒度を篩で調整し、アルミナ−スピネル質の湿式吹き付け材へ、外掛けで15質量%添加し、溶鋼鍋側壁に適用した。
その結果、リサイクル材を適用していない湿式吹き付け材を用いた場合と比べ、遜色ない耐用を示した。すなわち、リサイクル材を含まないアルミナ−スピネル質の湿式吹き付け材の耐用性が平均20ヒ−トに対し、本発明のリサイクル材を15質量%添加した湿式吹き付け材の耐用性が平均20ヒ−トの耐用回数を示し、補修材原単位低減に寄与出来た。
Example 4
Next, a part of the permanent upholstery material applied to Example 3 was dismantled and collected, and after crushing and magnetic separation, the particle size of 1 to 3 mm was adjusted with a sieve, and the alumina-spinel wet spraying material was externally hooked. 15% by mass was added and applied to the side wall of the molten steel pan.
As a result, compared with the case where the wet spraying material which does not apply the recycled material was used, the durability which was inferior was shown. That is, the average life span of the wet-sprayed material of alumina-spinel containing no recycled material is 20 heat, while the wet spray material added with 15% by weight of the recycled material of the present invention has an average life of 20 heat. The number of useful lifespans was shown, and it was possible to contribute to reducing the basic unit of repair materials.

Claims (8)

純度95質量%以上で最大粒径100μm以下のマグネシアクリンカー粉末4〜17質量部と、純度99質量%以上で最大粒径310μm以下のアルミナ粉末70〜82質量部と、アルミナセメント10〜20質量部とを加えて混合して、MgOを4〜16質量部、Al2O3を80〜93質量部、CaOを2〜4質量部の範囲とし、かつ、MgO:Al2O3の質量比を1:5〜25としたのち、
気孔形成材を添加し、熱処理を行うことを特徴とする断熱材の製造方法。
4 to 17 parts by mass of magnesia clinker powder having a purity of 95% by mass or more and a maximum particle size of 100 μm or less, 70 to 82 parts by mass of alumina powder having a purity of 99% by mass or more and a maximum particle size of 310 μm or less, and 10 to 20 parts by mass of alumina cement And MgO is 4 to 16 parts by mass, Al2O3 is 80 to 93 parts by mass, CaO is 2 to 4 parts by mass, and the mass ratio of MgO: Al2O3 is 1: 5 to 25. Then
A method for producing a heat insulating material, comprising adding a pore forming material and performing a heat treatment.
気孔形成材に加えて、過酸化水素水、又は、過酸化水素水と製泡剤を添加し、鋳込み成形することにより、鋳込み面から垂直方向に見掛け気孔率を連続的または段階的に変化させた後、熱処理を行うことを特徴とする請求項1に記載の断熱材の製造方法。   In addition to the pore-forming material, hydrogen peroxide solution or hydrogen peroxide solution and foaming agent are added and cast to change the apparent porosity continuously or stepwise in the vertical direction from the casting surface. After that, the heat processing is performed, The manufacturing method of the heat insulating material of Claim 1 characterized by the above-mentioned. MgOが4〜16質量部、Alが80〜93質量部、CaOが2〜4質量部の範囲で、SiO を不可避的不純物以外で含まず、かつ、MgO:Alの質量比が1:5〜25であり、見掛け気孔率が50容量%以上、350℃における熱伝導率が0.7W/(m・K)以下、圧縮強度が5MPa以上、1500℃における再加熱収縮率が−0.05%以上であることを特徴とするアルミナ−スピネル質耐火断熱材。 MgO is 4 to 16 parts by mass, Al 2 O 3 is 80 to 93 parts by mass, CaO is 2 to 4 parts by mass, SiO 2 is not contained except for inevitable impurities, and MgO: Al 2 O 3 Reheating shrinkage at a mass ratio of 1: 5 to 25, an apparent porosity of 50% by volume or more, a thermal conductivity at 350 ° C. of 0.7 W / (m · K) or less, a compressive strength of 5 MPa or more and 1500 ° C. Alumina-spinel refractory heat insulating material characterized by a rate of -0.05% or more. 見掛け気孔率が連続的または段階的に変化していることを特徴とする請求項3に記載のアルミナ−スピネル質耐火断熱材。 4. The alumina-spinel refractory heat insulating material according to claim 3, wherein the apparent porosity changes continuously or stepwise. 煉瓦状又はパネル状に成形加工された請求項3又は請求項4に記載の断熱材が少なくとも一部に張り付けられたことを特徴とする窯炉容器。   A kiln furnace container characterized in that the heat insulating material according to claim 3 or 4 formed into a brick shape or a panel shape is attached to at least a part thereof. 前記断熱材に設けられた固定用孔を介して、ボルトで窯炉容器の鉄皮に該断熱材が固定され、かつ、該ボルト頭部が耐火キャスタブル又はモルタルで被覆されていることを特徴とする請求項5に記載の窯炉容器。   Through the fixing hole provided in the heat insulating material, the heat insulating material is fixed to the iron skin of the furnace vessel with a bolt, and the bolt head is covered with a refractory castable or mortar. The kiln furnace container according to claim 5. 請求項3または4に記載の断熱材を、窯炉容器の少なくとも一部に張り付ける断熱材の施工方法であって、
前記断熱材を煉瓦状またはパネル状に成形加工し、
該断熱材に固定用孔を設け、該孔を介してボルトで窯炉容器の鉄皮に該断熱材を固定し、
該ボルト頭部を耐火キャスタブル又はモルタルで被覆することを特徴とする断熱材の施工方法。
A heat insulating material construction method for attaching the heat insulating material according to claim 3 or 4 to at least a part of a kiln container,
The heat insulating material is molded into a brick shape or a panel shape,
A fixing hole is provided in the heat insulating material, and the heat insulating material is fixed to the iron skin of the furnace vessel with a bolt through the hole.
A method for constructing a heat insulating material, wherein the bolt head is covered with a fireproof castable or mortar.
請求項5または6に記載の窯炉容器で熱間で使用された断熱材の廃材を、耐火原料として活用することを特徴とする断熱材のリサイクル方法。   A method for recycling a heat insulating material, wherein the waste material of the heat insulating material used hot in the kiln container according to claim 5 or 6 is used as a refractory raw material.
JP2007152125A 2006-06-07 2007-06-07 Manufacturing method of heat insulating material, alumina-spinel refractory heat insulating material, kiln furnace, heat insulating material construction method, and heat insulating material recycling method Active JP4847400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007152125A JP4847400B2 (en) 2006-06-07 2007-06-07 Manufacturing method of heat insulating material, alumina-spinel refractory heat insulating material, kiln furnace, heat insulating material construction method, and heat insulating material recycling method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006158427 2006-06-07
JP2006158427 2006-06-07
JP2007152125A JP4847400B2 (en) 2006-06-07 2007-06-07 Manufacturing method of heat insulating material, alumina-spinel refractory heat insulating material, kiln furnace, heat insulating material construction method, and heat insulating material recycling method

Publications (2)

Publication Number Publication Date
JP2008013430A JP2008013430A (en) 2008-01-24
JP4847400B2 true JP4847400B2 (en) 2011-12-28

Family

ID=39070821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007152125A Active JP4847400B2 (en) 2006-06-07 2007-06-07 Manufacturing method of heat insulating material, alumina-spinel refractory heat insulating material, kiln furnace, heat insulating material construction method, and heat insulating material recycling method

Country Status (1)

Country Link
JP (1) JP4847400B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11981609B2 (en) 2017-11-08 2024-05-14 Refractory Intellectual Property Gmbh & Co. Kg Raw material for producing a refractory product, a use of this raw material, and a refractory product comprising a raw material of this kind

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544743B2 (en) * 2009-04-15 2014-07-09 Jfeスチール株式会社 Refractory lining structure for chaotic cars
JP6431252B2 (en) * 2012-09-28 2018-11-28 黒崎播磨株式会社 Insulating material and manufacturing method thereof
JP5735046B2 (en) 2013-06-18 2015-06-17 コバレントマテリアル株式会社 Insulation
EP2803652B1 (en) * 2013-05-13 2018-08-15 Calderys France Spinel forming refractory compositions, their method of production and use thereof
JP6319769B2 (en) * 2014-06-24 2018-05-09 クアーズテック株式会社 Insulation
KR101729842B1 (en) 2014-06-24 2017-04-24 쿠어스택 가부시키가이샤 Heat insulating material
JP6319909B2 (en) * 2014-11-07 2018-05-09 クアーズテック株式会社 Insulation
KR101850585B1 (en) 2014-07-02 2018-04-19 쿠어스택 가부시키가이샤 Heat insulator
JP2016030710A (en) * 2014-07-29 2016-03-07 クアーズテック株式会社 Insulating fire brick
JP6188027B2 (en) * 2014-07-29 2017-08-30 クアーズテック株式会社 Indefinite refractory

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024069B2 (en) * 1976-09-21 1985-06-11 日ノ丸窯業株式会社 Method for manufacturing MgO-Al↓2O↓3 quality fireproof insulation brick
JPH07138084A (en) * 1993-11-15 1995-05-30 Sumitomo Osaka Cement Co Ltd Porosity-gradient type lightweight ceramic compact and its production
JPH08109062A (en) * 1994-10-13 1996-04-30 Kyushu Refract Co Ltd Nonbaked alumina brick
JP2000191363A (en) * 1998-12-25 2000-07-11 Yotai Refractories Co Ltd Spalling resistant spinel brick
JP4714640B2 (en) * 2006-06-07 2011-06-29 新日本製鐵株式会社 Manufacturing method of heat insulating gradient material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11981609B2 (en) 2017-11-08 2024-05-14 Refractory Intellectual Property Gmbh & Co. Kg Raw material for producing a refractory product, a use of this raw material, and a refractory product comprising a raw material of this kind

Also Published As

Publication number Publication date
JP2008013430A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP4847400B2 (en) Manufacturing method of heat insulating material, alumina-spinel refractory heat insulating material, kiln furnace, heat insulating material construction method, and heat insulating material recycling method
CN101215176B (en) High-strength low heat conductivity energy-saving fireproof material
US9989313B2 (en) Smelting ladle and method for improving use efficiency thereof
CN102718513A (en) Aluminum-magnesium refractory castable material and preparation method thereof
JP2021502941A (en) A method for producing a porous sintered magnesia, a batch for producing a crude ceramic (grobkeramisch) refractory product having a granulated product (Koernung) made of sintered magnesia, such a product, and a product. Method of manufacture, lining of industrial furnace (Zustellung), and industrial furnace
JP5943032B2 (en) Manufacturing method of lightweight heat-insulating alumina / magnesia refractory
CN108046817A (en) A kind of parapet quick change abrasion-proof prefabricated component
CN108895841B (en) A kind of wear-resisting brick for rotary kiln and its manufacturing method
CN109111209B (en) Microcrystal material for cement kiln
CN102285812A (en) Magnesium-aluminium-titanium structure and thermal insulation integrated composite brick and preparation method thereof
JP2012031006A (en) Fire-resistant heat-insulating brick, and method of manufacturing the same
CN102020474B (en) High temperature low heat conduction refractory material and production process thereof
Chandra et al. Refractories and failures
Suvorov et al. High-temperature heat-insulating materials based on vermiculite
CN115435597A (en) Preparation method of low-heat-conductivity multilayer composite magnesium aluminate spinel brick for rotary kiln
JP3343297B2 (en) Fired refractory brick for lining
CN107602136A (en) A kind of refractory material liner body for tundish and preparation method thereof
JP2002234776A (en) Monolithic refractory composition for molten steel ladle
JP5663122B2 (en) Castable refractories for non-ferrous metal smelting containers and precast blocks using the same
CN110317071A (en) A kind of ladle working lining low-porosity microporous preformed bricks and its production method
JPS6024069B2 (en) Method for manufacturing MgO-Al↓2O↓3 quality fireproof insulation brick
JPS5919905B2 (en) Fireproof insulation board
JP2000111024A (en) Alkaline waste liquid incinerating furnace
CN104876593A (en) Preparation method of acid-resistant prefabricated part for carbonization furnaces
JP2548878B2 (en) Unshaped refractory for burner nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4847400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250