JPH03245576A - Manufacture of pressure sensor - Google Patents

Manufacture of pressure sensor

Info

Publication number
JPH03245576A
JPH03245576A JP4305790A JP4305790A JPH03245576A JP H03245576 A JPH03245576 A JP H03245576A JP 4305790 A JP4305790 A JP 4305790A JP 4305790 A JP4305790 A JP 4305790A JP H03245576 A JPH03245576 A JP H03245576A
Authority
JP
Japan
Prior art keywords
recess
plasma etching
gauge
grinding
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4305790A
Other languages
Japanese (ja)
Other versions
JP2676962B2 (en
Inventor
Yoshihisa Muramatsu
村松 義久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2043057A priority Critical patent/JP2676962B2/en
Publication of JPH03245576A publication Critical patent/JPH03245576A/en
Application granted granted Critical
Publication of JP2676962B2 publication Critical patent/JP2676962B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To enable a recess which is uniform in depth and provided with an opening optional in diameter to be surely formed by a method wherein a semiconductor substrate is formed as thin as prescribed in thickness by grinding after a wafer process in which a gauge resistor and an attached integrated circuit are formed is finished. CONSTITUTION:Impurities are introduced into an Si board 1 through one of its sides to form a gauge resistor 4 and integrated circuit elements 51 and 52, and then a layer 14 on the rear side of the Si board is removed by grinding to make the Si board 1 as thin as prescribed. Then, a plasma etching mask 7 is formed into a prescribed pattern, a plasma etching is executed to form a recess 8, a diaphragm is formed as thick as prescribed, a protective film 61 is deposited on a gauge surface, the mask 7 is removed, and then a pedestal 10 is joined. As mentioned above, the Si board 1 subjected to a wafer process while it stays thick is formed thin by grinding, whereby a plasma etching method can be applied to form a recess, so that the recess can be accurately formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体片に形成されたダイヤフラム部にゲー
ジ抵抗を有し、ダイヤフラム部の変形によって生ずるゲ
ージ抵抗の変化によって生ずる圧力を検出する圧力セン
サの製造方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a pressure sensor that has a gauge resistance in a diaphragm portion formed in a semiconductor piece, and detects pressure generated by a change in gauge resistance caused by deformation of the diaphragm portion. The present invention relates to a method of manufacturing a sensor.

〔従来の技術〕[Conventional technology]

ダイヤフラム部の変形を利用した圧力センサにおいて、
数%以下の高い圧力検出精度を得るためには、ダイヤフ
ラムの厚さは数十−にしなければならない、圧力センサ
の最近の動向としては、ダイヤフラムを形成する半導体
基板に、主要素のゲージのほかに、増幅回路、補償回路
などをICプロセスにより集積した小形、高性能センサ
へと移りつつある。ICプロセスにおいては、膜形成。
In pressure sensors that utilize deformation of the diaphragm,
In order to obtain high pressure detection accuracy of several percent or less, the thickness of the diaphragm must be several tens of tens of cents. Recent trends in pressure sensors include the use of a semiconductor substrate that forms the diaphragm, in addition to the main element gauge. In recent years, there has been a shift toward compact, high-performance sensors that integrate amplifier circuits, compensation circuits, etc. using the IC process. In the IC process, film formation.

膜剥離、エツチングあるいはイオン注入等の工程で、高
熱あるいは機械的ひずみを多く受けるため、ダイヤフラ
ム形成のための凹加工は、それらの工程を終えたのち、
半導体基体の反対側から行うのが一般的である。
Because it is exposed to a lot of heat and mechanical strain during processes such as film peeling, etching, and ion implantation, the concave machining for forming the diaphragm is done after these processes are completed.
This is generally done from the opposite side of the semiconductor substrate.

第2図1m1〜+61は、従来の圧力センサ製造工程を
示し、−面側にドーパントの濃度、抵抗値の異なるエッ
チストップ層11を有するシリコン板lの上に埋込層2
を介してエピタキシ中ル層3を積層し、この層に異なる
導電形のゲージ抵抗4および増幅回路、補償回路素子5
1.52を集積し、表面を配線保護膜6で覆う (第2
図+al)、次いで、反対面に酸化膜、窒化膜、金、ピ
ッチあるいはレジスト等の単体あるいは複合層からなる
マスク71.ゲージ面側に同様の材料あるいはワックス
によりはりつけられたガラス等よりなるゲージ面保護用
のマスり72を形成する (第1図(bl)、そしてぶ
つ酸1硝酸または強アルカリ等を用いたウェットエツチ
ング法で層11までのストップエツチングを行い、凹部
8を形成する (第1図(C1)、このあと、マスク7
1.72を除去し、シリコン板lの面にAu、 Cr、
 TI等よりなるメタライズ層9を被着し (第1図(
d))、同様にメタライズ層9を被着した台座10の上
にはんだ12を用いて接合する (第1図1el)、凹
部8形成のためのストップエツチングには、シリコンを
陽極とし、ぶつ酸溶液を用いて陽極酸化により電解エツ
チングを行う方法もある0通常、このような凹部8は1
枚のSIウェハに複数形成し、分割して個々のセンサチ
ップを得る。
FIG. 2 1m1 to +61 shows a conventional pressure sensor manufacturing process, in which a buried layer 2 is placed on a silicon plate 1 having an etch stop layer 11 with different dopant concentrations and resistance values on the negative side.
A layer 3 of epitaxial medium is laminated through the layer 3, and a gauge resistor 4 of different conductivity type, an amplifier circuit, and a compensation circuit element 5 are formed on this layer.
1.52 is integrated and the surface is covered with a wiring protection film 6 (second
Then, on the opposite side, a mask 71 consisting of a single or composite layer of oxide film, nitride film, gold, pitch, resist, etc. A mask 72 for protecting the gauge surface is formed on the gauge surface side by using a similar material or glass glued with wax (Fig. 1 (bl)), and wet etching using butic acid, nitric acid, strong alkali, etc. Stop etching is performed up to the layer 11 by the method to form the recess 8 (FIG. 1 (C1), after this, the mask 7
1.72 was removed and Au, Cr,
A metallized layer 9 made of TI etc. is deposited (see Fig. 1).
d)) Similarly, the metallized layer 9 is bonded to the base 10 using the solder 12 (FIG. 1 1el). For the stop etching to form the recess 8, silicon is used as an anode and There is also a method of performing electrolytic etching by anodic oxidation using a solution.Normally, such a recess 8 is 1
A plurality of sensor chips are formed on a single SI wafer and divided to obtain individual sensor chips.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第2図に示したようにダイヤフラムを形成するための凹
部8を加工することは、通常のウェーハプロセスにおけ
るマスクバターニング等のエツチングと異なり、Slウ
ェーハ厚さに対し90%近い数百μの深いエツチングで
あるため、バターニングマスク71の材料の選定および
形成の方法が複雑であるばかりでなく、すでに形成され
たゲージ4の表面の保護にもそれ以上配慮しなければな
らない。
As shown in FIG. 2, processing the recess 8 for forming the diaphragm is different from etching such as mask buttering in a normal wafer process. Since etching is used, not only is the material selection and formation method for the patterning mask 71 complicated, but additional consideration must be given to protecting the surface of the gauge 4 that has already been formed.

そのほか、エツチング停止層11の形成も事前に必要で
あり、工程の管理が容5でない、ストップエツチングに
陽極酸化による電解エツチング法を適用する場合には、
より工程が複雑になる。
In addition, it is necessary to form the etching stop layer 11 in advance, and when applying electrolytic etching using anodic oxidation to stop etching, the process control is difficult.
The process becomes more complicated.

さらに、ウェットエツチング法、電解エツチング法の基
本的な問題として、形成する凹部が深くなるに従い、凹
部内の発生気体の影響を受けやすいことと、凹部不均一
という問題も発生するため、凹部開口寸法の限界値が大
きく、台座との接合面が小さくなるという問題もある。
Furthermore, a basic problem with wet etching and electrolytic etching is that as the recesses formed become deeper, they are more susceptible to the effects of gas generated within the recesses, and unevenness of the recesses also occurs. There is also the problem that the limit value of is large and the joint surface with the pedestal becomes small.

本発明の目的は、上述の問題を解決し、半導体基体の一
面から任意の開口寸法をもつ均一な深さの四部を確実に
形成してゲージ抵抗を備えた所期の厚さのダイヤフラム
部を残す圧力センサの製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and to reliably form four parts of uniform depth with arbitrary opening dimensions from one surface of a semiconductor substrate, thereby producing a diaphragm part of a desired thickness and having a gauge resistance. It is an object of the present invention to provide a method for manufacturing a pressure sensor that leaves no problems.

〔!!l!題を解決するための手段〕[! ! l! Means to solve the problem]

上述の目的を達成するために、本発明は、半導体基板の
一面から不純物を導入して、ゲージ抵抗および付属集積
回路を形成したのち、基板の他面側から研削および研摩
して所定の厚さにし、次いでその面からのプラズマエツ
チングにより凹加工をし、ゲージ抵抗を備えたダイヤフ
ラム部を形成するものとする。
To achieve the above object, the present invention introduces impurities from one side of a semiconductor substrate to form a gauge resistor and an attached integrated circuit, and then grinds and polishes the other side of the substrate to a predetermined thickness. Then, a recess is formed by plasma etching from that surface to form a diaphragm portion provided with a gauge resistance.

〔作用〕[Effect]

ゲージ抵抗、付属集積回路形成のためのウェーハプロセ
ス終了後半導体基体を研削して所定の厚さに薄くするこ
とにより、−船釣なプラズマエツチング装置を用いても
、圧力が数百m Torrのプラズマエッチモード下で
、高周波電力、ガス種、ガス混合比、圧力、温度、電極
間隔等のパラメータおよびマスク形状の最適化を行うこ
とにより、等方性エツチングで形状の均一かつ再現性よ
く凹部を精度よく形成することができる。また、IC作
成のウェーハプロセスでは、不純物ゲッタリングを目的
として基板裏面にダメージエツチングが行われているた
め、その面に欠陥、が多く、凹加工時に異常エツチング
の発生のおそれがあり、また面粗度が大きいため凹部底
面の荒れが発生する。しかし、基板を薄くするための研
削により欠陥層が除去され、それにつづく研摩により面
粗度が改善されるため、プラズマエツチングによる凹底
面内の均一性が良くなる1以上の作用により、従来適用
されなかったプラズマエツチングによって圧力センサの
ダイヤフラム形成のための凹加工が可能となり、開口寸
法を小さくできるため、台座との接合面積を大きくとる
ことができる。
After completing the wafer process for forming gauge resistors and attached integrated circuits, the semiconductor substrate is ground and thinned to a predetermined thickness. By optimizing parameters such as high-frequency power, gas type, gas mixture ratio, pressure, temperature, electrode spacing, and mask shape under etch mode, isotropic etching is performed to precisely form recesses with uniform shape and reproducibility. Can be formed well. In addition, in the wafer process for IC production, damage etching is performed on the back surface of the substrate for the purpose of gettering impurities, so there are many defects on that surface, and there is a risk of abnormal etching occurring during concave processing, and surface roughness. Due to the high degree of roughness, the bottom surface of the recess becomes rough. However, since the defect layer is removed by grinding to thin the substrate, and the surface roughness is improved by the subsequent polishing, plasma etching improves the uniformity within the concave bottom surface. Plasma etching, which was not previously used, makes it possible to form a recess for forming the diaphragm of the pressure sensor, and because the opening size can be made smaller, it is possible to increase the bonding area with the pedestal.

〔実施例〕〔Example〕

第1図(al〜+61は本発明の一実施例の製造工程を
示し、第2図と共通の部分には同一の符号が付されてい
る。先ず、均一な不純物濃度のシリコン板lの上に埋込
層2を介してエピタキシャル層3を積層し、この層に異
なる導電形のゲージ抵抗4および増幅回路、補償回路素
子51.52を集積し、表面を配線保護膜6で覆う (
第1図(al) 、 Si板1の裏面は不純物ゲッタリ
ングなどのために粗面工3が形成されている。このS1
1の裏面側の層14を平面研削などにより研削する (
第1図(bl)、研削後の厚さは、研削時の破損と後工
程の破損を防ぐために200μ以上にする。研削面15
は、研削により生ずる表面の歪層の除去と、台座との接
合とのため面粗度の確保と、プラズマエツチングによる
凹底面の均一性を得るため、5〜15.n程度の研摩に
より10n@rs+s以下の面粗度に仕上げる0次に、
M。
FIG. 1 (al~+61 shows the manufacturing process of an embodiment of the present invention, and the same parts as in FIG. 2 are given the same reference numerals. An epitaxial layer 3 is laminated on the substrate via a buried layer 2, a gauge resistor 4 of different conductivity type, an amplifier circuit, and a compensation circuit element 51, 52 are integrated in this layer, and the surface is covered with a wiring protective film 6 (
As shown in FIG. 1(al), a rough surface 3 is formed on the back surface of the Si plate 1 for impurity gettering and the like. This S1
Grind the layer 14 on the back side of 1 by surface grinding or the like (
In FIG. 1 (bl), the thickness after grinding is set to 200μ or more to prevent damage during grinding and damage in subsequent processes. Grinding surface 15
Steps 5 to 15 were performed to remove the strained layer on the surface caused by grinding, to ensure surface roughness for bonding to the pedestal, and to obtain uniformity of the concave bottom surface by plasma etching. Zero-order finishing to a surface roughness of 10n@rs+s or less by polishing about n,
M.

Cu、 Au等の金属あるいはStO,等を蒸着、スパ
ッタリング、CVD等により成膜し、フォトリソグラフ
ィ等により所望のパターンのプラズマエツチング用マス
ク7を形成する (第1図(C))。次いで、CF□S
P&、01等のガスを用い、高周波電力、圧力。
A film of metal such as Cu, Au, or StO is formed by vapor deposition, sputtering, CVD, etc., and a plasma etching mask 7 having a desired pattern is formed by photolithography or the like (FIG. 1(C)). Then, CF□S
Using gas such as P&, 01, high frequency power, pressure.

温度、電極間隔等のパラメータの最適条件下でプラズマ
エツチングを行い、凹部8を形成し、ダイヤフラムを所
望の厚さに仕上げる (第1図td))。
Plasma etching is performed under optimal parameters such as temperature and electrode spacing to form the recess 8 and finish the diaphragm to the desired thickness (FIG. 1 td)).

1枚の基板から複数のセンサチップを得るために設ける
複数の凹部8の均一性を良くするためには、凹開口寸法
とマスク開口寸法の差の半分を凹深さで割った値である
エツチングファクタが0.5以上の等方性エツチングが
有効である。第3図は厚さを変えたStウェーハの一面
からプラズマエツチングして50−の厚さのダイヤフラ
ム部を残す凹加工をした場合の凹加工時間および凹深さ
のばらつきを示す。ウェーハ厚さが厚くなり、加工深さ
bが深くなるに従い、凹加工時間aは非線形で増加し、
それにより凹深さのばらつきAは非線形で増加する。凹
加工精度、すなわちダイヤフラムのウェーハ面内厚さ精
度は、ある程度価々のセンサチップのゲージ出力の増幅
率等で補償可能であるが、高機能化センサの場合、小型
化を維持するためにはある値以下に抑えなければならぬ
、第3図から、50μのダイヤフラムをA5μ以下、す
なわち面内精度10%以下で形成するには、ウェーハ厚
さが350β麟以下であることが必要なことがわかる。
In order to improve the uniformity of the plurality of recesses 8 provided in order to obtain a plurality of sensor chips from one substrate, the etching value is calculated by dividing half of the difference between the recess opening dimension and the mask opening dimension by the recess depth. Isotropic etching with a factor of 0.5 or more is effective. FIG. 3 shows the variations in the recess processing time and recess depth when plasma etching was performed on one side of St wafers having different thicknesses to leave a diaphragm portion with a thickness of 50 mm. As the wafer thickness increases and the machining depth b increases, the concave machining time a increases nonlinearly,
As a result, the variation A in recess depth increases non-linearly. The concave processing accuracy, that is, the in-wafer thickness accuracy of the diaphragm, can be compensated to some extent by the amplification factor of the gauge output of the sensor chip, etc., but in the case of highly functional sensors, it is necessary to maintain miniaturization. Figure 3 shows that in order to form a 50μ diaphragm with an A5μ or less, that is, an in-plane accuracy of 10% or less, the wafer thickness must be 350β or less. Recognize.

凹加工後は、ゲージ面にレジスト等からなる保護膜61
を被着し、マスク7を除去したのち、Siと熱膨脹係数
の近いパイレックスガラス等からなる台座10と接合す
る (第1図(e))   この場合、Si板lの接合
面はlonsrms以下の面粗度となっているため、台
座10と静電接合等により直接接合することができ、メ
タライズ処理やはんだ使用の必要がない。
After the recess machining, a protective film 61 made of resist etc. is applied to the gauge surface.
After removing the mask 7, it is bonded to a pedestal 10 made of Pyrex glass, etc., which has a coefficient of thermal expansion similar to that of Si (Fig. 1(e)). Because of its roughness, it can be directly bonded to the pedestal 10 by electrostatic bonding or the like, and there is no need for metallization or soldering.

(発明の効果〕 本発明によれば、ゲージ抵抗形成および付属回路集積の
ためのウェーハプロセスは反りを防ぐため厚い状態で行
った半導体基体を、研削、研摩を行って薄くすることに
より、従来のウェット方式に比して非常に簡素なプラズ
マエツチングによる凹加工を適用することができ、工数
低減1歩留向上の効果が従来と同等の加工精度で得られ
た。また、開口寸法を小さくすることができることによ
るセンサチップの台座との接合面積の拡大により、より
一層の歩留まり向上と高信軒性化を図ることが可能にな
った。さらに、センサチップに台座と直接接合可能な接
合面が得られることにより、直接接合適用による信鯨性
の向上も工程の大きな増加なく期待できる。
(Effects of the Invention) According to the present invention, the wafer process for forming gauge resistors and integrating auxiliary circuits is performed by grinding and polishing the semiconductor substrate, which is made thick to prevent warping, to make it thinner. Concave machining using plasma etching, which is extremely simple compared to the wet method, can be applied, and the effect of reducing man-hours and improving yield can be achieved with the same machining accuracy as conventional methods.In addition, the opening size can be made smaller. By increasing the bonding area between the sensor chip and the pedestal, it has become possible to further improve yield and improve reliability.Furthermore, the sensor chip has a bonding surface that can be directly bonded to the pedestal. Therefore, it is possible to improve reliability through direct bonding without significantly increasing the number of processes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の圧力センサ製造工程を(8
)〜Telの順に示す断面図、第2図は従来の圧力セン
サ製造工程を(al〜talの順に示す断面図、第3図
は被加工シリコンウェーへの厚さとプラズマエツチング
時の凹加工時間および凹深さばらつきとの関係線図であ
る。 1:シリコン板、3:エピタキシャル層、4:ゲージ抵
抗、51.527集積回路素子、7:プラズマエツチン
グ用マスク、8:凹部、1o:台座。 \−′二二、〆 術1 図 属2閃
Figure 1 shows the manufacturing process of a pressure sensor according to an embodiment of the present invention (8
) to Tel, FIG. 2 is a cross-sectional view showing the conventional pressure sensor manufacturing process in the order of (al to tal), and FIG. 3 shows the thickness of the silicon wafer to be processed, the concave processing time during plasma etching, and It is a relationship diagram with the variation in the depth of the recess. 1: silicon plate, 3: epitaxial layer, 4: gauge resistor, 51.527 integrated circuit element, 7: mask for plasma etching, 8: recess, 1o: pedestal. -'22, 〆jutsu 1 illustration 2 flash

Claims (1)

【特許請求の範囲】[Claims] 1)半導体基板の一面から不純物を導入して、ゲージ抵
抗および付属集積回路を形成したのち、基板の他面側か
ら研削および研摩して所定の厚さにし、次いでその面か
らのプラズマエッチングにより凹加工をし、ゲージ抵抗
を備えたダイヤフラム部を形成することを特徴とする圧
力センサの製造方法。
1) After introducing impurities from one side of the semiconductor substrate to form a gauge resistor and an attached integrated circuit, the other side of the substrate is ground and polished to a predetermined thickness, and then a recess is formed by plasma etching from that side. A method for manufacturing a pressure sensor, comprising processing to form a diaphragm portion provided with a gauge resistance.
JP2043057A 1990-02-23 1990-02-23 Manufacturing method of pressure sensor Expired - Fee Related JP2676962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2043057A JP2676962B2 (en) 1990-02-23 1990-02-23 Manufacturing method of pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2043057A JP2676962B2 (en) 1990-02-23 1990-02-23 Manufacturing method of pressure sensor

Publications (2)

Publication Number Publication Date
JPH03245576A true JPH03245576A (en) 1991-11-01
JP2676962B2 JP2676962B2 (en) 1997-11-17

Family

ID=12653248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2043057A Expired - Fee Related JP2676962B2 (en) 1990-02-23 1990-02-23 Manufacturing method of pressure sensor

Country Status (1)

Country Link
JP (1) JP2676962B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140640A (en) * 1992-10-29 1994-05-20 Fujikura Ltd Manufacture of semiconductor pressure sensor
EP1167280A3 (en) * 2000-06-23 2002-03-27 Randox Laboratories Ltd. Production of diaphragms
JP2008051825A (en) * 2007-11-05 2008-03-06 Texas Instr Japan Ltd Pressure sensor
CN100456007C (en) * 2005-06-27 2009-01-28 株式会社电装 Pressure sensor
JP2015064293A (en) * 2013-09-25 2015-04-09 株式会社デンソー Pressure sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110589756B (en) * 2019-08-02 2020-11-10 南方科技大学 Preparation method of curved surface nano structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108526A (en) * 1985-11-06 1987-05-19 Fuji Electric Co Ltd Working method for semiconductor plate
JPS63122278A (en) * 1986-11-12 1988-05-26 Fuji Electric Co Ltd Manufacture of semiconductor pressure sensor
JPS63271976A (en) * 1987-04-28 1988-11-09 Sony Corp Manufacture of pressure sensor
JPH01125872A (en) * 1988-06-15 1989-05-18 Hitachi Ltd Manufacture of semiconductor device equipped with pressure sensing element
JPH01150832A (en) * 1987-12-08 1989-06-13 Fuji Electric Co Ltd Semiconductor pressure sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108526A (en) * 1985-11-06 1987-05-19 Fuji Electric Co Ltd Working method for semiconductor plate
JPS63122278A (en) * 1986-11-12 1988-05-26 Fuji Electric Co Ltd Manufacture of semiconductor pressure sensor
JPS63271976A (en) * 1987-04-28 1988-11-09 Sony Corp Manufacture of pressure sensor
JPH01150832A (en) * 1987-12-08 1989-06-13 Fuji Electric Co Ltd Semiconductor pressure sensor
JPH01125872A (en) * 1988-06-15 1989-05-18 Hitachi Ltd Manufacture of semiconductor device equipped with pressure sensing element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140640A (en) * 1992-10-29 1994-05-20 Fujikura Ltd Manufacture of semiconductor pressure sensor
EP1167280A3 (en) * 2000-06-23 2002-03-27 Randox Laboratories Ltd. Production of diaphragms
US6551851B2 (en) 2000-06-23 2003-04-22 Randox Laboratories Limited Production of diaphragms over a cavity by grinding to reduce wafer thickness
CN100456007C (en) * 2005-06-27 2009-01-28 株式会社电装 Pressure sensor
JP2008051825A (en) * 2007-11-05 2008-03-06 Texas Instr Japan Ltd Pressure sensor
JP2015064293A (en) * 2013-09-25 2015-04-09 株式会社デンソー Pressure sensor

Also Published As

Publication number Publication date
JP2676962B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
JP2729005B2 (en) Semiconductor pressure sensor and method of manufacturing the same
WO2001088970A1 (en) Semiconductor wafer thinning method, and thin semiconductor wafer
JPH0355822A (en) Manufacture of substrate for forming semiconductor element
JPH03245576A (en) Manufacture of pressure sensor
JP4147187B2 (en) Manufacturing method of color image sensor on transparent substrate
US20170164128A1 (en) Method for manufacturing microphone chip
JP2000040677A (en) Manufacture of semiconductor element
JP4733347B2 (en) Method of manufacturing color image sensor having pad and support substrate to which pad is soldered
JPH0685287A (en) Semiconductor pressure sensor and its manufacture
JP4532787B2 (en) Condenser microphone and pressure sensor
JPH0945882A (en) Semiconductor substrate and manufacture thereof
JPH02298077A (en) Manufacture of semiconductor pressure sensor
US7563724B2 (en) Method of producing semiconductor pressure sensor
JPH0563211A (en) Manufacture of semiconductor device
JPH03224249A (en) Manufacture of junction wafer
JPH0521597A (en) Manufacture of semiconductor element
JPH06221945A (en) Semiconductor pressure sensor and manufacture thereof
JPH0476959A (en) Manufacture of semiconductor pressure sensor
JP2576245B2 (en) Manufacturing method of semiconductor pressure sensor
KR100327326B1 (en) Method for fabricating silicon-on-insulator wafer
JP3173905B2 (en) Semiconductor pressure sensor
JPS5522838A (en) Manufacturing method of semiconductor strain gauge type pressure senser chip
JPH08111409A (en) Manufacturing for semiconductor device
JPH0442972A (en) Treatment of rear of semiconductor pressure sensor wafer
JPH0496280A (en) Manufacture of semiconductor acceleration sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees