JP2012031006A - Fire-resistant heat-insulating brick, and method of manufacturing the same - Google Patents

Fire-resistant heat-insulating brick, and method of manufacturing the same Download PDF

Info

Publication number
JP2012031006A
JP2012031006A JP2010171352A JP2010171352A JP2012031006A JP 2012031006 A JP2012031006 A JP 2012031006A JP 2010171352 A JP2010171352 A JP 2010171352A JP 2010171352 A JP2010171352 A JP 2010171352A JP 2012031006 A JP2012031006 A JP 2012031006A
Authority
JP
Japan
Prior art keywords
insulating brick
calcium
fire
brick
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010171352A
Other languages
Japanese (ja)
Inventor
Kentaro Uemichi
健太郎 上道
Hidenao Suzuki
秀尚 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isolite Insulating Products Co Ltd
Original Assignee
Isolite Insulating Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isolite Insulating Products Co Ltd filed Critical Isolite Insulating Products Co Ltd
Priority to JP2010171352A priority Critical patent/JP2012031006A/en
Publication of JP2012031006A publication Critical patent/JP2012031006A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a fire-resistant heat-insulating brick low in thermal conductivity relative to a clayey refractory and suitable for a heat insulating material without generating sulfur oxide in baking.SOLUTION: A calcium compound without containing sulfur, a pore imparting agent and water are added in a clay mineral containing SiOand AlOas main constituents to be kneaded, obtained slurry is cast, thereafter dried, and baked at a temperature ≥1,200°C. A main crystal phase of the obtained fire-resistant heat-insulating brick is anorthite. In the fire-resistant heat-insulating brick, compressive strength, a rate of residual linear change (1,250°C×12 h) and thermal conductivity (1,000°C) are ≥1.6 MP, ≤1% and ≤0.33 W/(m*K), respectively.

Description

本発明は、断熱材などとして利用される高強度で低熱伝導率の耐火断熱煉瓦と、その製造方法に関する。   The present invention relates to a high-strength and low-heat-conducting fire-insulating brick used as a heat insulating material and a method for producing the same.

主な結晶相がアノーサイト(灰長石;CaAlSi)である煉瓦又は耐火物は、粘土質の煉瓦又は耐火物よりも低い熱伝導率を有する。従って、アノーサイト質の煉瓦又は耐火物を加熱炉などの断熱材として使用すれば、従来の粘土質の煉瓦又は耐火物からなる断熱材に比べて消費エネルギーを低減できるという利点がある。 Brick or refractory whose main crystalline phase is anorthite (anorthite; CaAl 2 Si 2 O 8 ) has a lower thermal conductivity than clay brick or refractory. Therefore, if anorthitic brick or refractory is used as a heat insulating material such as a heating furnace, there is an advantage that energy consumption can be reduced as compared with a conventional heat insulating material made of clay brick or refractory.

一般に、主な結晶相がアノーサイトである煉瓦又は耐火物やセラミックの構造材は、粘土鉱物に石膏などの硫酸カルシウムを主成分とする化合物と水を添加して混練し、得られたスラリーを鋳込み成形した後、硬化後に脱型し、焼成することによって製造されている。硫酸カルシウムを主成分とする化合物は硬化剤としての働きに加え、アノーサイトの生成に必要なカルシウム源となる。   In general, brick or refractory or ceramic structural materials whose main crystal phase is anorthite are kneaded by adding a compound containing calcium sulfate as a main component, such as gypsum, and water to clay minerals, and mixing the resulting slurry. It is manufactured by casting and then demolding after curing and firing. A compound mainly composed of calcium sulfate serves as a calcium source necessary for the formation of anorthite in addition to the function as a curing agent.

例えば、米国特許第4248637号明細書(特許文献1)には、アルミナあるいはアルミノシリケートに石膏を10重量%以上添加混合し、水を加えて混練し、得られたスラリーを型に鋳込んで成形した後、1000〜1400℃で焼成することにより、気孔率が40〜70%で、気孔径が0.75〜8μmのアノーサイト質焼結体を製造する方法が記載されている。   For example, in US Pat. No. 4,248,637 (Patent Document 1), 10% by weight or more of gypsum is added and mixed in alumina or aluminosilicate, water is added and kneaded, and the resulting slurry is cast into a mold. After that, a method of producing an anorthitic sintered body having a porosity of 40 to 70% and a pore diameter of 0.75 to 8 μm by firing at 1000 to 1400 ° C. is described.

米国特許第4248637号明細書US Pat. No. 4,248,637

上記した従来のアノーサイト質焼結体、即ち主な結晶相がアノーサイトである煉瓦又は耐火物やセラミック構造材の製造方法では、原料中に硬化剤として石膏のような硫酸カルシウムを主成分とする化合物を含んでいるため、焼成の際に硫黄酸化物(SOx)の発生が避けられなかった。そのため、排ガス中から有害な硫黄酸化物を除去する排煙脱硫工程が必要となり、排煙脱硫装置を設置しなければならなかった。   In the above-described conventional anorthitic sintered body, that is, a method for producing a brick or a refractory or ceramic structural material whose main crystal phase is anorthite, calcium sulfate such as gypsum is used as a main component in the raw material. Therefore, the generation of sulfur oxide (SOx) was unavoidable during firing. Therefore, a flue gas desulfurization process for removing harmful sulfur oxides from the exhaust gas is required, and a flue gas desulfurization device has to be installed.

本発明は、このような従来の問題点に鑑み、通常の粘土質の煉瓦又は耐火物よりも熱伝導率が低く、高強度であり、断熱材として好適なアノーサイト質の煉瓦又は耐火物を、焼成の際に硫黄酸化物を発生させることなく製造する方法を提供することを目的とする。   In view of such conventional problems, the present invention provides an anorthitic brick or refractory material that has a lower thermal conductivity than ordinary clay bricks or refractories and has high strength and is suitable as a heat insulating material. An object of the present invention is to provide a method for producing sulfur without generating sulfur oxide during firing.

上記目的を達成するため、本発明者らは鋭意検討を重ねた結果、硬化剤として石膏(硫酸カルシウム)を使用しなくても、原料にカルシウム化合物を添加し、鋳込み成形後、乾燥、焼成することにより、主な結晶相がアノーサイトであって優れた強度を有する焼結体が得られることを見出し、本発明をなすに至ったものである。   In order to achieve the above object, as a result of intensive studies, the present inventors have added a calcium compound to the raw material without using gypsum (calcium sulfate) as a curing agent, and after casting and drying and firing. As a result, it has been found that a sintered body having a main crystal phase of anorthite and having excellent strength can be obtained, and the present invention has been achieved.

即ち、本発明が提供する耐火断熱煉瓦は、SiOを35〜50重量%、Alを35〜50重量%、CaOを10〜20重量%含み、主な結晶相がアノーサイト(CaAlSi)であって、気孔を有し、圧縮強度が1.6MP以上、残存線変化率(1250℃×12hr)が1%以下、熱伝導率(1000℃)が0.33W/(m・K)以下であることを特徴とする。 That is, insulating refractory bricks provided by the present invention, a SiO 2 35 to 50 wt%, the Al 2 O 3 35 to 50% by weight, include CaO 10 to 20 wt%, the major crystalline phase anorthite (CaAl 2 Si 2 O 8 ) having pores, compressive strength of 1.6 MP or more, residual linear change rate (1250 ° C. × 12 hr) of 1% or less, and thermal conductivity (1000 ° C.) of 0.33 W / (m · K) or less.

また、本発明が提供する耐火断熱煉瓦の製造方法は、SiOとAlを主成分とする粘土鉱物に、硫黄を含まないカルシウム化合物と、気孔付与剤と水とを添加して混練し、得られたスラリーを鋳込み成形した後、乾燥し、1200℃以上の温度で焼成することを特徴とする。 In addition, the method for producing a refractory heat-insulating brick provided by the present invention includes kneading by adding a sulfur-free calcium compound, a pore-imparting agent, and water to a clay mineral mainly composed of SiO 2 and Al 2 O 3. Then, the obtained slurry is cast-molded, dried, and fired at a temperature of 1200 ° C. or higher.

本発明によれば、通常の粘土質耐火物よりも熱伝導率が低く、高強度でり、断熱材として好適なアノーサイト質の耐火断熱煉瓦を、焼成時に硫黄酸化物を発生させることなく製造することができる。その結果、未脱硫排煙による環境汚染をなくすことができるだけでなく、排煙脱硫工程及び装置に要するコストを削減することができるため、経済的にも極めて有利である。   According to the present invention, anorthitic refractory heat-insulating bricks having lower thermal conductivity than ordinary clay refractories, high strength, and suitable as heat insulating materials can be produced without generating sulfur oxides during firing. can do. As a result, not only environmental pollution due to undesulfurized flue gas can be eliminated, but also the cost required for the flue gas desulfurization process and apparatus can be reduced, which is extremely advantageous from an economical viewpoint.

また、本発明による耐火断熱煉瓦は、かさ比重が低く、熱伝導率が粘土質耐火物よりも低いことに加えて、従来のアノーサイト質の耐火物よりも優れた強度を具えている。そのため、本発明の耐火断熱煉瓦は、加熱炉の構築に使用することで操業において省エネルギー化が期待できるうえ、強度を必要とされる構造物への耐火断熱材としての利用など適用範囲の拡大が期待できる。   Moreover, the refractory heat-insulating brick according to the present invention has a lower bulk specific gravity and lower thermal conductivity than a clay refractory, and also has a strength superior to that of a conventional anorthic refractory. Therefore, the fireproof heat-insulating brick of the present invention can be expected to save energy in operation by using it for construction of a heating furnace, and the application range such as use as a fireproof heat insulating material for structures requiring strength can be expanded. I can expect.

本発明の耐火断熱煉瓦の製造方法では、アノーサイトの生成に必要なカルシウム源として、従来使用されていた石膏などの硫酸カルシウムを主成分とする化合物の代わりに、硫黄を含まないカルシウム化合物を使用する。硫黄を含まないカルシウム化合物としては、例えば、炭酸カルシウム、炭化カルシウム、酸化カルシウム、水酸化カルシウム、硅灰石(ウォラストナイト)、セメントなどを使用することができる。   In the method for producing a fireproof heat-insulating brick according to the present invention, a calcium compound not containing sulfur is used as a calcium source necessary for the formation of anorthite, instead of a conventionally used compound mainly composed of calcium sulfate such as gypsum. To do. As the calcium compound not containing sulfur, for example, calcium carbonate, calcium carbide, calcium oxide, calcium hydroxide, wollastonite, cement, and the like can be used.

具体的な製造方法は、まず、SiOとAlを主成分とする粘土鉱物に、硫黄を含まないカルシウム化合物と、気孔付与剤と水とを添加し、混練してスラリーとする。得られたスラリーを所定の形状に鋳込み成形した後、1200℃以上の温度で焼成することにより耐火断熱煉瓦を得ることができる。焼成時の温度が1000℃未満ではアノーサイトの生成が不十分であることに加え、得られた煉瓦の残存線変化率が大きくなるため、1200℃以上とする必要があり、特に1250〜1450℃の温度が好ましい。 Specifically, first, a calcium compound not containing sulfur, a pore-imparting agent and water are added to a clay mineral mainly composed of SiO 2 and Al 2 O 3 and kneaded to form a slurry. After the obtained slurry is cast into a predetermined shape and then fired at a temperature of 1200 ° C. or higher, a fireproof and heat insulating brick can be obtained. If the temperature at the time of firing is less than 1000 ° C., the formation of anorthite is insufficient, and the residual line change rate of the obtained brick increases, so it is necessary to set it to 1200 ° C. or more, particularly 1250 to 1450 ° C. Is preferred.

上記粘土鉱物としては、SiOとAlを主成分とするものであれば良く、例えば、アルミナ−シリカ系の耐火粘土、カオリナイト、ハロイサイトなどを好適に用いることができる。また、上記粘土鉱物の組成としては、Alが30重量%以上で、SiOとAlの合計が80重量%以上であることが好ましい。上記気孔付与剤としては、ポリスチレン、ポリプロピレンなどの発泡ビーズや気泡剤などを用いることができる。 The clay mineral is not particularly limited as long as it contains SiO 2 and Al 2 O 3 as main components. For example, alumina-silica refractory clay, kaolinite, halloysite, and the like can be suitably used. As the composition of the clay mineral, with Al 2 O 3 is 30 wt% or more, and a total of SiO 2 and Al 2 O 3 is 80 wt% or more. As the pore imparting agent, foam beads such as polystyrene and polypropylene, foaming agents, and the like can be used.

上記各原料粉末は、全原料中のCaOとAlとSiOの量がアノーサイト(CaAlSi)の合成に必要な組成割合、即ち理論重量比でSiO/Al/CaO=43/37/20となるように配合すればよい。例えば、SiOとAlを主成分とする粘土鉱物を20〜80重量%、硫黄を含まないカルシウム化合物を10〜40重量%の割合で配合することが好ましい。 In each of the raw material powders, the amounts of CaO, Al 2 O 3 and SiO 2 in all raw materials are composition ratios necessary for the synthesis of anorthite (CaAl 2 Si 2 O 8 ), that is, the theoretical weight ratio of SiO 2 / Al 2. O 3 / CaO = 43/37 /20 may be blended so as to. For example, it is preferable to blend a clay mineral mainly composed of SiO 2 and Al 2 O 3 in a proportion of 20 to 80% by weight and a calcium compound not containing sulfur in a proportion of 10 to 40% by weight.

上記スラリーの成形方法としては、スラリーを型に流し込む鋳込成形を用いる。得られた成形体を乾燥した後、1200℃以上の温度で焼成することにより、本発明の耐火断熱煉瓦物が得られる。このような本発明の方法によれば、アノーサイトの生成に必要なカルシウム源として硫黄を含まないカルシウム化合物を使用するため、焼成の際に硫黄酸化物が発生することがない。   As a molding method of the slurry, cast molding in which the slurry is poured into a mold is used. After drying the obtained molded object, the fireproof heat insulation brick of this invention is obtained by baking at the temperature of 1200 degreeC or more. According to such a method of the present invention, since a calcium compound not containing sulfur is used as a calcium source necessary for the formation of anorthite, sulfur oxides are not generated during firing.

得られた耐火断熱煉瓦は、切削などの仕上げ加工を施して製品とする。仕上げ加工の際に発生する粉末は、耐火断熱煉瓦の原料として利用することができる。尚、この加工粉末の添加割合は原料全体の80重量%未満とする。   The obtained refractory heat-insulating brick is finished by cutting or the like to obtain a product. The powder generated during the finishing process can be used as a raw material for the refractory heat-insulating brick. In addition, the addition ratio of this processed powder shall be less than 80 weight% of the whole raw material.

本発明により得られる耐火断熱煉瓦は、SiOとAlとCaOを主成分とし、SiOを35〜50重量%、Alを35〜50重量%、CaOを10〜20重量%含み、主な結晶相がアノーサイトであって、気孔を有している。また、本発明の耐火断熱煉瓦は、強度が高く、且つ低い熱伝導率を有している。 Insulating refractory bricks obtained by the present invention, the SiO 2 and Al 2 O 3 and CaO as main components, a SiO 2 35 to 50 wt%, the Al 2 O 3 35 to 50 wt%, 10 to 20 weight CaO %, The main crystalline phase is anorthite and has pores. Moreover, the fireproof heat insulating brick of the present invention has high strength and low thermal conductivity.

具体的には、圧縮強度は1.6MP以上、残存線変化率(1250℃×12h)は1%以下、熱伝導率は1000℃で0.33W/(m・K)以下である。また、かさ比重は1.0以下である。尚、圧縮強度はJIS R 2615に基づいて測定し、残存線変化率はISO 2477に基づいて測定した。熱伝導率はASTM C182に基づいて測定した。また、かさ比重はJIS R 2614に基づいて測定した。   Specifically, the compressive strength is 1.6 MP or more, the residual linear change rate (1250 ° C. × 12 h) is 1% or less, and the thermal conductivity is 0.33 W / (m · K) or less at 1000 ° C. The bulk specific gravity is 1.0 or less. The compressive strength was measured based on JIS R 2615, and the residual line change rate was measured based on ISO 2477. The thermal conductivity was measured based on ASTM C182. The bulk specific gravity was measured according to JIS R 2614.

従来の方法で製造したアノーサイト質の耐火物の圧縮強度は1MPa程度であったが、本発明による耐火断熱煉瓦は1.6MPaを超える圧縮強度を具えている。本発明の耐火断熱煉瓦が高い強度を具える理由としては、鋳込み成形であるため水に粘土が解膠し、各原料が均一に混合でき、焼成時に各原料同士が均一に反応してアノーサイトが析出することや、球形の独立気孔が形成されるため、周りの固体部分(煉瓦の構造を支える部分)の連続性が高くなることなどが考えられる。   Although the compressive strength of the anorthitic refractory manufactured by the conventional method was about 1 MPa, the refractory heat-insulating brick according to the present invention has a compressive strength exceeding 1.6 MPa. The reason why the refractory heat-insulating brick of the present invention has high strength is that casting is peptized so that the clay is peptized in water, each raw material can be mixed uniformly, and each raw material reacts uniformly during firing, and anorthite It is conceivable that the continuity of surrounding solid portions (portions that support the brick structure) increases because of the precipitation of spherical independent pores.

[実施例1]
粘土鉱物として高純度カオリン(SiO:52〜56重量%、Al:42〜44重量%)の粉末78kgに、炭酸カルシウム22kgと、ポリスチレンビーズ60リットル及び水80リッルを加え、湿式混練してスラリーとした。このスラリーを鋳込み成形し、乾燥した後、1340℃で焼成して耐火断熱煉瓦を製造した。
[Example 1]
78 kg of powder of high-purity kaolin (SiO 2 : 52 to 56 wt%, Al 2 O 3 : 42 to 44 wt%) as a clay mineral is added with 22 kg of calcium carbonate, 60 liters of polystyrene beads and 80 liters of water, and wet kneaded. To give a slurry. The slurry was cast and dried, and then fired at 1340 ° C. to produce a refractory heat insulating brick.

得られた耐火断熱煉瓦は、かさ比重(JIS R 2614)が0.67であり、曲げ強度(JIS R 2213)が2.3MPa、圧縮強度(JIS R 2206)が4.8MPa、残存線変化率(ISO 2477、1250℃×12h)が0.07%であった。また、熱伝導率(ASTM C182)は、200℃で0.18W/(m・K)、400℃で0.21W/(m・K)、600℃で0.25W/(m・K)、800℃で0.29W/(m・K)、1000℃で0.33W/(m・K)であった。   The obtained fireproof heat insulating brick has a bulk specific gravity (JIS R 2614) of 0.67, a bending strength (JIS R 2213) of 2.3 MPa, a compressive strength (JIS R 2206) of 4.8 MPa, and a residual linear change rate. (ISO 2477, 1250 ° C. × 12 h) was 0.07%. The thermal conductivity (ASTM C182) is 0.18 W / (m · K) at 200 ° C., 0.21 W / (m · K) at 400 ° C., 0.25 W / (m · K) at 600 ° C., It was 0.29 W / (m · K) at 800 ° C. and 0.33 W / (m · K) at 1000 ° C.

[実施例2]
上記実施例1で得られた耐火断熱煉瓦の加工粉末30kgと、粘土鉱物である高純度カオリンの粉末54kgと、炭酸カルシウム16kgに、気孔付与剤の発泡ビーズ100リットル及び水54リットルを添加し、十分に湿式混練した。得られたスラリーを型に流し込んで鋳込成形し、乾燥した後、1340℃で焼成することにより耐火断熱煉瓦を製造した。
[Example 2]
To 100 kg of fireproof heat insulating brick processed powder obtained in Example 1 above, 54 kg of high-purity kaolin powder, which is a clay mineral, and 16 kg of calcium carbonate, 100 liters of foam-imparting beads and 54 liters of water are added, Thoroughly wet-kneaded. The obtained slurry was poured into a mold, cast and molded, dried, and then fired at 1340 ° C. to produce a refractory heat-insulating brick.

得られた耐火断熱煉瓦は、かさ比重(JIS R 2614)が0.52であり、曲げ強度(JIS R 2213)が1.3MPa、圧縮強度(JIS R 2206)が2.6MPa、残存線変化率(ISO 2477、1250℃×12h)が0.01%であった。また、熱伝導率(ASTM C182)は、200℃で0.16W/(m・K)、400℃で0.19W/(m・K)、600℃で0.22W/(m・K)、800℃で0.26W/(m・K)、1000℃で0.29W/(m・K)であった。   The resulting fireproof heat-insulating brick has a bulk specific gravity (JIS R 2614) of 0.52, a bending strength (JIS R 2213) of 1.3 MPa, a compressive strength (JIS R 2206) of 2.6 MPa, and a residual linear change rate. (ISO 2477, 1250 ° C. × 12 h) was 0.01%. Thermal conductivity (ASTM C182) is 0.16 W / (m · K) at 200 ° C., 0.19 W / (m · K) at 400 ° C., 0.22 W / (m · K) at 600 ° C., It was 0.26 W / (m · K) at 800 ° C. and 0.29 W / (m · K) at 1000 ° C.

Claims (3)

SiOを35〜50重量%、Alを35〜50重量%、CaOを10〜20重量%含み、主な結晶相がアノーサイトであって、気孔を有し、圧縮強度が1.6MP以上、残存線変化率(1250℃×12h)が1%以下、熱伝導率(1000℃)が0.33W/(m・K)以下であることを特徴とする耐火断熱煉瓦。 It contains 35 to 50% by weight of SiO 2 , 35 to 50% by weight of Al 2 O 3 and 10 to 20% by weight of CaO, the main crystal phase is anorthite, has pores, and has a compressive strength of 1. A fireproof heat insulating brick characterized by having a residual line change rate (1250 ° C. × 12 h) of 1% or less and a thermal conductivity (1000 ° C.) of 0.33 W / (m · K) or less, 6MP or more. SiOとAlを主成分とする粘土鉱物に、硫黄を含まないカルシウム化合物と、気孔付与剤と水とを添加して混練し、得られたスラリーを鋳込み成形した後、乾燥し、1200℃以上の温度で焼成することを特徴とする耐火断熱煉瓦の製造方法。 To a clay mineral mainly composed of SiO 2 and Al 2 O 3 , a calcium compound not containing sulfur, a pore-imparting agent and water are added and kneaded, and the resulting slurry is cast and then dried, A method for producing a refractory heat-insulating brick, characterized by firing at a temperature of 1200 ° C or higher. 前記硫黄を含まないカルシウム化合物が、炭酸カルシウム、炭化カルシウム、酸化カルシウム、水酸化カルシウム、硅灰石(ウォラストナイト)、セメントから選ばれた少なくとも1種であることを特徴とする、請求項2に記載の耐火断熱煉瓦の製造方法。   3. The sulfur-free calcium compound is at least one selected from calcium carbonate, calcium carbide, calcium oxide, calcium hydroxide, wollastonite, and cement. The manufacturing method of the fireproof heat insulation brick as described in.
JP2010171352A 2010-07-30 2010-07-30 Fire-resistant heat-insulating brick, and method of manufacturing the same Pending JP2012031006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010171352A JP2012031006A (en) 2010-07-30 2010-07-30 Fire-resistant heat-insulating brick, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010171352A JP2012031006A (en) 2010-07-30 2010-07-30 Fire-resistant heat-insulating brick, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012031006A true JP2012031006A (en) 2012-02-16

Family

ID=45844901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171352A Pending JP2012031006A (en) 2010-07-30 2010-07-30 Fire-resistant heat-insulating brick, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012031006A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062018A (en) * 2012-09-24 2014-04-10 National Institute Of Advanced Industrial & Technology Production method of brick having high refractory and high heat insulation property, and brick having high refractory and high heat insulation property
CN107056324A (en) * 2015-06-19 2017-08-18 徐荣浛 A kind of anorthite lightweight thermal insulation brick and preparation method thereof
CN114195530A (en) * 2020-09-18 2022-03-18 山东鲁阳浩特高技术纤维有限公司 Anorthite light refractory material and preparation method thereof
CN114195531A (en) * 2020-09-18 2022-03-18 山东鲁阳浩特高技术纤维有限公司 Anorthite light refractory material with controllable pouring time and preparation method thereof
CN114195550A (en) * 2020-09-18 2022-03-18 山东鲁阳浩特高技术纤维有限公司 Anorthite refractory material with closed pore structure and preparation method thereof
CN114195532A (en) * 2020-09-18 2022-03-18 山东鲁阳浩特高技术纤维有限公司 Anorthite light refractory material with uniform pores and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101417888A (en) * 2008-11-10 2009-04-29 中国地质大学(北京) Porous light heat insulating refractory materials and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101417888A (en) * 2008-11-10 2009-04-29 中国地质大学(北京) Porous light heat insulating refractory materials and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013064126; WEN,Ni et al.: 'A STUDY OF ANORTHITE LIGHT REFRACTORY BRICK'S SYNTHESIS BY USING NATURAL MINERALS' Dizhi Zhaokuang Luncong Vol.13, No.2, pp.1-9, 199806, Tianjin Dizhi Yanjiuyuan;Tianjin *
JPN6013064128; SUTCU,Mucahit et als.: 'Utitilization of recycled paper processing residues and caly of different sources for the production' Journal of the European Ceramic Society Vol.30, pp.1785-1793, 20100223, Elsevier;European Ceramic Society;Kidlington *
JPN6014023310; KURAMA,S. et al.: 'The influence of different CaO source in the production of anorthite ceramics' Ceramics International Vol.35, pp.827-830, 20080709, Elsevier;Kidlington *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062018A (en) * 2012-09-24 2014-04-10 National Institute Of Advanced Industrial & Technology Production method of brick having high refractory and high heat insulation property, and brick having high refractory and high heat insulation property
CN107056324A (en) * 2015-06-19 2017-08-18 徐荣浛 A kind of anorthite lightweight thermal insulation brick and preparation method thereof
CN114195530A (en) * 2020-09-18 2022-03-18 山东鲁阳浩特高技术纤维有限公司 Anorthite light refractory material and preparation method thereof
CN114195531A (en) * 2020-09-18 2022-03-18 山东鲁阳浩特高技术纤维有限公司 Anorthite light refractory material with controllable pouring time and preparation method thereof
CN114195550A (en) * 2020-09-18 2022-03-18 山东鲁阳浩特高技术纤维有限公司 Anorthite refractory material with closed pore structure and preparation method thereof
CN114195532A (en) * 2020-09-18 2022-03-18 山东鲁阳浩特高技术纤维有限公司 Anorthite light refractory material with uniform pores and preparation method thereof
CN114195532B (en) * 2020-09-18 2023-01-31 山东鲁阳浩特高技术纤维有限公司 Anorthite light refractory material with uniform pores and preparation method thereof
CN114195531B (en) * 2020-09-18 2023-01-31 山东鲁阳浩特高技术纤维有限公司 Anorthite light refractory material with controllable pouring time and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101503657B1 (en) Heat-insulating firebrick
CN114133229A (en) Anorthite micro-nano-pore heat insulation refractory material and preparation method thereof
CN101215158A (en) Method for preparing lightweight magnesium-aluminum spinel raw material
CN100378027C (en) Porous mullite ceramic materials and method for preparing same
CN114149276B (en) Micro-nano Kong Jue heat-insulating refractory material containing zirconia and preparation method thereof
JP2012031006A (en) Fire-resistant heat-insulating brick, and method of manufacturing the same
CN108610063A (en) High-performance mullite thermal insulation fire-resistant pouring material
CN106830958B (en) Low-aluminum low-heat-conduction alkali-resistant castable
CN102746003A (en) High-strength alkali-resistant refractory castable
JP4714640B2 (en) Manufacturing method of heat insulating gradient material
CN114133257A (en) Micro-nano hole heat insulation refractory material containing calcium hexaluminate and preparation method thereof
CN110668828B (en) Magnesium binder for cement-free castable and preparation method thereof
CN111943642B (en) High-strength foamed ceramic and preparation method thereof
JP6207423B2 (en) Lightweight alkali-proof fireproof insulation brick and method for producing the same
CN106431435A (en) Porous periclase-forsterite multiphase material and preparation method thereof
CA1098292A (en) Method of making an insulating refractory
CN106946558B (en) Forsterite-periclase-spinel complex phase light refractory material and preparation method thereof
RU2387623C2 (en) Raw mix for production of porous, fireproof, heat insulation material
RU2674484C1 (en) Raw material for heat-resistant heat-insulating torcrete
KR20180132691A (en) Aggregate for refractory, method for producing the same, and refractory using the same
RU2284305C1 (en) Process of manufacturing heat-resistant concrete mix and process for manufacturing products from heat-resistant concrete mix
CN108752027A (en) A kind of refractory brick and preparation method thereof
JP2002519302A (en) Molding material for producing refractory lining and fired molded member, lining, and method for producing molded member
JP2007217208A (en) Method of manufacturing xonotlite based calcium silicate hydrate porous formed body
RU2442761C1 (en) Charge material for production of nonshrinking, porous, flameproof heat insulating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106