JPS62108526A - Working method for semiconductor plate - Google Patents

Working method for semiconductor plate

Info

Publication number
JPS62108526A
JPS62108526A JP24820085A JP24820085A JPS62108526A JP S62108526 A JPS62108526 A JP S62108526A JP 24820085 A JP24820085 A JP 24820085A JP 24820085 A JP24820085 A JP 24820085A JP S62108526 A JPS62108526 A JP S62108526A
Authority
JP
Japan
Prior art keywords
type layer
layer
thickness
junction
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24820085A
Other languages
Japanese (ja)
Inventor
Shunji Miura
俊二 三浦
Shigemi Nohara
野原 繁美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24820085A priority Critical patent/JPS62108526A/en
Publication of JPS62108526A publication Critical patent/JPS62108526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To readily obtain constant and uniform thickness by connecting one conductivity type layer with one electrode, and applying a voltage positively biasing the other conductivity type layer to the layer. CONSTITUTION:Since an N-type layer is positive to a P-type layer when a voltage is applied in a range that a P-N junction does not break down between the N-type layer and the P-type layer of a silicon plate 3, accelerated ions flow from the N-type layer side to the P-type layer side, ion impact increases at the P-type layer side as compared with the N-type Layer side, and the etching velocity at the N-type layer becomes extremely small. Accordingly, if the thickness of the N-type layer is set to the thickness of a thin portion 23, a recess 24 which allows the thickness of the N-type layer to remain is formed. The impurity density, thickness of the P-type layer and the N-type layer are considered to form a P-N junction of the plate 3 so as not break down to a bias voltage necessary for the P-N junction. If a thin layer is necessary to be of P-type, a bias is forwardly applied to the P-N junction. Thus, a constant and uniform thin layer can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、例えば半導体圧力センサ用のダイヤフラムの
ように半導体板の所定の領域に設けられる一導電形の層
からなる薄肉部をドライエツチング法により形成する半
導体板の加工方法に関する。
The present invention relates to a method for processing a semiconductor board, in which a thin part made of a layer of one conductivity type is formed in a predetermined region of a semiconductor board, such as a diaphragm for a semiconductor pressure sensor, by dry etching.

【従来技術とその問題点】[Prior art and its problems]

現在のドライエツチング法の主流は反応性イオンエツチ
ング(RIE)法であり、平行平板形プラズマ装置によ
り101〜10−’ Torr程度のガス圧において発
生させたプラズマ中でのイオンの試料表面への衝撃によ
り反応を促進してエツチングを行うものである。この際
、ウェハ表面に吸着した活性種や基板を励起してエツチ
ング反応を促進したり、イオン衝撃を受けさせてシリコ
ン等の表面に損傷層を生じさせ、切断されたシリコンと
活性種との反応を促進するような種々の反応促進モデル
が考えられている。 第2図は代表的なRTEW置を示したものであり、高周
波電力は、接地された陽極部1と試料3を支持する陰極
部2の間に高周波電源5によって印加される。陽極部1
と陰極部2とは絶縁体4によって絶縁され、高周波Wa
Sには直流電流が流れないようにするためのプロフキン
グ容量6が直列に接続されている。反応槽を兼ねる陽極
部1には、反応ガスとしてのハロゲン化物ガスの導入口
7および排出口8が、陰極部2には試料3を冷却するた
めの冷却水出入口9が、設けられている。 このような装置において、高周波電力印加により両電極
1.2間にプラズマl(l住するが、その際の両電極間
の電位分布を第3図に示す、陰極部2の方がプラズマに
接する面積が接地電極である陰極部1に較べて小さくし
であるため、陰極に負の直流電圧VdCが発生する。こ
のvdcが反応性イオンが加速され、エツチング反応が
促進される。 一般にプラズマエツチングの反応過程が複雑であるが、
シリコンなどの表面にはふっ素原子や塩素原子の化学吸
着によってハロゲン化物が形成される0例えばF原子と
シリコンとの間に自然に反応が起こり、最終的にはSi
F*となって表面から除去される。これにイオン衝撃が
加わると衝撃面での反応が促進される。しかし、第4図
に示すようにシリコン板21の表面にアルミニウムによ
りマスク22を被着し、斜線を引いて示したように薄肉
部23が残るような凹部24をプラズマエツチングで形
成する場合には深いエツチングが必要であり、エッチ量
が多いほど一定の厚さの均一な薄い層23を得ることが
非常に困難である。第2図に示したR[E装置を用い、
SF4やNPz等のガスを使用してエツチングを行った
場合、第4図に点線25で示すように、凹部24の中心
部23に対して周辺部の方が層25の厚さが厚くなる傾
向にある。また、一つのシリコン基板に多数の凹部を形
成する場合には、基板全面での各凹部の厚さが大きくば
らつき、例えば厚さ400μのシリコン板から30−の
厚さの層を残す場合、エツチング後の厚さは30±10
nAとなって、歩留りの低下を起こして大きな問題とな
っている。
The current mainstream dry etching method is the reactive ion etching (RIE) method, in which ions bombard the sample surface in plasma generated at a gas pressure of about 101 to 10-' Torr using a parallel plate plasma device. Etching is performed by accelerating the reaction. At this time, the active species adsorbed on the wafer surface and the substrate are excited to promote the etching reaction, or the wafer is bombarded with ions to create a damaged layer on the surface of the silicon, etc., and the cut silicon reacts with the active species. Various reaction promotion models have been considered to promote the reaction. FIG. 2 shows a typical RTEW arrangement, in which high frequency power is applied by a high frequency power source 5 between a grounded anode section 1 and a cathode section 2 supporting a sample 3. Anode part 1
and the cathode part 2 are insulated by an insulator 4, and the high frequency Wa
A profking capacitor 6 is connected in series to S to prevent direct current from flowing. The anode section 1, which also serves as a reaction tank, is provided with an inlet 7 and an outlet 8 for a halide gas as a reaction gas, and the cathode section 2 is provided with a cooling water inlet/outlet 9 for cooling the sample 3. In such a device, when high-frequency power is applied, a plasma 1 (l) is generated between the two electrodes 1 and 2, but the potential distribution between the two electrodes at that time is shown in Fig. 3. Since the area is smaller than that of the cathode section 1, which is the ground electrode, a negative DC voltage VdC is generated at the cathode.This VDC accelerates reactive ions and promotes the etching reaction. Although the reaction process is complicated,
Halides are formed on the surface of silicon etc. by chemical adsorption of fluorine and chlorine atoms. For example, a reaction occurs naturally between F atoms and silicon, and eventually Si
It becomes F* and is removed from the surface. When ion bombardment is added to this, the reaction at the bombardment surface is promoted. However, as shown in FIG. 4, when a mask 22 is covered with aluminum on the surface of a silicon plate 21 and a recess 24 is formed by plasma etching in which a thin portion 23 remains as shown by diagonal lines, Deep etching is required, and the greater the amount of etching, the more difficult it is to obtain a uniform thin layer 23 of constant thickness. Using the R[E device shown in Figure 2,
When etching is performed using a gas such as SF4 or NPz, the thickness of the layer 25 tends to be thicker at the periphery than at the center 23 of the recess 24, as shown by the dotted line 25 in FIG. It is in. Furthermore, when forming a large number of recesses on one silicon substrate, the thickness of each recess varies greatly over the entire surface of the substrate. The thickness after is 30±10
nA, which causes a decrease in yield and becomes a big problem.

【発明の目的] 本発明は、上述の問題を解決し、半導体板の所定の領域を表面からドライエツチングして一定の厚さの薄肉部を形成する際に、一定で均一な厚さの層が容易に得られるような半導体板の加工方法を提供することを目的とする。 【発明の要点】[Purpose of the invention] The present invention solves the above-mentioned problems and makes it possible to easily obtain a layer with a constant and uniform thickness when dry etching a predetermined area of a semiconductor board from the surface to form a thin part with a constant thickness. An object of the present invention is to provide a method for processing a semiconductor board. [Key points of the invention]

本発明は、対向する面積の異なる電極の間に高周波電力
を印加し、反応ガス中にプラズマを発生させて小さい面
積の一方の電極の近くに配置した半導体板の一面の所定
の領域から所定の深さまでドライエツチングする際に、
半導体板にあらかじめ前記一面側のエツチングすべき深
さの一導電形の層と他面側の他4を形の層からなる板面
に平行なPN接合を形成し、その一導電形の層を前記一
方の電極に接続すると共に、他導電形の層をその層に対
して正にバイアスする電圧を印加することにより、エツ
チングされない半導体板部分へのイオン衝撃を弱め、エ
ツチングしたい部分に多くのイオン衝撃が加わるように
して一導電形の層を残留させ、均一な厚さの層を得るよ
うにして上述の目的を達成する。
The present invention applies high-frequency power between opposing electrodes with different areas, generates plasma in a reaction gas, and generates plasma from a predetermined area on one side of a semiconductor board disposed near one electrode with a small area. When dry etching to depth,
A PN junction parallel to the board surface is formed in advance on the semiconductor board, consisting of a layer of one conductivity type at the depth to be etched on one side and a layer of the other four shapes on the other side, and the layer of one conductivity type is By connecting to one of the electrodes and applying a voltage that positively biases the layer of the other conductivity type with respect to that layer, the ion bombardment on the part of the semiconductor plate that is not to be etched is weakened, and many ions are transferred to the part to be etched. The above object is achieved by applying an impact so that a layer of one conductivity type remains and a layer of uniform thickness is obtained.

【発明の実施例】[Embodiments of the invention]

第1図は本発明の一実施例を示し、第2図と共通の部分
には同一の符号が付されている。接地された陽極部1と
の間に高周波電源5により高周波電力が印加される陰極
部2に支持されるシリコン板3は、絶縁体11によって
絶縁されている。シリコン板3にはPN接合が形成され
、エツチングすべき深さと等しい厚さを有するP層を上
にして絶縁体11に載置されている。シリコン板3の2
M側は表面に被着する金属層22.導線13を介して陰
極2に接続されており、N層側12はこの陰極に対して
正になるような直流電圧を印加するために絶縁体11.
12を通る導線14によって直流電源15に接続されて
いる。高周波電源回路には容量6のほかに図示しないが
当然インピーダンスを整合する回路が挿入されている。 金属層22はエツチングに対する保護マスクで、反応ガ
スがSF4.NF3等の場合はり、またはAu等からな
るものが使用可能である。 このような装置を用いて、導入ロアから反応ガスを導入
し、0.5 Torr程度にして電源5により 100
〜200Wの高周波電力を陽極1.陰極2間に印加した
場合、プラズマ10が生じ数87分の速さでエッチされ
る。この場合、本発明によりシリコン板3のN層とP層
の間に電源15によりPN接合がブレークダウンしない
範囲で電圧を印加することにより、N層がP層に対して
正の電位になっているため、加速されたイオンがNW4
面側からpH面側に流れるようになり、N層よりPRの
側でイオン衝撃が多くなり、N1Nでのエツチング速度
は掻端に小さくなる。従って、あらかじめN層の厚さを
第4図に示した形成すべき薄肉部23の厚さにしておけ
ば、N層の厚さを残した凹部24が形成される。 シリコン板3のPN接合の形成は、PN接合が必要なバ
イアス電圧に対してブレークダウンしないようにP石、
N層の不純物濃度、厚さ等を考慮して行うことが重要で
ある。またPN接合バイアス時に漏れ電流が大きくなら
ないようにPN接合面の清浄度には注意をはらうことも
重要である。 本発明は陰極部が接地の場合も同様にできる。 また形成したい薄層がP形であることが必要な場合には
、pHがN層に対して正になるような電圧を印加するこ
と、すなわちPN接合に対して順方向にバイアスするこ
とになるため、バイアスが低い電圧に制限されるが、電
子サイクbトロン共鳴プラズマ等を利用した反応性イオ
ンビーム等の装置では低いバイアス電圧で効果的であっ
た。
FIG. 1 shows an embodiment of the present invention, and parts common to those in FIG. 2 are given the same reference numerals. A silicon plate 3 supported by a cathode part 2 and to which high-frequency power is applied by a high-frequency power supply 5 between the anode part 1 and the grounded anode part 1 is insulated by an insulator 11 . A PN junction is formed in the silicon plate 3, which is placed on the insulator 11 with the P layer on top having a thickness equal to the depth to be etched. Silicon plate 3-2
The M side has a metal layer 22 attached to the surface. It is connected to the cathode 2 via a conducting wire 13, and the N-layer side 12 is connected to an insulator 11. to apply a positive DC voltage to this cathode.
It is connected to a DC power source 15 by a conductor 14 passing through 12. In addition to the capacitor 6, the high frequency power supply circuit naturally includes an impedance matching circuit (not shown). The metal layer 22 is a protective mask against etching and the reactive gas is SF4. In the case of NF3 or the like, it is possible to use a material made of NF3 or the like, or one made of Au or the like. Using such a device, a reaction gas is introduced from the introduction lower, and the temperature is adjusted to about 0.5 Torr and the power source 5 is used to control the reaction gas to 100
~200W of high frequency power is applied to the anode 1. When applied between the cathodes 2, plasma 10 is generated and etched at a speed of several 87 minutes. In this case, according to the present invention, by applying a voltage between the N layer and the P layer of the silicon plate 3 using the power supply 15 within a range that does not cause breakdown of the PN junction, the N layer becomes a positive potential with respect to the P layer. Therefore, the accelerated ions become NW4
The etching starts to flow from the surface side to the pH side, and the ion bombardment is greater on the PR side than on the N layer, and the etching rate in N1N becomes extremely low. Therefore, if the thickness of the N layer is set in advance to the thickness of the thin portion 23 to be formed as shown in FIG. 4, the recess 24 with the thickness of the N layer remaining will be formed. The formation of the PN junction on the silicon plate 3 involves the use of P stones,
It is important to consider the impurity concentration, thickness, etc. of the N layer. It is also important to pay attention to the cleanliness of the PN junction surface so that leakage current does not increase during PN junction biasing. The present invention can be applied similarly even when the cathode portion is grounded. Also, if the thin layer you want to form needs to be P-type, apply a voltage that makes the pH positive with respect to the N layer, that is, forward bias the PN junction. Therefore, the bias is limited to a low voltage, but devices such as reactive ion beams using electron cyclotron resonance plasma etc. have been effective with low bias voltages.

【発明の効果】【Effect of the invention】

本発明によれば、ドライエツチング法にして半導体板の
所定の領域を凹形にエツチングする場合に、目標とする
凹部の残留厚さをあらかじめ異なる導電形の層として形
成して、このPN接合にその層を正とした電圧を印加す
ることにより、その層まで達するようにエツチング深さ
を自動的に精密に制御することができ、一定で均一な薄
い層を得ることが可能となる。従って、特に一つの半導
体基板から多数の半導体圧力センサ用チップを得るため
に所定の厚さのダイヤフラム部を多数形成する場合に非
常に有効に適用できる。
According to the present invention, when a predetermined region of a semiconductor board is etched into a concave shape using a dry etching method, a target residual thickness of the concave portion is formed in advance as a layer of a different conductivity type, and this PN junction is By applying a positive voltage to that layer, the etching depth can be automatically and precisely controlled to reach that layer, making it possible to obtain a constant and uniform thin layer. Therefore, it can be applied very effectively especially when forming a large number of diaphragm parts of a predetermined thickness in order to obtain a large number of semiconductor pressure sensor chips from one semiconductor substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の反応性イオンエツチング装
置を示す断面図、第2図は従来の反応性イオ゛ンエッチ
ング装置の断面図、第3図は第2図の装置における陽極
、陰極部間の電位分布線図、第4図はシリコン板をエツ
チングした状態を示す断面図である。 l:陽極、2:陰極、3:シリコン板、5:高周波電源
、7:ガス導入口、8:ガス排出口、10:プラズマ、
ICl3:絶縁体、24:凹部。 第1図
FIG. 1 is a sectional view showing a reactive ion etching apparatus according to an embodiment of the present invention, FIG. 2 is a sectional view of a conventional reactive ion etching apparatus, and FIG. 3 is an anode in the apparatus of FIG. The potential distribution diagram between the cathode parts, and FIG. 4 is a cross-sectional view showing a silicon plate in an etched state. l: anode, 2: cathode, 3: silicon plate, 5: high frequency power supply, 7: gas inlet, 8: gas outlet, 10: plasma,
ICl3: insulator, 24: recess. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1)対向する面積の異なる電極間に高周波電力を印加し
、反応ガス中にプラズマを発生させて小さい面積の一方
の電極の近くに配置した半導体板の一面の所定の領域か
ら所定の深さまでドライエッチングする際に、半導体板
にあらかじめ前記一面側のエッチングすべき深さの一導
電形の層と他面側の他導電形の層からなる板面に平行な
PN接合を形成し、該一導電形の層を前記一方の電極に
接続すると共に他導電形の層を該層に対して正にバイア
スする電圧を印加することを特徴とする半導体板の加工
方法。
1) High-frequency power is applied between opposing electrodes with different areas to generate plasma in the reaction gas and dry it to a predetermined depth from a predetermined area on one surface of a semiconductor board placed near one electrode with a small area. When etching, a PN junction parallel to the board surface is formed in advance on the semiconductor board, consisting of a layer of one conductivity type at the depth to be etched on one side and a layer of the other conductivity type on the other side, and A method for processing a semiconductor board, comprising: connecting a layer of one conductivity type to the one electrode, and applying a voltage that positively biases a layer of another conductivity type with respect to the layer.
JP24820085A 1985-11-06 1985-11-06 Working method for semiconductor plate Pending JPS62108526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24820085A JPS62108526A (en) 1985-11-06 1985-11-06 Working method for semiconductor plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24820085A JPS62108526A (en) 1985-11-06 1985-11-06 Working method for semiconductor plate

Publications (1)

Publication Number Publication Date
JPS62108526A true JPS62108526A (en) 1987-05-19

Family

ID=17174682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24820085A Pending JPS62108526A (en) 1985-11-06 1985-11-06 Working method for semiconductor plate

Country Status (1)

Country Link
JP (1) JPS62108526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245576A (en) * 1990-02-23 1991-11-01 Fuji Electric Co Ltd Manufacture of pressure sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245576A (en) * 1990-02-23 1991-11-01 Fuji Electric Co Ltd Manufacture of pressure sensor

Similar Documents

Publication Publication Date Title
US4624767A (en) Sputter etching apparatus having a second electrically floating electrode and magnet means
JP2748886B2 (en) Plasma processing equipment
US4380488A (en) Process and gas mixture for etching aluminum
JPH0752730B2 (en) Electrode assembly and plasma device
US4340461A (en) Modified RIE chamber for uniform silicon etching
JPS6136589B2 (en)
US4810322A (en) Anode plate for a parallel-plate reactive ion etching reactor
JP3350973B2 (en) Plasma processing method and plasma processing apparatus
GB2087315A (en) Plasma etching of aluminium
JPS62108526A (en) Working method for semiconductor plate
JP3362093B2 (en) How to remove etching damage
JPH1167725A (en) Plasma etching device
JPH0624186B2 (en) Dry etching equipment
JPH01194325A (en) Dry-etching
JPH0476495B2 (en)
JP2574838B2 (en) Al sputter etching equipment
JPS59208727A (en) Plasma etching apparatus
JPH0336908B2 (en)
JP2550368B2 (en) Magnetic field plasma etching system
JPS60195939A (en) Plasma treating device
JPS6077427A (en) Dry etching device
JPH10335098A (en) Plasma processing device
JPH1022262A (en) Dry etching method
JPH11185993A (en) Plasma processing method and device
JPH05234951A (en) Plasma etching system