JPH03246868A - Lithium ion conductive solid electrolyte material - Google Patents

Lithium ion conductive solid electrolyte material

Info

Publication number
JPH03246868A
JPH03246868A JP2042646A JP4264690A JPH03246868A JP H03246868 A JPH03246868 A JP H03246868A JP 2042646 A JP2042646 A JP 2042646A JP 4264690 A JP4264690 A JP 4264690A JP H03246868 A JPH03246868 A JP H03246868A
Authority
JP
Japan
Prior art keywords
lithium ion
solid electrolyte
conductance
ion conductive
conductive solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2042646A
Other languages
Japanese (ja)
Inventor
Takahisa Masashiro
尊久 正代
Hideaki Otsuka
大塚 秀昭
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2042646A priority Critical patent/JPH03246868A/en
Publication of JPH03246868A publication Critical patent/JPH03246868A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/185Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain a chemically stable material with large conductance by constituting the material with a composition expressed by a formula Li1+2xTi2-xMxP3O12, where M is a bivalent metal element and 0<x<0.6. CONSTITUTION:This material is constituted of a composition expressed by a formula Li1+2xTi2-xMxP3O12, where M is a bivalent element such as Ca, Pb, Ni, Cu, Zn, Co and 0<x<0.6. It has a three-dimensional mesh structure, and many tunnels easily moving Li ions are considered to exist. Tetravalent Ti ions of LiTi2P3O12 are substituted with positive ions with a low valence to increase the concentration of Li ions, thus lithium ion conductivity can be improved by increasing the number of Li ions existing in the tunnels. A chemically stable lithium ion conductive solid electrolyte material with large conductance is obtained.

Description

【発明の詳細な説明】 (発明の産業上利用分野) 本発明はリチウムイオン導電性固体電解質材料、特にコ
ンダクタンスが大きく、化学的に安定な材料にに関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field of the Invention) The present invention relates to a lithium ion conductive solid electrolyte material, particularly a material having high conductance and being chemically stable.

(発明の従来技術および問題点) リチウムを負極活物質として用い、電解質としてリチウ
ムイオン導電性の固体電解質を用いた固体電池は、高エ
ネルギー密度であり、液漏れがなく、小型薄型にできる
等の点で、非常に利点が多い。
(Prior art and problems of the invention) A solid-state battery using lithium as a negative electrode active material and a lithium ion conductive solid electrolyte as an electrolyte has high energy density, no leakage, and can be made small and thin. There are many advantages in this respect.

このような固体電池への応用を目的としてリチウムイオ
ン導電性固体電解質材料の開発が注目されている。しか
し、現在のところ、リチウムイオン導電性固体電解質材
料は得られておらず、僅かに、40mo1%のAl2O
3を添加したLiIのみがリチウム固体電池に応用され
、実用されているにすぎない。
The development of lithium ion conductive solid electrolyte materials is attracting attention for application to such solid-state batteries. However, at present, no lithium ion conductive solid electrolyte material has been obtained, and only 40 mo1% Al2O
Only LiI to which 3 is added has been applied to lithium solid-state batteries and is in practical use.

リチウムイオン導電性の固体電解質材料として、Li3
N、LiAl5i04等が知られているが、Li3Nは
導電率は大きいが、分解電圧が低いこと、LiAl5i
04は室温での導電率が1O−9S / c m以下と
小さく、いずれも固体電池への適用はなされていない。
As a lithium ion conductive solid electrolyte material, Li3
N, LiAl5i04, etc. are known, but Li3N has high conductivity but low decomposition voltage, and LiAl5i
04 has a low conductivity at room temperature of 1O-9S/cm or less, and none of them have been applied to solid-state batteries.

近年、ナトリウムイオン導電性の固体電解質材料として
知られているNASICON系材料(Nal+XZr2
5iXP3−xO12)と同様の結晶構造(R2O)を
有するLiTi2P3012が、室温で4X10−7S
/cmと比較的高いリチウムイオン導電性を示すことが
知られているが、固体電池に必要な導電率を充分満足し
ているとは言い難い状況である。このようなわけで、こ
れらの欠点を除去した固体電解質材料、特に導電率が大
きく、化学的に安定な材料の開発が求められている。
In recent years, NASICON-based materials (Nal+XZr2), which are known as sodium ion conductive solid electrolyte materials, have been
LiTi2P3012, which has a similar crystal structure (R2O) to 4X10-7S at room temperature
Although it is known to exhibit a relatively high lithium ion conductivity of /cm, it is difficult to say that it sufficiently satisfies the conductivity required for solid-state batteries. Therefore, there is a need for the development of solid electrolyte materials that eliminate these drawbacks, especially materials that have high electrical conductivity and are chemically stable.

(発明の目的) 本発明は上述の現状に鑑みなされたもので、コンダクタ
ンスが大きく、かつ化学的に安定なリチウムイオン導電
性固体電解質材料を提供することを目的とする。
(Object of the Invention) The present invention was made in view of the above-mentioned current situation, and an object of the present invention is to provide a lithium ion conductive solid electrolyte material that has high conductance and is chemically stable.

(問題点を解決するための手段) したがって、本発明によるリチウムイオン導電性固体電
解質材料は、 一般式 %式% (ただし、MはCa、Pb、Ni、Cu、Zn、Co等
の2価元素、O<x<0.6)で示される組成物よりな
ることを特徴とするものである。
(Means for solving the problem) Therefore, the lithium ion conductive solid electrolyte material according to the present invention has the general formula % (where M is a divalent element such as Ca, Pb, Ni, Cu, Zn, Co, etc.). , O<x<0.6).

本発明によるリチウムイオン導電性固体電解質材料によ
れば、比較的高いリチウムイオン導電性を示すと共に、
分解電圧も高く、熱的に安定であり、また、水分に対し
ても、他のリチウムイオン導電体に比較して安定である
という利点があり、このためリチウムイオン導電性固体
電解質材料をリチウム固体電池の電解質材料に適用する
ことにより、固体電池の特性改善が達成しえるという利
点がある。
According to the lithium ion conductive solid electrolyte material according to the present invention, it exhibits relatively high lithium ion conductivity and
It has the advantage of having a high decomposition voltage, being thermally stable, and being more stable against moisture than other lithium ion conductors. By applying it to battery electrolyte materials, there is an advantage that the characteristics of solid-state batteries can be improved.

(発明の詳細な説明) 本発明をさらに詳しく説明する。(Detailed description of the invention) The present invention will be explained in more detail.

一般式 %式% (ただし、Mは2価の金属元素、0<x<0.6)で示
される組成物は、リチウムイオン導電率の高い材料を作
ることを目的に、その結晶構造に着目して作製したもの
である。
The composition shown by the general formula % formula % (where M is a divalent metal element, 0<x<0.6) is created by focusing on its crystal structure with the aim of creating a material with high lithium ion conductivity. It was made by

リチウムイオン導電性固体電解質材料、上記−最大のx
=OのLiTi2P3012は、NAS IC0N系材
料と同様の構造を有するものである。
Lithium ion conductive solid electrolyte material, above - maximum x
=O LiTi2P3012 has a structure similar to that of NAS ICON-based materials.

すなわち、この構造は三次元の網目構造をしており、L
iイオンの移動が容易なトンネルが多数存在すると考え
られている。
In other words, this structure has a three-dimensional network structure, and L
It is believed that there are many tunnels through which i-ions can easily move.

したがって、このLiTi2P3012の4価のTiイ
オンを低原子価の陽イオンで置換し、Liイオンの濃度
を増加させ、このトンネル内に存在するLiイオンの数
を増やすことによって、リチウムイオン導電性を向上さ
せることができると考えられることから、本発明による
リチウムイオン導電性固体電解質; Li1+2XTi2−XMXP3012の系に着目した
のである(ただしMは二価の金属元素、O<x<0.6
)。
Therefore, by replacing the tetravalent Ti ions of LiTi2P3012 with low-valent cations, increasing the concentration of Li ions, and increasing the number of Li ions existing in this tunnel, lithium ion conductivity can be improved. Therefore, we focused on the lithium ion conductive solid electrolyte according to the present invention; Li1+2XTi2-XMXP3012 system (where M is a divalent metal element and O<x<0.6
).

このような2価の金属元素としては、たとえばCa、P
b、Ni、Cu、Zn、Coなどの一種以上を例として
あげることができる。
Such divalent metal elements include, for example, Ca, P
Examples include one or more of Ni, Cu, Zn, and Co.

前述の一般式において、O<x<0.6にある本発明に
よるリチウムイオン導電性固体電解質材料はNASIC
ON系材料と同様の構造を採り、いずれもリチウムイオ
ン導電性を示す。
In the above general formula, the lithium ion conductive solid electrolyte material according to the present invention in which O<x<0.6 is NASIC
They have the same structure as ON-based materials, and both exhibit lithium ion conductivity.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

(実施例1) 市販特級試薬のL i 2CO3、TiO2、CaO1
及びNH4H2PO4を原料とし、これらの原料をLi
1+2XTi2−XMXP3012なる秤量式に基づき
、所定量を秤量し、充分混合した。
(Example 1) Commercially available special grade reagents L i 2CO3, TiO2, CaO1
and NH4H2PO4 as raw materials, and these raw materials are used as Li
Based on the weighing formula 1+2XTi2-XMXP3012, a predetermined amount was weighed and thoroughly mixed.

その後、これらをアルミするつぼに移して、仮焼成する
。仮焼成は、800℃の温度で24時間、大気中にて行
なう。焼成後、生成物を電気炉より取り出し、粉砕した
後、1〜1.5t/cm2の圧力で成形し、成形体とす
る。この成形体を、さらに1100℃の温度で、4時間
焼成を行なう。
Then, they are transferred to an aluminum pot and calcined. Temporary firing is performed in the air at a temperature of 800° C. for 24 hours. After firing, the product is taken out of the electric furnace, pulverized, and then molded at a pressure of 1 to 1.5 t/cm2 to form a molded body. This molded body is further fired at a temperature of 1100° C. for 4 hours.

このようにして製造された焼結体から、円盤状試料を切
り出し、その両面にAg電極を付け、コンダクタンスは
交流法を用い、複素アドミッタンス法により求めた。ま
た電子輸率は、直流法を用い、電子伝導性によるコンダ
クタンスを求め、全コンダクタンスとの比より求めた。
A disk-shaped sample was cut out from the sintered body thus produced, Ag electrodes were attached to both sides, and the conductance was determined by the complex admittance method using the alternating current method. Further, the electron transfer number was determined by calculating the conductance due to electron conductivity using the direct current method and calculating the ratio to the total conductance.

さらに分解電圧は、直流法を用い、電流−電位曲線より
求めた。
Further, the decomposition voltage was determined from a current-potential curve using a direct current method.

測定に用いた試料の形状は全て同じである。The shapes of the samples used for measurements were all the same.

M=Caとした場合の、 Li 1.2Ti 1.9cao、IP3012(−最
大のX=0.1の場合) Li1.4Ti 1.5Cao、2P3012(X−〇
、2の場合) Li2゜oTil、cacao、5P3012(X=0
.5の場合) のコンダクタンスの温度依存性を第1図に示す。
When M=Ca, Li 1.2Ti 1.9cao, IP3012 (-maximum X=0.1) Li1.4Ti 1.5Cao, 2P3012 (X-〇, 2) Li2゜oTil, cacao, 5P3012 (X=0
.. Figure 1 shows the temperature dependence of the conductance in case 5).

図中の、(1)は、 Li 1.2Ti 1.9cao、IP3012試料、
(2)は、 Li1.4Ti1.5Cao、2P3012試料、(3
)は、 Li2.o’ri1.5Cao、5P3012試料につ
いての結果を占めずグラフであり、全ての試料において
優れたコンダクタンスを有している。
In the figure, (1) is Li 1.2Ti 1.9cao, IP3012 sample,
(2) is Li1.4Ti1.5Cao, 2P3012 sample, (3
) is Li2. The graph shows the results for the o'ri1.5Cao and 5P3012 samples, and all samples have excellent conductance.

図中の破線は比較のためにLiTi2P3012のコン
ダクタンスを示した。
The broken line in the figure indicates the conductance of LiTi2P3012 for comparison.

第2図に室温におけるコンダクタンスの組成依存性を示
す、第2図より明らかなように、組成がLi1.4Ti
 1.5Cao、2P3012 (XO12)の付近で
コンダクタンスは最大になり、0<x<0.6において
試料は、高いコンダクタンスを有している。x>0.6
においては、結晶構造がNASICON型の構造から別
の相へ転移するため、コンダクタンスLiTi2P30
12よりも著しく低下した。
Figure 2 shows the composition dependence of conductance at room temperature.As is clear from Figure 2, the composition is Li1.4Ti.
The conductance is maximum near 1.5Cao, 2P3012 (XO12), and the sample has high conductance at 0<x<0.6. x>0.6
In , the conductance LiTi2P30 changes because the crystal structure transitions from the NASICON type structure to another phase.
It was significantly lower than 12.

直流法によるコンダクタンスは、室温において、約10
”−93であり、電子輸率はいずれも約1×10−5で
あり、本発明によるリチウムイオン導電性固体電解質材
料はいずれも電子電導性は無視できるほど小さいことが
わかる。
The conductance measured by the DC method is approximately 10 at room temperature.
''-93, and the electron transport numbers are about 1 x 10-5, indicating that all the lithium ion conductive solid electrolyte materials according to the present invention have negligibly small electron conductivity.

また、電流−電位曲線は、120℃において、全試料と
も印加電圧が15V付近まで、比例関係が成り立ってお
り、分解による電流の急増は見られなかった。したがっ
て分解電圧は15V以上であることがわかる。
Further, the current-potential curves maintained a proportional relationship at 120° C. up to an applied voltage of around 15 V for all samples, and no rapid increase in current due to decomposition was observed. Therefore, it can be seen that the decomposition voltage is 15V or more.

(実施例2) 実施例1と同様にCaOをPbOに置き換えることによ
り、 Li 1.4Ti 1.5Pbo、2P3012(−最
大のM=Pb、X=0.2の場合)を作製した。コンダ
クタンスの測定方法ならびに試料の形状は実施例1と同
じである。第3図にこの試料のコンダクタンスの温度依
存性を示す。こ(7)Li1.4Ti1.5Pbo、2
P3012試料も高いコンダクタンスを有している。図
中の破線は比較のためにLiTi2P3012のコンダ
クタンスを示した。また、この系の場合も室温における
コンダクタンスはO<x<0.6の範囲において、Li
Ti2P3012よりも高い値を示した。
(Example 2) Li 1.4Ti 1.5Pbo, 2P3012 (-maximum M=Pb, X=0.2) was produced by replacing CaO with PbO in the same manner as in Example 1. The method for measuring conductance and the shape of the sample were the same as in Example 1. Figure 3 shows the temperature dependence of the conductance of this sample. (7) Li1.4Ti1.5Pbo, 2
The P3012 sample also has high conductance. The broken line in the figure indicates the conductance of LiTi2P3012 for comparison. Also, in the case of this system, the conductance at room temperature is in the range O<x<0.6, Li
It showed a higher value than Ti2P3012.

(実施例3) 実施例1と同様にCaOをNiOに置き換えることによ
り、 L i 1.4T i 1.sN i 0.2P301
2(−最大のM=Ni、X=0.2の場合)を作製した
。コンダクタンスの測定方法ならびに試料の形状は実施
例1と同じである。第4図にこの試料のコンダクタンス
の温度依存性を示す、このLi1.4Ti 1.aNi
o、2P3012試料も高いコンダクタンスを有してい
る0図中の破線は比較のためにLiTi2P3012の
コンダクタンスを示した。また、この系の場合も室温に
おけるコンダクタンスはO<x<0.6の範囲において
、LiTi2P3012よりも高い値を示した。
(Example 3) By replacing CaO with NiO as in Example 1, L i 1.4T i 1. sN i 0.2P301
2 (-maximum M=Ni, X=0.2) was produced. The method for measuring conductance and the shape of the sample were the same as in Example 1. Figure 4 shows the temperature dependence of the conductance of this sample. aNi
o, 2P3012 sample also has high conductance. The dashed line in the figure shows the conductance of LiTi2P3012 for comparison. Also, in the case of this system, the conductance at room temperature showed a value higher than that of LiTi2P3012 in the range of O<x<0.6.

以上の実施例では、MとしてCa、Pb、Niについて
示したが、これら2価の元素に限定されるものではなく
、Cu、Zn、Co等他の2価元素の場合も同様の効果
を生ずる。
In the above embodiments, Ca, Pb, and Ni are shown as M, but the M is not limited to these divalent elements, and similar effects can be produced in the case of other divalent elements such as Cu, Zn, and Co. .

(発明の効果) 以上説明したように、本発明による、 Lil+2xTi2−xMxP30t2(但し、Mは2
価の金属元素、O<x<O。
(Effect of the invention) As explained above, according to the present invention, Lil+2xTi2-xMxP30t2 (where M is 2
Valence metal element, O<x<O.

6) なる組成物は、全て優れたコンダクタンスを有している
。また、このリチウムイオン導電性固体電解質材料は分
解電圧も高く、熱的及び水分に対しても安定であり、リ
チウム固体電池の電解質材料に用いることにより固体電
池の特性改善が達成できる利点がある。
6) All of the compositions have excellent conductance. Furthermore, this lithium ion conductive solid electrolyte material has a high decomposition voltage and is stable against heat and moisture, and has the advantage of being able to improve the characteristics of solid-state batteries by using it as an electrolyte material for lithium solid-state batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のリチウムイオン導電性固体電解質材料
Lix+2xTi2−xCaxP301:zのコンダク
タンスの温度依存性を示す図である。 図中試料(1)は、 Li1.2Ti1.9cao、IP3012、試料(2
)は、 Li1.4Ti1.5Cao、2P3012、試料(3
)は、 Li2.oTi 1.cacao、5P3012を表し
、図中の破線はLiTi2P3012のコンダクタンス
を示している。 第2図は本発明のリチウムイオン導電性固体電解質材料
Li1+2XTi 2−xcaxP3012の室温にお
けるコンダクタンスの組成依存性を示す図である。 第3図は本発明のリチウムイオン導電性固体電解質材料
のLi 1.4Ti1.5Pbo、2P3012のコン
ダクタンスの温度依存性を示す図である。 第4図は本発明のリチウムイオン導電性固体電解質材料
Li1.4Ti 1.5Ni0.2P3012のコンダ
クタンスの温度依存性を示す図であり、図中の破線はL
iTi2P3012のコンダクタンスを示している。
FIG. 1 is a diagram showing the temperature dependence of the conductance of the lithium ion conductive solid electrolyte material Lix+2xTi2-xCaxP301:z of the present invention. Sample (1) in the figure is Li1.2Ti1.9cao, IP3012, sample (2
) is Li1.4Ti1.5Cao, 2P3012, sample (3
) is Li2. oTi 1. cacao, 5P3012, and the broken line in the figure indicates the conductance of LiTi2P3012. FIG. 2 is a diagram showing the composition dependence of conductance at room temperature of the lithium ion conductive solid electrolyte material Li1+2XTi 2-xcaxP3012 of the present invention. FIG. 3 is a diagram showing the temperature dependence of the conductance of Li 1.4Ti1.5Pbo, 2P3012, which is the lithium ion conductive solid electrolyte material of the present invention. FIG. 4 is a diagram showing the temperature dependence of the conductance of the lithium ion conductive solid electrolyte material Li1.4Ti 1.5Ni0.2P3012 of the present invention, and the broken line in the diagram is L
The conductance of iTi2P3012 is shown.

Claims (1)

【特許請求の範囲】[Claims] (1)一般式 Li_1_+_2xTi_2_−_xMxP_3O_1
_2(ただし、Mは2価の金属元素、0<x<0.6)
で示される組成物よりなることを特徴とするリチウムイ
オン導電性固体電解質材料。
(1) General formula Li_1_+_2xTi_2_-_xMxP_3O_1
_2 (However, M is a divalent metal element, 0<x<0.6)
A lithium ion conductive solid electrolyte material comprising a composition represented by:
JP2042646A 1990-02-26 1990-02-26 Lithium ion conductive solid electrolyte material Pending JPH03246868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2042646A JPH03246868A (en) 1990-02-26 1990-02-26 Lithium ion conductive solid electrolyte material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2042646A JPH03246868A (en) 1990-02-26 1990-02-26 Lithium ion conductive solid electrolyte material

Publications (1)

Publication Number Publication Date
JPH03246868A true JPH03246868A (en) 1991-11-05

Family

ID=12641779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2042646A Pending JPH03246868A (en) 1990-02-26 1990-02-26 Lithium ion conductive solid electrolyte material

Country Status (1)

Country Link
JP (1) JPH03246868A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004093236A1 (en) * 2003-04-18 2004-10-28 Matsushita Electric Industrial Co., Ltd. Solid electrolyte and all-solid cell containing same
DE102006018233A1 (en) * 2005-07-14 2007-10-25 Elsper, Rüdiger, Dr. Manufacture of inorganic solid state cation conductor involves removing low valent heavy metal portion from dispersion of starting material of metal mixed oxide or salt in presence of monovalent cations and/or disproportionated
DE102006025663A1 (en) * 2005-07-14 2007-12-06 Elsper, Rüdiger, Dr. Manufacture of inorganic solid state cation conductor involves removing low valent heavy metal portion from dispersion of starting material of metal mixed oxide or salt in presence of monovalent cations and/or disproportionated
US7939201B2 (en) 2005-08-08 2011-05-10 A123 Systems, Inc. Nanoscale ion storage materials including co-existing phases or solid solutions
US8158090B2 (en) 2005-08-08 2012-04-17 A123 Systems, Inc. Amorphous and partially amorphous nanoscale ion storage materials
US8323832B2 (en) 2005-08-08 2012-12-04 A123 Systems, Inc. Nanoscale ion storage materials

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004093236A1 (en) * 2003-04-18 2004-10-28 Matsushita Electric Industrial Co., Ltd. Solid electrolyte and all-solid cell containing same
JP2004335455A (en) * 2003-04-18 2004-11-25 Matsushita Electric Ind Co Ltd Solid electrolyte and all-solid battery containing it
US7514181B2 (en) 2003-04-18 2009-04-07 Panasonic Corporation Solid electrolyte and all solid state battery containing same
DE102006018233A1 (en) * 2005-07-14 2007-10-25 Elsper, Rüdiger, Dr. Manufacture of inorganic solid state cation conductor involves removing low valent heavy metal portion from dispersion of starting material of metal mixed oxide or salt in presence of monovalent cations and/or disproportionated
DE102006025663A1 (en) * 2005-07-14 2007-12-06 Elsper, Rüdiger, Dr. Manufacture of inorganic solid state cation conductor involves removing low valent heavy metal portion from dispersion of starting material of metal mixed oxide or salt in presence of monovalent cations and/or disproportionated
US7939201B2 (en) 2005-08-08 2011-05-10 A123 Systems, Inc. Nanoscale ion storage materials including co-existing phases or solid solutions
US8057936B2 (en) 2005-08-08 2011-11-15 A123 Systems, Inc. Nanoscale ion storage materials including co-existing phases or solid solutions
US8158090B2 (en) 2005-08-08 2012-04-17 A123 Systems, Inc. Amorphous and partially amorphous nanoscale ion storage materials
US8323832B2 (en) 2005-08-08 2012-12-04 A123 Systems, Inc. Nanoscale ion storage materials
US8617430B2 (en) 2005-08-08 2013-12-31 A123 Systems Llc Amorphous and partially amorphous nanoscale ion storage materials

Similar Documents

Publication Publication Date Title
JP5721540B2 (en) Lithium ion conductive inorganic material
CA1265579A (en) Vitreous phosphorus oxide-sulfide solid lithium electrolyte
ES2634681T3 (en) Manufacturing procedure of entirely solid battery electrodes
CN111430808A (en) Lithium-containing chalcogenide-germanite solid electrolyte with dopant and preparation method thereof
JP7133435B2 (en) All-solid battery
JP7329062B2 (en) Solid electrolytes, electrode mixtures and batteries
WO2014141456A1 (en) Solid electrolyte, and all-solid ion secondary cell using same
JP6681570B2 (en) Battery and positive electrode material for battery
KR101900823B1 (en) Thin film type all-solid-state battery, and manufacturing method thereof
JP2014229579A (en) Lithium ion conductive inorganic solid composite
CN102054980A (en) Composite for cathode of li-ion battery, its preparation process and the li-ion battery
US3713897A (en) Electrolyte materials for high voltage solid electrolyte battery systems
US3736186A (en) Separator and electrolyte material for solid electrolyte battery systems
CN105514491A (en) Preparation of all-solid-state inorganic solid lithium ion electrolyte
JPH03246868A (en) Lithium ion conductive solid electrolyte material
JP7025956B2 (en) All solid state battery
JPS59151770A (en) Solid electrolyte battery
CN114072934B (en) Positive electrode active material particles for sulfide-based all-solid-state battery
JP6414813B2 (en) Solid electrolyte and secondary battery
JP7217615B2 (en) Composite solid electrolyte pellet for unsintered all-solid-state lithium-ion battery and all-solid-state lithium-ion battery
CN109075389A (en) solid electrolyte and all-solid-state battery
JPS5973851A (en) Solid electrolyte battery
JPS6084772A (en) Solid electrolyte battery
JPS5973850A (en) Solid electrolyte battery
CN205282581U (en) Preparation system of all solid state inorganic solid lithium ion electrolyte