JP7217615B2 - Composite solid electrolyte pellet for unsintered all-solid-state lithium-ion battery and all-solid-state lithium-ion battery - Google Patents

Composite solid electrolyte pellet for unsintered all-solid-state lithium-ion battery and all-solid-state lithium-ion battery Download PDF

Info

Publication number
JP7217615B2
JP7217615B2 JP2018212443A JP2018212443A JP7217615B2 JP 7217615 B2 JP7217615 B2 JP 7217615B2 JP 2018212443 A JP2018212443 A JP 2018212443A JP 2018212443 A JP2018212443 A JP 2018212443A JP 7217615 B2 JP7217615 B2 JP 7217615B2
Authority
JP
Japan
Prior art keywords
solid
ion battery
lithium ion
solid electrolyte
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018212443A
Other languages
Japanese (ja)
Other versions
JP2020080231A (en
Inventor
悠貴友 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018212443A priority Critical patent/JP7217615B2/en
Publication of JP2020080231A publication Critical patent/JP2020080231A/en
Application granted granted Critical
Publication of JP7217615B2 publication Critical patent/JP7217615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Description

本発明は、全固体リチウムイオン電池用複合固体電解質ペレット及び全固体リチウムイオン電池に関する。 TECHNICAL FIELD The present invention relates to a composite solid electrolyte pellet for an all solid lithium ion battery and an all solid lithium ion battery.

近年におけるパソコン、ビデオカメラ、及び携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。該電池の中でも、エネルギー密度が高いという観点から、リチウム電池が注目を浴びている。また、車載用等の動力源やロードレべリング用といった大型用途におけるリチウム二次電池についても、高エネルギー密度、電池特性の向上が求められている。 2. Description of the Related Art In recent years, with the rapid spread of information-related equipment and communication equipment such as personal computers, video cameras, and mobile phones, the development of batteries used as power sources for these devices has been emphasized. Among these batteries, lithium batteries are attracting attention because of their high energy density. High energy density and improved battery characteristics are also required for lithium secondary batteries used in large-scale applications such as power sources for vehicles and load leveling.

ただ、リチウムイオン電池の場合は、電解液は有機化合物が大半であり、たとえ難燃性の化合物を用いたとしても火災に至る危険性が全くなくなるとは言いきれない。こうした液系リチウムイオン電池の代替候補として、電解質を固体とした全固体リチウムイオン電池が近年注目を集めている。その中でも、固体電解質としてLi2S-P25などの硫化物やそれにハロゲン化リチウムを添加した全固体リチウムイオン電池が主流となりつつある。 However, in the case of lithium-ion batteries, most of the electrolytes are organic compounds, and even if flame-retardant compounds are used, the risk of fire cannot be completely eliminated. In recent years, all-solid-state lithium-ion batteries with a solid electrolyte have been attracting attention as a candidate to replace such liquid-type lithium-ion batteries. Among them, all-solid-state lithium ion batteries in which sulfides such as Li 2 SP 2 S 5 and lithium halide are added as solid electrolytes are becoming mainstream.

特開2015-138741号公報JP 2015-138741 A

酸化物系Liイオン伝導体は大気中での安定性に優れるため注目を集めている。特に任意でAl、Ga、Ta、Nbを含む立方晶ガーネット型結晶構造のリチウムランタンジルコニウム酸化物、NASICON型結晶構造のLi1+xAlxTi2-x(PO43[式中、0≦x≦0.5](LATP)およびLi1+xAlxGe2-x(PO43[式中、0≦x≦0.5](LAGP)は、バルクのリチウムイオン伝導度が10-4S/cm前後と高く、全固体電池の固体電解質として有力視されている。 Oxide-based Li-ion conductors are attracting attention because of their excellent stability in the atmosphere. Lithium lanthanum zirconium oxide of cubic garnet type crystal structure optionally containing Al, Ga, Ta and Nb, Li1 + xAlxTi2 -x ( PO4) 3 of NASICON type crystal structure, in particular where 0 ≤x≤0.5] (LATP) and Li1 + xAlxGe2 -x ( PO4) 3 [where 0≤x≤0.5 ] (LAGP) are It is as high as about 10 -4 S/cm, and is regarded as a promising solid electrolyte for all-solid-state batteries.

ここで、酸化物系Liイオン伝導体が10-4S/cm前後のリチウムイオン伝導度を得るためには、ペレット化したのちに900~1500℃で一体化焼結を必要とする。これには、多大な電力コスト及び設備コストを必要とするという問題がある。また、全固体電池を作製する際には、電解質-電極間の界面抵抗を低減するために、正極、固体電解質、及び負極を合わせた状態で焼結することが有効であるが、固体電解質として酸化物系Liイオン伝導体を用いる場合、10-4S/cm前後のリチウムイオン伝導度を得るために900~1500℃で一体型焼結する必要がある。そのため、焼結温度で融解及び分解が起こらない正極、及び負極を使わなければならず、その材料選択の幅が狭くなるという問題がある。また一般的に、電池とした際に固体電解質層が割れると容量が低下したり、短絡することで発熱の危険性があるため、耐久性もイオン伝導度と同時に有さなければならない。 Here, in order to obtain a lithium ion conductivity of around 10 -4 S/cm for the oxide-based Li ion conductor, integral sintering at 900 to 1500° C. is required after pelletization. This has the problem of requiring significant power and equipment costs. In addition, when producing an all-solid-state battery, it is effective to sinter the positive electrode, the solid electrolyte, and the negative electrode together in order to reduce the interfacial resistance between the electrolyte and the electrode. When an oxide-based Li ion conductor is used, integral sintering at 900 to 1500° C. is required to obtain a lithium ion conductivity of around 10 −4 S/cm. Therefore, it is necessary to use a positive electrode and a negative electrode that do not melt or decompose at the sintering temperature, which narrows the range of material selection. In general, if the solid electrolyte layer is cracked in a battery, the capacity may be reduced, or there is a risk of heat generation due to short-circuiting.

このような問題に対し、特許文献1では、Li3xLa2/3-xTiO3(0≦x≦1/6)及びLi7La3Zr212のいずれかに、イオン伝導性非晶質を混合し、一体化焼結を行うことで空隙を埋め界面抵抗を下げることでイオン伝導経路を確保する技術が開示されている。しかしながら、空隙を埋めるためにはLi6.25La3Al2.5Zr212(以下、LLZとも称する)に対し粒径を小さくする必要性があり、かつイオン伝導性非晶質とLi7La3Zr212との濡れ性が重要であるためガラス軟化温度よりも十分高い温度(800℃程度)で焼結する必要があった。 In order to address such a problem , Patent Document 1 discloses that an ion - conductive amorphous There is disclosed a technique for securing an ion conduction path by filling voids and lowering interfacial resistance by mixing materials and performing integral sintering. However, in order to fill the voids, it is necessary to reduce the particle size with respect to Li 6.25 La 3 Al 2.5 Zr 2 O 12 ( hereinafter also referred to as LLZ ). Since wettability with 2 O 12 is important, it was necessary to sinter at a temperature (approximately 800° C.) sufficiently higher than the glass softening temperature.

このような問題に鑑み、本発明の実施形態では、焼結させなくとも、比較的高いリチウムイオン伝導度を有し、大気に晒しても自己崩壊を起こし難い全固体リチウムイオン電池用複合固体電解質ペレットを提供することを目的とする。 In view of such problems, in the embodiments of the present invention, a composite solid electrolyte for an all-solid lithium ion battery that has a relatively high lithium ion conductivity without being sintered and is less likely to self-disintegrate even when exposed to the atmosphere. Intended to provide pellets.

本発明者は、種々の検討を行った結果、立方晶ガーネット型結晶構造のリチウムイオン伝導性を有するリチウムランタンジルコニウム酸化物またはNASICON型結晶構造のリチウムイオン伝導性を有する酸化物と、LiCl、LiBr及びLiIのいずれか一種または二種以上とで構成され、且つ、LiCl、LiBr及びLiIのいずれか一種または二種以上の含有割合が所定範囲に制御された全固体リチウムイオン電池用複合固体電解質ペレットによれば、上述の課題が解決されることを見出した。 As a result of various investigations, the present inventors have found that a lithium lanthanum zirconium oxide having lithium ion conductivity with a cubic garnet crystal structure or an oxide having lithium ion conductivity with a NASICON crystal structure and LiCl and LiBr and any one or more of LiI, and the content ratio of one or more of LiCl, LiBr and LiI is controlled within a predetermined range. have found that the above problems are solved.

上記知見を基礎にして完成した本発明は実施形態において、立方晶ガーネット型結晶構造のリチウムイオン伝導性を有するリチウムランタンジルコニウム酸化物またはNASICON型結晶構造のリチウムイオン伝導性を有する酸化物と、LiCl、LiBr及びLiIのいずれか一種または二種以上とからなり、全体の質量を100質量部とした場合に、前記LiCl、LiBr及びLiIのいずれか一種または二種以上を1質量部~15質量部含有する未焼結の全固体リチウムイオン電池用複合固体電解質ペレットである。 In an embodiment of the present invention, which has been completed based on the above knowledge, lithium lanthanum zirconium oxide having lithium ion conductivity with a cubic garnet crystal structure or an oxide having lithium ion conductivity with a NASICON crystal structure, LiCl , Any one or two or more of LiBr and LiI, and when the total mass is 100 parts by mass, any one or two or more of LiCl, LiBr and LiI are 1 to 15 parts by mass It is an unsintered composite solid electrolyte pellet for an all-solid-state lithium ion battery containing.

本発明の未焼結の全固体リチウムイオン電池用複合固体電解質ペレットは別の実施形態において、前記立方晶ガーネット型結晶構造のリチウムイオン伝導性を有するリチウムランタンジルコニウム酸化物が、ランタンサイトの一部をアルミニウムで置換した立方晶ガーネット型結晶構造のリチウムランタンジルコニウム酸化物である。 In another embodiment of the unsintered composite solid electrolyte pellet for an all-solid-state lithium ion battery of the present invention, the lithium lanthanum zirconium oxide having lithium ion conductivity of the cubic garnet crystal structure is a part of the lanthanum site is a lithium-lanthanum-zirconium oxide having a cubic garnet-type crystal structure in which is substituted with aluminum.

本発明の未焼結の全固体リチウムイオン電池用複合固体電解質ペレットは更に別の実施形態において、前記NASICON型結晶構造のリチウムイオン伝導性を有する酸化物が、
組成式:Li1+xAlxGe2-x(PO43 [式中、0≦x≦0.5である]
で表される。
In still another embodiment of the unsintered composite solid electrolyte pellet for an all-solid-state lithium ion battery of the present invention, the oxide having lithium ion conductivity of the NASICON crystal structure is
Composition formula: Li1 + xAlxGe2 -x ( PO4) 3 [wherein 0≤x≤0.5 ]
is represented by

本発明は別の実施形態において、正極層、負極層及び固体電解質層を備え、本発明の実施形態に係る未焼結の全固体リチウムイオン電池用複合固体電解質ペレットを前記固体電解質層に備えた全固体リチウムイオン電池である。 In another embodiment of the present invention, a positive electrode layer, a negative electrode layer and a solid electrolyte layer are provided, and an unsintered composite solid electrolyte pellet for an all-solid lithium ion battery according to the embodiment of the present invention is provided in the solid electrolyte layer. It is an all-solid-state lithium-ion battery.

本発明によれば、焼結させなくとも、比較的高いリチウムイオン伝導度を有し、大気に晒しても自己崩壊を起こし難い全固体リチウムイオン電池用複合固体電解質ペレットを提供することができる。 According to the present invention, it is possible to provide a composite solid electrolyte pellet for an all-solid-state lithium ion battery that has relatively high lithium ion conductivity without sintering and is less prone to self-disintegration even when exposed to the atmosphere.

(全固体リチウムイオン電池用複合固体電解質ペレット)
本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質ペレットは、立方晶ガーネット型結晶構造のリチウムイオン伝導性を有するリチウムランタンジルコニウム酸化物またはNASICON型結晶構造のリチウムイオン伝導性を有する酸化物と、LiCl、LiBr及びLiIのいずれか一種または二種以上とからなり、全体の質量を100質量部とした場合に、前記LiCl、LiBr及びLiIのいずれか一種または二種以上を1質量部~15質量部含有する。
(Composite solid electrolyte pellets for all-solid-state lithium-ion batteries)
The composite solid electrolyte pellet for an all-solid-state lithium ion battery according to an embodiment of the present invention is a lithium lanthanum zirconium oxide having lithium ion conductivity with a cubic garnet crystal structure or an oxide having lithium ion conductivity with a NASICON crystal structure and any one or more of LiCl, LiBr and LiI, and when the total mass is 100 parts by mass, 1 part by mass of one or more of LiCl, LiBr and LiI Contains up to 15 parts by mass.

本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質ペレットは、立方晶ガーネット型結晶構造のリチウムイオン伝導性を有するリチウムランタンジルコニウム酸化物またはNASICON型結晶構造のリチウムイオン伝導性を有する酸化物と、LiCl、LiBr及びLiIのいずれか一種または二種以上とからなるため、立方晶ガーネット型結晶構造のリチウムイオン伝導性を有するリチウムランタンジルコニウム酸化物またはNASICON型結晶構造のリチウムイオン伝導性を有する酸化物の粒子間に、リチウムとハロゲン族からなる塩が配置される構造となり、界面抵抗を減少させることができ、比較的高いリチウムイオン伝導度を有する全固体リチウムイオン電池用複合固体電解質ペレットが得られる。また、全体の質量を100質量部とした場合に、LiCl、LiBr及びLiIのいずれか一種または二種以上を1質量部~15質量部含有することで大気に晒しても自己崩壊を起こし難い全固体リチウムイオン電池用複合固体電解質ペレットが得られる。 The composite solid electrolyte pellet for an all-solid-state lithium ion battery according to an embodiment of the present invention is a lithium lanthanum zirconium oxide having lithium ion conductivity with a cubic garnet crystal structure or an oxide having lithium ion conductivity with a NASICON crystal structure and one or more of LiCl, LiBr and LiI. A composite solid electrolyte pellet for an all-solid-state lithium-ion battery with a structure in which a salt composed of lithium and a halogen group is arranged between the oxide particles, which can reduce the interfacial resistance, and has a relatively high lithium-ion conductivity. is obtained. Further, when the total mass is 100 parts by mass, by containing 1 to 15 parts by mass of any one or more of LiCl, LiBr and LiI, even if exposed to the atmosphere, it is difficult for self-destruction to occur. A composite solid electrolyte pellet for a solid lithium ion battery is obtained.

本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質ペレットは、全体の質量を100質量部とした場合に、LiCl、LiBr及びLiIのいずれか一種または二種以上を1質量部~15質量部含有するのが好ましく、3質量部~10質量部含有するのがより好ましい。 The composite solid electrolyte pellet for an all-solid-state lithium ion battery according to an embodiment of the present invention contains any one or more of LiCl, LiBr and LiI from 1 part by mass to 15 parts by mass when the total mass is 100 parts by mass. It is preferably contained in parts by mass, more preferably 3 to 10 parts by mass.

本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質ペレットの形状や大きさは特に限定されないが、例えば、底面8~20mmφ×高さ0.5~2mmの円柱体、または、縦×横×高さ=5~30mm×5~30mm×0.5~2mmの直方体または立方体等とすることができる。 The shape and size of the composite solid electrolyte pellet for an all-solid lithium ion battery according to the embodiment of the present invention are not particularly limited, but for example, a cylindrical body with a bottom surface of 8 to 20 mmφ × a height of 0.5 to 2 mm, or a vertical × It can be a rectangular parallelepiped or cube of width×height=5 to 30 mm×5 to 30 mm×0.5 to 2 mm.

本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質ペレットは、立方晶ガーネット型結晶構造のリチウムイオン伝導性を有するリチウムランタンジルコニウム酸化物が、ランタンサイトの一部をアルミニウムで置換した立方晶ガーネット型結晶構造のリチウムランタンジルコニウム酸化物であってもよい。このような構成によれば、LLZのイオン伝導度が10-4S/mと高く、LiCl、LiBr及びLiIのいずれか一種または二種以上と混合した際に高いイオン伝導率を示す。 A composite solid electrolyte pellet for an all-solid-state lithium ion battery according to an embodiment of the present invention is a cubic cubic lithium lanthanum zirconium oxide having lithium ion conductivity with a cubic garnet-type crystal structure substituted with aluminum for part of the lanthanum site. Lithium-lanthanum-zirconium oxide having a crystal garnet-type crystal structure may also be used. According to such a configuration, LLZ has a high ionic conductivity of 10 −4 S/m, and exhibits a high ionic conductivity when mixed with one or more of LiCl, LiBr and LiI.

本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質ペレットは、立方晶ガーネット型結晶構造のリチウムイオン伝導性を有するリチウムランタンジルコニウム酸化物が、リチウムサイトの一部をアルミニウムで置換した立方晶ガーネット型結晶構造のリチウムランタンジルコニウム酸化物であってもよく、ランタンサイトの一部をアルミニウムで置換した立方晶ガーネット型結晶構造のリチウムランタンジルコニウム酸化物であってもよく、ジルコニアサイトの一部をタンタルで置換した立方晶ガーネット型結晶構造のリチウムランタンジルコニウム酸化物であってもよく、リチウムサイトの一部をガリウムで置換した立方晶ガーネット型結晶構造のリチウムランタンジルコニウム酸化物であってもよい。 A composite solid electrolyte pellet for an all-solid-state lithium ion battery according to an embodiment of the present invention is a cubic solid electrolyte pellet in which a lithium lanthanum zirconium oxide having lithium ion conductivity with a cubic garnet crystal structure is substituted with aluminum for part of the lithium site. It may be a lithium-lanthanum-zirconium oxide with a crystalline garnet-type crystal structure, or a lithium-lanthanum-zirconium oxide with a cubic garnet-type crystal structure in which a part of the lanthanum site is replaced with aluminum, and a part of the zirconia site. It may be a lithium lanthanum zirconium oxide having a cubic garnet crystal structure in which the is substituted with tantalum, or a lithium lanthanum zirconium oxide having a cubic garnet crystal structure in which part of the lithium site is substituted with gallium. .

本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質ペレットは、NASICON型結晶構造のリチウムイオン伝導性を有する酸化物が、
組成式:Li1+xAlxGe2-x(PO43 [式中、0≦x≦0.5である]
で表されてもよい。このような構成によれば、酸化物自体のイオン伝導度が10-4S/mと高く、LiCl、LiBr及びLiIのいずれか一種または二種以上と混合した際に高いイオン伝導率を示す。
The composite solid electrolyte pellet for an all-solid lithium ion battery according to an embodiment of the present invention is an oxide having lithium ion conductivity with a NASICON crystal structure,
Composition formula: Li1 + xAlxGe2 -x ( PO4) 3 [wherein 0≤x≤0.5 ]
may be represented by According to such a structure, the oxide itself has a high ionic conductivity of 10 −4 S/m, and exhibits a high ionic conductivity when mixed with one or more of LiCl, LiBr and LiI.

本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質ペレットは、NASICON型結晶構造のリチウムイオン伝導性を有する酸化物が、Li1+xAlxTi2-x(PO43 [式中、0≦x≦0.5である]であってもよい。 In the composite solid electrolyte pellet for an all-solid lithium ion battery according to an embodiment of the present invention, an oxide having lithium ion conductivity with a NASICON crystal structure is Li 1+x Al x Ti 2-x (PO 4 ) 3 [ where 0≦x≦0.5].

(全固体リチウムイオン電池用複合固体電解質ペレットの製造方法)
次に、本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質ペレットの製造方法について詳細に説明する。まず、立方晶ガーネット型結晶構造のリチウムイオン伝導性を有するリチウムランタンジルコニウム酸化物またはNASICON型結晶構造のリチウムイオン伝導性を有する酸化物と、LiCl、LiBr及びLiIのいずれか一種または二種以上とを所定の質量比となるように秤量した後、メノウ乳鉢等を用いて十分に乾式混合することで複合固体電解質を得る。
(Manufacturing method of composite solid electrolyte pellet for all-solid-state lithium ion battery)
Next, a method for manufacturing a composite solid electrolyte pellet for an all-solid lithium ion battery according to an embodiment of the present invention will be described in detail. First, a lithium lanthanum zirconium oxide having lithium ion conductivity having a cubic garnet crystal structure or an oxide having lithium ion conductivity having a NASICON crystal structure and one or more of LiCl, LiBr and LiI are weighed so as to have a predetermined mass ratio, and then sufficiently dry-mixed using an agate mortar or the like to obtain a composite solid electrolyte.

次に、当該複合固体電解質を、所定の大きさ及び形状の金型に入れ、所望の圧力で成形することで、本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質ペレットを作製することができる。 Next, the composite solid electrolyte is placed in a mold of a predetermined size and shape and molded under a desired pressure to produce a composite solid electrolyte pellet for an all-solid lithium ion battery according to an embodiment of the present invention. be able to.

(全固体リチウムイオン電池)
本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質ペレットを用いて固体電解質層を形成し、当該固体電解質層、正極層及び負極層を備えた全固体リチウムイオン電池を作製することができる。
(All-solid-state lithium-ion battery)
A solid electrolyte layer is formed using the composite solid electrolyte pellet for an all-solid lithium ion battery according to an embodiment of the present invention, and an all-solid lithium ion battery comprising the solid electrolyte layer, the positive electrode layer and the negative electrode layer can be produced. can.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。 The following examples are provided for a better understanding of the invention and its advantages, but the invention is not limited to these examples.

参考例1)
Li6.25La3Al2.5Zr212(以下、LLZと称する)とLiClを質量比で99:1となるように秤量した後、メノウ乳鉢にて10分間乾式混合して複合固体電解質を得た。次に、当該複合固体電解質を、φ17.5mmの金型に入れ、45MPaで成形して全固体リチウムイオン電池用複合固体電解質ペレットを得た。
( Reference example 1)
After Li 6.25 La 3 Al 2.5 Zr 2 O 12 (hereinafter referred to as LLZ) and LiCl were weighed so that the mass ratio was 99:1, they were dry mixed in an agate mortar for 10 minutes to obtain a composite solid electrolyte. . Next, the composite solid electrolyte was placed in a mold with a diameter of 17.5 mm and molded at 45 MPa to obtain a composite solid electrolyte pellet for an all-solid lithium ion battery.

参考例2)
LLZとLiClを質量比で97:3となるように秤量した後、参考例1と同様の方法でペレットを得た。
( Reference example 2)
After weighing LLZ and LiCl in a mass ratio of 97:3, pellets were obtained in the same manner as in Reference Example 1.

参考例3)
LLZとLiIを質量比で99:1となるように秤量した後、参考例1と同様の方法でペレットを得た。
( Reference example 3)
After weighing LLZ and LiI so that the mass ratio was 99:1, pellets were obtained in the same manner as in Reference Example 1.

参考例4)
LLZとLiIを質量比で97:3となるように秤量した後、参考例1と同様の方法でペレットを得た。
( Reference example 4)
After weighing LLZ and LiI in a mass ratio of 97:3, pellets were obtained in the same manner as in Reference Example 1.

(実施例5)
Li1.5Al0.5Ge2(PO43(以下、LAGPとも称する)とLiClを質量比で99:1となるように秤量した後、参考例1と同様の方法でペレットを得た。
(Example 5)
After Li 1.5 Al 0.5 Ge 2 (PO 4 ) 3 (hereinafter also referred to as LAGP) and LiCl were weighed so that the mass ratio was 99:1, pellets were obtained in the same manner as in Reference Example 1.

(実施例6)
LAGPとLiClを質量比で97:3となるように秤量した後、参考例1と同様の方法でペレットを得た。
(Example 6)
After weighing LAGP and LiCl in a mass ratio of 97:3, pellets were obtained in the same manner as in Reference Example 1.

参考例7)
LAGPとLiClを質量比で95:5となるように秤量した後、参考例1と同様の方法でペレットを得た。
( Reference example 7)
After weighing LAGP and LiCl in a mass ratio of 95:5, pellets were obtained in the same manner as in Reference Example 1.

参考例8)
LAGPとLiClを質量比で90:10となるように秤量した後、参考例1と同様の方法でペレットを得た。
( Reference example 8)
After weighing LAGP and LiCl at a mass ratio of 90:10, pellets were obtained in the same manner as in Reference Example 1.

(実施例9)
LAGPとLiIを質量比で99:1となるように秤量した後、参考例1と同様の方法でペレットを得た。
(Example 9)
After LAGP and LiI were weighed so that the mass ratio was 99:1, pellets were obtained in the same manner as in Reference Example 1.

(実施例10)
LAGPとLiIを質量比で97:3となるように秤量した後、参考例1と同様の方法でペレットを得た。
(Example 10)
After LAGP and LiI were weighed so that the mass ratio was 97:3, pellets were obtained in the same manner as in Reference Example 1.

参考例11)
LAGPとLiIを質量比で95:5となるように秤量した後、参考例1と同様の方法でペレットを得た。
( Reference example 11)
After LAGP and LiI were weighed so that the mass ratio was 95:5, pellets were obtained in the same manner as in Reference Example 1.

参考例12)
LAGPとLiIを質量比で90:10となるように秤量した後、参考例1と同様の方法でペレットを得た。
( Reference example 12)
After weighing LAGP and LiI at a mass ratio of 90:10, pellets were obtained in the same manner as in Reference Example 1.

(比較例1)
LLZをそのまま金型中に入れ、45MPaで成形してペレットを得た。
(Comparative example 1)
The LLZ was directly placed in a mold and molded at 45 MPa to obtain pellets.

(比較例2)
LAGPをそのまま金型中に入れ、45MPaで成形してペレットを得た。
(Comparative example 2)
The LAGP was directly placed in a mold and molded at 45 MPa to obtain pellets.

(比較例3)
LLZとLiClを質量比で80:20となるように秤量した後、参考例1と同様の方法でペレットを得た。
(Comparative Example 3)
After weighing LLZ and LiCl at a mass ratio of 80:20, pellets were obtained in the same manner as in Reference Example 1.

(比較例4)
LAGPとLiClを質量比で80:20となるように秤量した後、参考例1と同様の方法でペレットを得た。
(Comparative Example 4)
After weighing LAGP and LiCl in a mass ratio of 80:20, pellets were obtained in the same manner as in Reference Example 1.

(比較例5)
LLZとLiIを質量比で80:20となるように秤量した後、参考例1と同様の方法でペレットを得た。
(Comparative Example 5)
After weighing LLZ and LiI at a mass ratio of 80:20, pellets were obtained in the same manner as in Reference Example 1.

(比較例6)
LAGPとLiIを質量比で80:20となるように秤量した後、参考例1と同様の方法でペレットを得た。
(Comparative Example 6)
After weighing LAGP and LiI at a mass ratio of 80:20, pellets were obtained in the same manner as in Reference Example 1.

(評価)
こうしてできた各実施例及び比較例のサンプルを用いて下記の条件にて各評価を実施した。
-イオン伝導度の評価-
1gの試料をφ17.5mmの金型に入れペレットを作製した。当該ペレットを、市販のAgペーストをペレットに塗布し常温で1日乾燥させたのち、イオン伝導度測定用のセルに配置し交流インピーダンス測定を行うことで、イオン伝導度を評価した。
(evaluation)
Each evaluation was carried out under the following conditions using the samples of each example and comparative example thus obtained.
-Evaluation of ionic conductivity-
A 1 g sample was placed in a φ17.5 mm mold to prepare a pellet. The ionic conductivity was evaluated by applying a commercially available Ag paste to the pellet and drying it at room temperature for 1 day, then placing it in a cell for ionic conductivity measurement and performing AC impedance measurement.

-抗折強度および自己崩壊の評価方法-
1gの試料をφ17.5mmの金型に入れペレットを作製した。当該ペレットの外周を1mm支持できるように作製した治具の上に設置した。デジタル硬度計に取り付けたφ7mmの押し込みピンで、ペレットの中心に徐々に荷重を加え、割れた際の最大荷重を計測した。また同時に複数のペレットを作製し、大気中で1日放置したあとの抗折強度も測定した。強度の差を自己崩壊しづらさとして4段階(A:最も自己崩壊しづらい、B:次に自己崩壊しづらい、C:その次に自己崩壊しづらい、D:最も自己崩壊しやすい)で評価した。
評価条件及び結果を表1に示す。
-Evaluation method for bending strength and self-collapse-
A 1 g sample was placed in a φ17.5 mm mold to prepare a pellet. The pellet was placed on a jig made to support the outer periphery of the pellet by 1 mm. A load was gradually applied to the center of the pellet using a push pin of φ7 mm attached to a digital hardness meter, and the maximum load at the time of cracking was measured. At the same time, a plurality of pellets were produced, and the bending strength was measured after being left in the atmosphere for one day. The difference in strength is evaluated as the difficulty of self-collapsing in 4 stages (A: most difficult to self-collapse, B: next difficult to self-collapse, C: next difficult to self-collapse, D: most easy to self-collapse). bottom.
Table 1 shows the evaluation conditions and results.

Figure 0007217615000001
Figure 0007217615000001

比較例1または2に示されるように、LLZおよびLAGP未焼結材のイオン伝導度は1.5×10-8S/cmおよび4.7×10-9S/cmであったのに対し、実施例5~6、9~10、参考例1~4、7~8、11~12のイオン伝導度は10-6~10-4S/cmオーダーであった。
抗折強度は参考例1~4では比較例1と比べ高く、また実施例5~6、9~10、参考例7~8、11~12は比較例2と比べ高くなった。これは、LLZおよびLAGPの粒子間にLiClやLiIが配置される構造となったためであると考えられる。比較例3~6ではLiClやLiIの潮解性のためペレットが脆くなり自己崩壊してしまった。
以上の結果から、全体の質量を100質量部とした場合に、LiCl、LiBr及びLiIのいずれか一種または二種以上を1質量部~15質量部含有することで焼結させなくとも、比較的高いリチウムイオン伝導度を有し、大気に晒しても自己崩壊を起こし難い全固体リチウムイオン電池用複合固体電解質ペレットが得られることがわかる。
As shown in Comparative Examples 1 or 2, the ionic conductivities of the LLZ and LAGP green materials were 1.5×10 −8 S/cm and 4.7×10 −9 S/cm, whereas , Examples 5 to 6, 9 to 10, and Reference Examples 1 to 4, 7 to 8, and 11 to 12 , the ionic conductivity was on the order of 10 -6 to 10 -4 S/cm.
The bending strength of Reference Examples 1-4 was higher than that of Comparative Example 1, and that of Examples 5-6, 9-10 and Reference Examples 7-8 and 11-12 was higher than that of Comparative Example 2. This is considered to be due to the structure in which LiCl and LiI are arranged between the LLZ and LAGP particles. In Comparative Examples 3 to 6, the pellets became brittle and self-destructed due to the deliquescence of LiCl and LiI.
From the above results, when the total mass is 100 parts by mass, it is possible to relatively It can be seen that a composite solid electrolyte pellet for an all-solid-state lithium ion battery, which has high lithium ion conductivity and does not readily self-disintegrate even when exposed to the atmosphere, can be obtained.

Claims (2)

ASICON型結晶構造のリチウムイオン伝導性を有する酸化物と、
LiCl、LiBr及びLiIのいずれか一種または二種以上と、
からなり、
全体の質量を100質量部とした場合に、前記LiCl、LiBr及びLiIのいずれか一種または二種以上を1質量部~質量部含有し、
前記NASICON型結晶構造のリチウムイオン伝導性を有する酸化物が、
組成式:Li 1+x Al x Ge 2-x (PO 4 3 [式中、0≦x≦0.5である]
で表される未焼結の全固体リチウムイオン電池用複合固体電解質ペレット。
an oxide having NASICON - type crystal structure and lithium ion conductivity;
Any one or more of LiCl, LiBr and LiI,
consists of
When the total mass is 100 parts by mass, it contains 1 to 3 parts by mass of one or more of LiCl, LiBr and LiI ,
The oxide having lithium ion conductivity with the NASICON crystal structure,
Composition formula: Li1 + xAlxGe2 -x ( PO4 ) 3 [ wherein 0≤x≤0.5 ]
A composite solid electrolyte pellet for an unsintered all-solid-state lithium ion battery represented by
正極層、負極層及び固体電解質層を備え、請求項に記載の未焼結の全固体リチウムイオン電池用複合固体電解質ペレットを前記固体電解質層に備えた全固体リチウムイオン電池。 An all-solid lithium ion battery comprising a positive electrode layer, a negative electrode layer and a solid electrolyte layer, wherein the solid electrolyte layer comprises the unsintered composite solid electrolyte pellet for an all-solid lithium ion battery according to claim 1 .
JP2018212443A 2018-11-12 2018-11-12 Composite solid electrolyte pellet for unsintered all-solid-state lithium-ion battery and all-solid-state lithium-ion battery Active JP7217615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018212443A JP7217615B2 (en) 2018-11-12 2018-11-12 Composite solid electrolyte pellet for unsintered all-solid-state lithium-ion battery and all-solid-state lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018212443A JP7217615B2 (en) 2018-11-12 2018-11-12 Composite solid electrolyte pellet for unsintered all-solid-state lithium-ion battery and all-solid-state lithium-ion battery

Publications (2)

Publication Number Publication Date
JP2020080231A JP2020080231A (en) 2020-05-28
JP7217615B2 true JP7217615B2 (en) 2023-02-03

Family

ID=70801953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018212443A Active JP7217615B2 (en) 2018-11-12 2018-11-12 Composite solid electrolyte pellet for unsintered all-solid-state lithium-ion battery and all-solid-state lithium-ion battery

Country Status (1)

Country Link
JP (1) JP7217615B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115917820A (en) * 2020-06-24 2023-04-04 Tdk株式会社 Solid electrolyte and solid electrolyte battery
JP7334813B1 (en) 2022-03-10 2023-08-29 株式会社デンソー Solid electrolyte for secondary battery and secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091788A (en) 2015-11-10 2017-05-25 日本特殊陶業株式会社 Ion conductor, lithium battery, and method of producing ion conductor
JP2017216066A (en) 2016-05-30 2017-12-07 旭化成株式会社 Method for producing solid electrolyte particle film
CN107732295A (en) 2017-10-12 2018-02-23 燕山大学 A kind of solid oxide electrolyte and its low-temperature sintering method based on halogenation lithium doping
JP2019091583A (en) 2017-11-14 2019-06-13 日本特殊陶業株式会社 Lithium secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381908A (en) * 1989-05-18 1991-04-08 Japan Synthetic Rubber Co Ltd Lithium ion conductive solid electrolyte

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091788A (en) 2015-11-10 2017-05-25 日本特殊陶業株式会社 Ion conductor, lithium battery, and method of producing ion conductor
JP2017216066A (en) 2016-05-30 2017-12-07 旭化成株式会社 Method for producing solid electrolyte particle film
CN107732295A (en) 2017-10-12 2018-02-23 燕山大学 A kind of solid oxide electrolyte and its low-temperature sintering method based on halogenation lithium doping
JP2019091583A (en) 2017-11-14 2019-06-13 日本特殊陶業株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JP2020080231A (en) 2020-05-28

Similar Documents

Publication Publication Date Title
Wang et al. High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium–sulfur batteries
Lu et al. Effects of fluorine doping on structural and electrochemical properties of Li6. 25Ga0. 25La3Zr2O12 as electrolytes for solid-state lithium batteries
Chen et al. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces
Liu et al. Insight into the microstructure and ionic conductivity of cold sintered NASICON solid electrolyte for solid-state batteries
Liu et al. Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition
Dai et al. Flexible solid-state electrolyte with aligned nanostructures derived from wood
Li et al. NaSICON: A promising solid electrolyte for solid‐state sodium batteries
Chen et al. Microstructural and electrochemical properties of Al-and Ga-doped Li7La3Zr2O12 garnet solid electrolytes
CN106935903B (en) Composite electrolyte membrane and its preparation method and application
Dong et al. Combined experimental and computational study of Ce-doped La3Zr2Li7O12 garnet solid-state electrolyte
Thangadurai et al. Li6ALa2Nb2O12 (A= Ca, Sr, Ba): A New Class of Fast Lithium Ion Conductors with Garnet‐Like Structure
Thangadurai et al. Novel fast lithium ion conduction in garnet‐type Li5La3M2O12 (M= Nb, Ta)
Meesala et al. All-solid-state Li-ion battery using Li1. 5Al0. 5Ge1. 5 (PO4) 3 as electrolyte without polymer interfacial adhesion
Hu et al. Construct an ultrathin bismuth buffer for stable solid-state lithium metal batteries
JP7220370B2 (en) Solid electrolyte and power storage device with the same
Wu et al. Solid-state lithium batteries-from fundamental research to industrial progress
Yang et al. Efficient mutual-compensating Li-loss strategy toward highly conductive garnet ceramics for Li-metal solid-state batteries
CN114789993B (en) Modified sulfur silver germanium mineral solid electrolyte and preparation method and application thereof
Pitillas Martinez et al. The cathode composition, a key player in the success of Li-metal solid-state batteries
Sun et al. Local Li+ framework regulation of a garnet-type solid-state electrolyte
Zhou et al. Production of Ta-doped Li7La3Zr2O12 solid electrolyte with high critical current density
Zhang et al. Achieving Both High Ionic Conductivity and High Interfacial Stability with the Li2+ x C1–x B x O3 Solid-State Electrolyte: Design from Theoretical Calculations
JP7217615B2 (en) Composite solid electrolyte pellet for unsintered all-solid-state lithium-ion battery and all-solid-state lithium-ion battery
Wang et al. Mixed Ionically/Electronically Conductive Double-Phase Interface Enhanced Solid-State Charge Transfer for a High-Performance All-Solid-State Li–S Battery
Xu et al. Influence of sintering additives on Li+ conductivity and electrochemical property of perovskite-type Li3/8Sr7/16Hf1/4Ta3/4O3

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230124

R151 Written notification of patent or utility model registration

Ref document number: 7217615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151