JPS59151770A - Solid electrolyte battery - Google Patents

Solid electrolyte battery

Info

Publication number
JPS59151770A
JPS59151770A JP2507383A JP2507383A JPS59151770A JP S59151770 A JPS59151770 A JP S59151770A JP 2507383 A JP2507383 A JP 2507383A JP 2507383 A JP2507383 A JP 2507383A JP S59151770 A JPS59151770 A JP S59151770A
Authority
JP
Japan
Prior art keywords
solid electrolyte
lithium
glass
lii
li2s
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2507383A
Other languages
Japanese (ja)
Other versions
JPH0670906B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Toshihiko Saito
斎藤 俊彦
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2507383A priority Critical patent/JPH0670906B2/en
Publication of JPS59151770A publication Critical patent/JPS59151770A/en
Publication of JPH0670906B2 publication Critical patent/JPH0670906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte

Abstract

PURPOSE:To provide a solid electrolyte which is highly conductive and not decomposed at high temperature by using glass-like three component system solid solution of lithium sulfide, germanium disulfide, and lithium iodide. CONSTITUTION:Each commercially available extra-pure reagent of Li2S, GeS2, and LiI is crushed to under 400 mesh and dried under a reduced pressure at 250 deg.C. These materials are weighed at a ratio of Li2S:GeS2:LiI=30:15:55 and mixed in a mortar. This mixture is sealed in a quartz ampul in a vacuum and heated in an electric furnace at 900 deg.C, then quickly cooled to room temperature to obtain a glass-like solid electrolyte. It is crushed to under 400 mesh, then molded at a pressure of 3ton/cm<3> to form a glass-like three component system solid electrolyte. The solid electrolyte a of this invention has high conductivity compared with conventional solid electrolytes b and c.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は負極活物質としてリチウムを用いる固体電解質
電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a solid electrolyte battery using lithium as a negative electrode active material.

(ロ)従来技術 この種電池は固体電解質を用いるため漏液の心配がなく
、保存性能が優れるという利点を有するが、固体電解質
の導電率は液状電解質に比して数段低く高率放電特性に
問題があった。現在、一般に用いられている固体電解質
としてはヨウ化リチウム−アルミナ系があり、又最近提
案されているものとして硫化リチウム(Li2S)、三
硫化リン(P2S5)及びヨウ化リチウム(LiI)の
3成分系ガラス状固体電解質がある。
(b) Conventional technology Since this type of battery uses a solid electrolyte, there is no need to worry about leakage, and it has the advantage of excellent storage performance. However, the conductivity of the solid electrolyte is several orders of magnitude lower than that of the liquid electrolyte, and it has high rate discharge characteristics. There was a problem. Currently, the solid electrolyte commonly used is lithium iodide-alumina, and recently proposed solid electrolytes include lithium sulfide (Li2S), phosphorus trisulfide (P2S5), and lithium iodide (LiI). There are glassy solid electrolytes.

e→  目    的 本発明は上記従来の固体電解質に比して更に高導電性を
有する固体電解質の開発を目的とし、この種電池の性能
向上を計るものである に)構 成 本発明の要旨とするところは、正極と、リチウム負極と
、リチウムイオン導電性固体電解質とを備えるものであ
って、固体電解質が硫化リチウム(LizS)、二硫化
ゲル?−’−ウム(Ge、S 2 、)及びヨウ化リチ
ウム(Li I )の3成分系ガラス状固体電解質であ
ることを特徴とする固体電解質電池にある。
e→ Purpose The purpose of the present invention is to develop a solid electrolyte having higher conductivity than the conventional solid electrolytes mentioned above, and to improve the performance of this type of battery.) Structure: Summary of the present invention However, it is equipped with a positive electrode, a lithium negative electrode, and a lithium ion conductive solid electrolyte, and the solid electrolyte is lithium sulfide (LizS), disulfide gel? A solid electrolyte battery is characterized in that it is a ternary glassy solid electrolyte of -'-ium (Ge, S2, ) and lithium iodide (LiI).

件)実施例 以下本発明の実施例について詳述する。Case) Example Examples of the present invention will be described in detail below.

ガラス状固抹電解質は次のように合成した。即ちLiz
S、Ge52及びLiIは夫々市販の特級試薬を400
メ・リシュパスするまで粉砕し250℃で減圧乾燥した
ものを用いる。これらの原料をLi2S:Ge5z:L
iI=30:15:55のモル比率になるように秤量し
乳鉢で混合した。この原料混合物を真空中で石英アンプ
ルに封入し電気炉で900℃に加熱した後、急激に室温
付近まで冷却しガラス状態の固体電解質材を得る。次い
でこれを粉砕して400メツシユパスさせたのち、この
粉末を3トン/dの圧力でプレス成型して6成分系のガ
ラス状固体電解質を作成した。
The glassy solid electrolyte was synthesized as follows. That is, Liz
S, Ge52 and LiI were each commercially available special grade reagents.
The material used is one that has been pulverized until it passes through the mesh and dried under reduced pressure at 250°C. These raw materials are Li2S:Ge5z:L
They were weighed and mixed in a mortar so that the molar ratio was iI=30:15:55. This raw material mixture is sealed in a quartz ampoule in vacuum, heated to 900° C. in an electric furnace, and then rapidly cooled to around room temperature to obtain a solid electrolyte material in a glass state. Next, this was pulverized and subjected to 400 mesh passes, and then this powder was press-molded at a pressure of 3 tons/d to create a six-component glassy solid electrolyte.

第1図は上述の本発明による固体電解質(alの導電率
一温度特性を示し、測定は固体電解質の内面にリチウム
板を圧着して測定用試料とし、この試料の抵抗を1KH
zの交流ブリッジで測定して導電率を算出した。尚、図
中(blはL125−P2S5−LiIの3成分系ガラ
ス状固体電解質、(りはLiI−A、/203系固体電
解質の場合を夫々示す。
Figure 1 shows the electrical conductivity-temperature characteristics of the solid electrolyte (Al) according to the present invention, and the measurement was carried out by pressing a lithium plate onto the inner surface of the solid electrolyte as a measurement sample, and the resistance of this sample was 1KH.
The conductivity was calculated by measuring with an AC bridge of z. In the figure, (bl shows the case of a three-component glassy solid electrolyte of L125-P2S5-LiI, and (li shows the case of LiI-A, /203 system solid electrolyte, respectively).

第1図より本発明による固体電解質(alの導電率は従
来の固体電解質(b)或いは(C)に比して高い値を示
しているが、その理由は第一に固体電解質′がガラス状
態であるためリチウムイオンの移動が円滑に行なわれる
こと、第二に二硫化ゲルマニウム(GeSz)の添加に
よりガラス状態が一層安定化されたことが考えられろう 次にこれらの各固体電解質(al(bl及び(C)を用
いて電池(A)(Bl及び(C1を作成した。各電池と
も負極として厚み1.0麿のリチウム圧延板を10螺φ
に打抜いたものを用い、又正極合剤としてヨウ化鉛(P
bI2)、硫化鉛(pbs)及び鉛粉末を1:1:2の
モル比でHしたものを用いた。電池の作成に際しては、
10.8aφの成型金型に正極合剤330ダを入れ均一
に配置したのち、固体電解質材70呼を入れ、ついでリ
チウム板を載置し、全体を5トン/dで加圧成型して得
る。
As shown in Figure 1, the conductivity of the solid electrolyte (al) according to the present invention is higher than that of the conventional solid electrolyte (b) or (C). The reason for this is first that the solid electrolyte ' is in a glass state. Therefore, it is thought that the movement of lithium ions is carried out smoothly, and secondly, the glass state is further stabilized by the addition of germanium disulfide (GeSz). Next, each of these solid electrolytes (al(bl) Batteries (A) (Bl and (C1) were prepared using B and (C). For each battery, a lithium rolled plate with a thickness of 1.0 mm was used as a negative electrode with a diameter of 10 screws.
lead iodide (P) was used as the positive electrode mixture.
bI2), lead sulfide (PBS), and lead powder in a molar ratio of 1:1:2 were used. When making batteries,
After putting 330 da of positive electrode mixture into a 10.8aφ mold and arranging it uniformly, 70 dabs of solid electrolyte material were put in, then a lithium plate was placed, and the whole was molded under pressure at 5 tons/d. .

第2図及び第3図はこれら電池の電池特性比較図であり
、9J2図は室温における電流−電圧特性図、又第3図
は温度60℃、負荷56にΩにおける放電特性図である
FIGS. 2 and 3 are comparison diagrams of battery characteristics of these batteries, and FIG. 9J2 is a current-voltage characteristic diagram at room temperature, and FIG. 3 is a discharge characteristic diagram at a temperature of 60° C. and a load of 56 Ω.

(へ)効 果 第2図及び第3図より゛本発明電池の特性は従来電池に
比して優れていることがわかる。
(f) Effects From FIGS. 2 and 3, it can be seen that the characteristics of the battery of the present invention are superior to those of the conventional battery.

これは、本発明電池に用いた固体電解質カイ、Li52
、Ge52及びLiIの6成分系ガラス状固体電解質よ
りなり、固体電解質の導電率が高く、且安定化している
ので高温の条件下でも分解することがないという利点に
基づくものである。
This is the solid electrolyte Li52 used in the battery of the present invention.
This is based on the advantage that the solid electrolyte has high conductivity and is stabilized, so that it does not decompose even under high temperature conditions.

尚、本実施例においては固体電解質の組成番こつ比率の
場合を例示し$、Li52G!20〜40モ/l/%、
9eS2は5〜20モル%、Li I Gt 40〜7
5モル%の組成範囲内においてもガラス化カイ可能であ
る。
In this example, the composition ratio of the solid electrolyte is exemplified as $, Li52G! 20-40 mo/l/%,
9eS2 is 5-20 mol%, Li I Gt 40-7
Vitrification is possible even within the composition range of 5 mol%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は固体電解質の導電率一温度特性図、第2図及び
第3図は電池特性を示し、第2図Gま電流−電圧特性図
、第3図は放電特性図を夫々示す。 四・・・本発明電池、(Bl(C’l・・・従来電池。 第1図 、ゑi4  t’c〕 10’/T+に−1)
FIG. 1 is a conductivity-temperature characteristic diagram of a solid electrolyte, FIGS. 2 and 3 are battery characteristics, FIG. 2 is a current-voltage characteristic diagram, and FIG. 3 is a discharge characteristic diagram. 4...Battery of the present invention, (Bl (C'l... Conventional battery. Fig. 1, ゑi4 t'c〕 10'/T+ -1)

Claims (1)

【特許請求の範囲】[Claims] ■ 正極と、リチウム負極と、リチウムイオン導電性固
体電解質とを備えるものであって、前記固体電解質が硫
化リチウム(Li2S)、二硫化ゲルマニウム(GeS
2)及びヨウ化リチウム(Lil)の6成分系ガラス状
固体電解質であることを特徴とする固体電解質電池。
(2) A device comprising a positive electrode, a lithium negative electrode, and a lithium ion conductive solid electrolyte, wherein the solid electrolyte includes lithium sulfide (Li2S), germanium disulfide (GeS), and a lithium ion conductive solid electrolyte.
2) and a six-component glassy solid electrolyte of lithium iodide (Lil).
JP2507383A 1983-02-16 1983-02-16 Solid electrolyte battery Expired - Lifetime JPH0670906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2507383A JPH0670906B2 (en) 1983-02-16 1983-02-16 Solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2507383A JPH0670906B2 (en) 1983-02-16 1983-02-16 Solid electrolyte battery

Publications (2)

Publication Number Publication Date
JPS59151770A true JPS59151770A (en) 1984-08-30
JPH0670906B2 JPH0670906B2 (en) 1994-09-07

Family

ID=12155747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2507383A Expired - Lifetime JPH0670906B2 (en) 1983-02-16 1983-02-16 Solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0670906B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085953A (en) * 1990-09-18 1992-02-04 Eveready Battery Company, Inc. Vitreous compositions based on Li3 PO4 and LiPO3 as network formers and network modifiers
US6277524B1 (en) 1997-12-09 2001-08-21 Toyota Jidosha Kabushiki Kaisha Lithium-ion-conductive solid electrolyte and solid-electrolyte lithium battery
WO2012026238A1 (en) * 2010-08-26 2012-03-01 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material and lithium solid state battery
WO2013005085A1 (en) * 2011-07-06 2013-01-10 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, lithium solid-state battery, and method for producing sulfide solid electrolyte material
KR20130056204A (en) 2010-02-26 2013-05-29 제온 코포레이션 All solid state secondary battery and method for manufacturing all solid state secondary battery
WO2017213156A1 (en) 2016-06-09 2017-12-14 日本ゼオン株式会社 Binder composition for solid electrolyte batteries and slurry composition for solid electrolyte batteries
WO2018012380A1 (en) 2016-07-12 2018-01-18 日本ゼオン株式会社 Binder composition for solid electrolyte batteries
KR20180041091A (en) 2015-08-27 2018-04-23 니폰 제온 가부시키가이샤 Binder composition for all solid state batteries
KR20180050603A (en) 2015-09-10 2018-05-15 니폰 제온 가부시키가이샤 Binder composition for all solid state batteries
WO2018163776A1 (en) 2017-03-10 2018-09-13 日本ゼオン株式会社 Binder for all-solid-state batteries, binder composition for all-solid-state batteries and method for producing binder composition for all-solid-state batteries
KR20190045182A (en) 2016-09-06 2019-05-02 니폰 제온 가부시키가이샤 A binder composition for all solid batteries, a slurry composition for all solid batteries, an electrode for all solid batteries,
WO2019116964A1 (en) 2017-12-15 2019-06-20 日本ゼオン株式会社 Binder composition for all-solid secondary battery, slurry composition for all-solid secondary battery, functional layer for all-solid secondary battery, and all-solid secondary battery
US10797304B2 (en) 2015-03-25 2020-10-06 Zeon Corporation All-solid-state secondary battery
US10797343B2 (en) 2015-09-16 2020-10-06 Zeon Corporation Binder for all-solid-state secondary batteries, and all-solid-state secondary battery

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085953A (en) * 1990-09-18 1992-02-04 Eveready Battery Company, Inc. Vitreous compositions based on Li3 PO4 and LiPO3 as network formers and network modifiers
US6277524B1 (en) 1997-12-09 2001-08-21 Toyota Jidosha Kabushiki Kaisha Lithium-ion-conductive solid electrolyte and solid-electrolyte lithium battery
KR20130056204A (en) 2010-02-26 2013-05-29 제온 코포레이션 All solid state secondary battery and method for manufacturing all solid state secondary battery
US10193185B2 (en) 2010-08-26 2019-01-29 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material and lithium solid state battery
CN103081206A (en) * 2010-08-26 2013-05-01 丰田自动车株式会社 Sulfide solid electrolyte material and lithium solid state battery
US9356315B2 (en) 2010-08-26 2016-05-31 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material and lithium solid state battery
WO2012026238A1 (en) * 2010-08-26 2012-03-01 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material and lithium solid state battery
WO2013005085A1 (en) * 2011-07-06 2013-01-10 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, lithium solid-state battery, and method for producing sulfide solid electrolyte material
KR20230034420A (en) 2015-03-25 2023-03-09 니폰 제온 가부시키가이샤 All-solid secondary battery
US10797304B2 (en) 2015-03-25 2020-10-06 Zeon Corporation All-solid-state secondary battery
KR20180041091A (en) 2015-08-27 2018-04-23 니폰 제온 가부시키가이샤 Binder composition for all solid state batteries
US10622633B2 (en) 2015-09-10 2020-04-14 Zeon Corporation Binder composition for all-solid-state battery
KR20180050603A (en) 2015-09-10 2018-05-15 니폰 제온 가부시키가이샤 Binder composition for all solid state batteries
US10797343B2 (en) 2015-09-16 2020-10-06 Zeon Corporation Binder for all-solid-state secondary batteries, and all-solid-state secondary battery
WO2017213156A1 (en) 2016-06-09 2017-12-14 日本ゼオン株式会社 Binder composition for solid electrolyte batteries and slurry composition for solid electrolyte batteries
KR20190016021A (en) 2016-06-09 2019-02-15 니폰 제온 가부시키가이샤 Binder compositions for solid electrolyte batteries and slurry compositions for solid electrolyte batteries
US10985401B2 (en) 2016-06-09 2021-04-20 Zeon Corporation Binder composition for solid electrolyte battery and slurry composition for solid electrolyte battery
KR20190029520A (en) 2016-07-12 2019-03-20 니폰 제온 가부시키가이샤 Binder composition for solid electrolyte battery
US10862128B2 (en) 2016-07-12 2020-12-08 Zeon Corporation Binder composition for solid electrolyte battery
WO2018012380A1 (en) 2016-07-12 2018-01-18 日本ゼオン株式会社 Binder composition for solid electrolyte batteries
KR20190045182A (en) 2016-09-06 2019-05-02 니폰 제온 가부시키가이샤 A binder composition for all solid batteries, a slurry composition for all solid batteries, an electrode for all solid batteries,
US11145866B2 (en) 2016-09-06 2021-10-12 Zeon Corporation Binder composition for all-solid-state battery, slurry composition for all-solid-state battery, electrode for all-solid-state battery, and all-solid-state battery
KR20190123283A (en) 2017-03-10 2019-10-31 니폰 제온 가부시키가이샤 All-solid-state battery binder, all-solid-state battery binder composition, and all-solid-state battery binder composition manufacturing method
WO2018163776A1 (en) 2017-03-10 2018-09-13 日本ゼオン株式会社 Binder for all-solid-state batteries, binder composition for all-solid-state batteries and method for producing binder composition for all-solid-state batteries
KR20200097688A (en) 2017-12-15 2020-08-19 니폰 제온 가부시키가이샤 Binder composition for all-solid secondary batteries, slurry composition for all-solid secondary batteries, functional layer for all-solid secondary batteries, and all-solid secondary batteries
WO2019116964A1 (en) 2017-12-15 2019-06-20 日本ゼオン株式会社 Binder composition for all-solid secondary battery, slurry composition for all-solid secondary battery, functional layer for all-solid secondary battery, and all-solid secondary battery
US11557766B2 (en) 2017-12-15 2023-01-17 Zeon Corporation Binder composition for all-solid-state secondary battery, slurry composition for all-solid-state secondary battery, functional layer for all-solid-state secondary battery, and all-solid-state secondary battery

Also Published As

Publication number Publication date
JPH0670906B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
Zhang et al. Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-Argyrodite
KR100378004B1 (en) Glass-polymer composite electrolyte and method for producing the same
CA1193084A (en) Super ionic conductive glass
Hartmann et al. Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes
KR100942477B1 (en) Lithium ion secondary battery and a solid electrolyte thereof
Inda et al. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics
US4599284A (en) Vitreous phosphorus oxide-sulfide solid lithium electrolyte
Kotobuki et al. Sol–gel synthesis of Li1. 5Al0. 5Ge1. 5 (PO4) 3 solid electrolyte
JPS59151770A (en) Solid electrolyte battery
JPH05306117A (en) Amorphous lithium ion conductive solid electrolyte and its synthesizing method
CN100524927C (en) Solid electrolyte material system for all solid state lithium battery and preparation method
CN105914391B (en) All-solid-state battery
AU562568B2 (en) A vitreous solid lithium cation conductive electrolyte
JP3070328B2 (en) Fibrous solid electrolyte molded body
JP6648649B2 (en) Manufacturing method of all solid lithium sulfur battery
JPH05306119A (en) Amorphous lithium ion conductive solid electrolyte and its synthesizing method
JPH0670905B2 (en) Solid electrolyte battery
CN100530806C (en) Sulfide material as solid electrolyte for lithium ion cell and its preparing method
JPS5973850A (en) Solid electrolyte battery
JPS6084772A (en) Solid electrolyte battery
JPH05306118A (en) Amorphous lithium ion conductive solid electrolyte and its synthesizing method
Raskovalov et al. The all-solid-state battery with vanadate glass-ceramic cathode
JPH06271332A (en) Lithium ion conductive solid electrolyte and method for synthesizing the same
Zhu et al. Progress in lithium thioborate superionic conductors
JP2019169314A (en) Method for producing positive electrode active material, positive electrode active material, and all-solid battery