JPH0324432B2 - - Google Patents
Info
- Publication number
- JPH0324432B2 JPH0324432B2 JP13061583A JP13061583A JPH0324432B2 JP H0324432 B2 JPH0324432 B2 JP H0324432B2 JP 13061583 A JP13061583 A JP 13061583A JP 13061583 A JP13061583 A JP 13061583A JP H0324432 B2 JPH0324432 B2 JP H0324432B2
- Authority
- JP
- Japan
- Prior art keywords
- ceramics
- pipe
- alumina
- joint
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000919 ceramic Substances 0.000 claims description 27
- 238000003466 welding Methods 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 2
- 239000000463 material Substances 0.000 description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 13
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 230000008646 thermal stress Effects 0.000 description 4
- 238000005336 cracking Methods 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 238000004021 metal welding Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Ceramic Products (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、材料の片方もしくは両方がセラミツ
クスである場合の摩擦圧接方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a friction welding method when one or both of the materials are ceramics.
近年、セラミツクスは、耐熱性、耐食性、及び
耐摩耗性に優れた材料として注目されているが、
複雑形状及び大型部品の成形が難しく、それらの
解決策として接合技術の確立が待たれている。
In recent years, ceramics have attracted attention as materials with excellent heat resistance, corrosion resistance, and wear resistance.
Molding complex shapes and large parts is difficult, and the establishment of bonding technology is awaited as a solution to these problems.
従来、金属材料の摩擦圧接については、多くの
研究報告及び実用例があるが、脆性材料であるセ
ラミツクスには、チヤツキング時に割れ易い、熱
応力によつて割れ易い等の問題があるために、実
用化されていない。 Conventionally, there have been many research reports and practical examples regarding friction welding of metal materials, but ceramics, which are brittle materials, have problems such as being easily cracked during chucking and being easily cracked by thermal stress, so it has not been put to practical use. has not been standardized.
本発明は、継手強度、作業能率、及びエネルギ
ー効率の高い摩擦圧接を、セラミツクス材料の接
合に適用可能とすることを目的とする。
An object of the present invention is to make friction welding, which has high joint strength, work efficiency, and energy efficiency, applicable to joining ceramic materials.
上記目的を達成するため、本発明は、前工程と
して、セラミツクスの円筒外周面に、延性金属の
パイプをかしめ止めすることを特徴としている。
In order to achieve the above object, the present invention is characterized in that, as a pre-process, a ductile metal pipe is caulked to the outer peripheral surface of a ceramic cylinder.
本発明を図面に基づいて詳細に説明すると、接
合したいセラミツクス1の円筒外周面に、延性金
属材料のパイプ2をかしめ止めにより取付ける。
この場合、摩擦圧接では、素材は丸棒・パイプな
どの円形断面のものでなければならないので、セ
ラミツクス1は丸棒もしくはパイプであり、上記
パイプ2は、例えば、アルミニウム、銅、ニツケ
ル等の薄肉管である。 To explain the present invention in detail based on the drawings, a pipe 2 made of a ductile metal material is attached to the cylindrical outer peripheral surface of the ceramics 1 to be joined by caulking.
In this case, in friction welding, the material must have a circular cross section such as a round bar or pipe, so the ceramic 1 is a round bar or pipe, and the pipe 2 is made of thin walled material such as aluminum, copper, or nickel. It's a tube.
セラミツクス1をチヤツクで直接つかむと応力
集中によつて割れてしまうことが多く、割れない
ようにつかみ力を小さくすると圧接時のトルクに
耐えることができず、空転してしまう。 If the ceramic 1 is directly gripped with a chuck, it often breaks due to stress concentration, and if the gripping force is reduced to prevent it from cracking, it will not be able to withstand the torque during pressure welding and will spin idly.
本発明は、延性金属材料のパイプ2をセラミツ
クス1にかしめ止めにより取付けるので、チヤツ
キング時の応力集中がパイプ2によつて緩和さ
れ、セラミツクス1を破壊させることなく充分に
つかむことが可能となる。また、金属は一般にセ
ラミツクスに比較して熱伝導が良いので、パイプ
2はセラミツクス1の軸方向の熱伝導を助け、セ
ラミツクス1の熱応力による破壊を防ぐ役目を果
す。 In the present invention, the pipe 2 made of a ductile metal material is attached to the ceramic 1 by caulking, so that the stress concentration during chuck is alleviated by the pipe 2, and the ceramic 1 can be gripped sufficiently without being destroyed. Further, since metals generally have better thermal conductivity than ceramics, the pipe 2 assists in heat conduction in the axial direction of the ceramics 1 and serves to prevent the ceramics 1 from breaking due to thermal stress.
また、第4図に示すように、パイプ2を取付け
たセラミツクス1と金属丸棒4とを、摩擦圧接す
ることもできる。 Further, as shown in FIG. 4, the ceramic 1 to which the pipe 2 is attached and the metal round bar 4 can be friction-welded.
なお、セラミツクスとセラミツクスまたは金属
の接合面に延性金属材料のインサート3を固着す
ると、該インサート3の延性によつてセラミツク
ス1の割れを防ぐとともに、接合面の熱応力を緩
和して接合強度を大きくすることができる(第1
図参照)。 Note that when an insert 3 made of a ductile metal material is fixed to the joint surface between ceramics and ceramics or metal, the ductility of the insert 3 prevents cracking of the ceramic 1, and also relieves thermal stress on the joint surface and increases the joint strength. can be done (first
(see figure).
接合後、パイプ2は切削加工等によつて取り除
くことも可能であるが、残しておいて外部応力に
耐する緩衝材として有効に利用することもでき
る。 After joining, the pipe 2 can be removed by cutting or the like, but it can also be left in place and used effectively as a buffer material that can withstand external stress.
被圧接材に外径φ16.3×50mmの95%アルミナ質
セラミツクス(以下「アルミナ」という。)の丸
棒及び外径φ16.3×内径φ5×長さ50mmのパイプ材
を用い、延性金属のインサート3として、丸棒材
の圧接の場合は外径φ16.4×2mm、パイプ材の場
合は、外径φ16.4×内径φ7×厚さ2mmの純アルミ
ニウム(JIS−A−1050)の薄板を両接合端面に
はめ込んで圧接を行なつた。なお、試料の外周を
直接油圧チヤツク等で強く締め付けると脆性材料
であるアルミナは、締め付け力、回転力、加圧力
などで衝撃割れと接合部近傍の急激な温度勾配に
よつてアルミナが破壊することが十分に考えられ
るため、第1図に示すように、試料の外周を、例
えばアルミニウム、銅、ニツケル等の薄肉管を用
い、アルミナの試料を薄肉管に挿入し、遊星ボー
ルダイス法によりアルミナの外周を軽く縮管する
ことにより、回転力、加圧力に対して空転しない
ように注意して試料を作成して圧接を行つた。
A round bar of 95% alumina ceramics (hereinafter referred to as ``alumina'') with an outer diameter of φ16.3 x 50 mm and a pipe material with an outer diameter of φ16.3 x inner diameter of φ5 x length of 50 mm were used as the material to be welded. Insert 3 is a thin plate of pure aluminum (JIS-A-1050) with an outer diameter of φ16.4 x 2 mm for pressure welding of round bar materials, and an outer diameter of φ16.4 x inner diameter of 7 x 2 mm for pipe materials. was inserted into both joint end faces and pressure welding was performed. Note that alumina, which is a brittle material, can be damaged by impact cracking due to the clamping force, rotational force, pressurizing force, etc. and a sudden temperature gradient near the joint if the outer circumference of the sample is strongly tightened directly with a hydraulic chuck. As shown in Figure 1, the outer periphery of the sample is covered with a thin-walled tube made of aluminum, copper, nickel, etc., the alumina sample is inserted into the thin-walled tube, and the alumina is measured using the planetary ball die method. By slightly contracting the outer periphery, a sample was prepared and pressure welded, taking care not to idle against rotational force and pressurizing force.
第5図は、アルミナの丸棒材同士を、インサー
トとしてアルミニウム(外径φ16.4×厚さ2mm)
を両接合端面にはめ込んで、回転数4000rpm、、
摩擦圧力P12Kgf/mm2、アプセツト圧力P23Kgf/mm2、
圧接時間t120秒で接合した継手のアルミニウム片
の厚さの変化を示した一例である。第5図に見ら
れるようにアルミニウム片の形状は、摩擦熱と加
圧力によりアルミナの外周に押し出され中心部で
はそのアルミニウム片の厚さが薄くなつているこ
とが見られる。 Figure 5 shows aluminum inserts made of alumina round bars (outer diameter φ16.4 x thickness 2 mm).
into both joint end faces, and the rotation speed is 4000 rpm.
Friction pressure P 1 2Kgf/mm 2 , upset pressure P 2 3Kgf/mm 2 ,
This is an example showing the change in the thickness of the aluminum pieces of the joint joined at a pressure welding time t 1 of 20 seconds. As seen in FIG. 5, the shape of the aluminum piece is extruded to the outer periphery of the alumina by frictional heat and pressure, and the thickness of the aluminum piece becomes thinner in the center.
従つて、摩擦時間を増加すればその厚さは徐々
に薄くなり接合完了時にはアルミナの丸棒同士の
接合ができる。また、アルミナのパイプ材同士の
接合実験では、第1図に記載しているように接合
部近傍にはアルミニウム片がなくなり、アルミナ
のパイプ材同士の接合が得られている。なお、ア
ルミナの丸棒同士の継手の引張試験の結果を述べ
ると、回転数4000rpm、摩擦圧力P12Kgf/mm2、ア
プセツト圧力P23Kgf/mm2、圧接時間t115〜20秒の
圧接条件で接合した継手は、引張強さσ〓:8Kgf/
mm2以上でアルミナの丸棒の母材部分で破断し、接
合部は強固であることが分かつた。 Therefore, if the friction time is increased, the thickness will gradually become thinner, and when the welding is completed, the alumina round bars can be welded together. In addition, in an experiment of joining alumina pipe materials, as shown in FIG. 1, there was no aluminum piece near the joint, and the alumina pipe materials were joined together. In addition, to describe the results of a tensile test of a joint between alumina round bars, the rotation speed was 4000 rpm, the friction pressure P 1 2 Kgf/mm 2 , the upset pressure P 2 3 Kgf/mm 2 , and the welding time t 1 15 to 20 seconds. The joint welded under the following conditions has a tensile strength σ〓: 8Kgf/
mm 2 or more, the fracture occurred at the base material of the alumina round bar, indicating that the joint was strong.
本発明は、セラミツクスの外周面にかしめ止め
した延性金属のパイプによつて、チヤツキング時
の応力集中が緩和されるとともに、軸方向の熱伝
導が良好になつて熱応力による破損を防止できる
ので、脆性材料であるセラミツクスの摩擦圧接を
行うことができる。
The present invention uses a ductile metal pipe caulked to the outer circumferential surface of ceramics to alleviate stress concentration during chucking, and improves axial heat conduction to prevent damage due to thermal stress. Friction welding of ceramics, which are brittle materials, can be performed.
第1図は試料構成の断面図、第2図はセラミツ
クス同士を接合した場合の断面図、第3図はセラ
ミツクス同士の接合部及びその周辺のセラミツク
ス組織を示す電子顕微鏡写真、第4図は金属とセ
ラミツクスを接合した場合の断面図、第5図はア
ルミナ同士の摩擦圧接時における継手の厚さの変
化を示す図である。
1…セラミツクス丸棒、2…金属パイプ、4…
金属丸棒。
Figure 1 is a cross-sectional view of the sample structure, Figure 2 is a cross-sectional view of ceramics joined together, Figure 3 is an electron micrograph showing the joint between ceramics and the ceramic structure around it, and Figure 4 is a metal FIG. 5 is a cross-sectional view of a case where alumina and ceramics are joined together, and a diagram showing changes in the thickness of the joint during friction welding of alumina to each other. 1...Ceramics round bar, 2...Metal pipe, 4...
Metal round bar.
Claims (1)
に、延性金属のパイプをかしめ止めすることを特
徴とするセラミツクスとセラミツクスまたは金属
の摩擦圧接方法。1. A method for friction welding ceramics and ceramics or metals, which comprises caulking a ductile metal pipe to the cylindrical outer peripheral surface of the ceramics as a pre-process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13061583A JPS6021870A (en) | 1983-07-18 | 1983-07-18 | Friction pressure welding method of ceramics and ceramics and metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13061583A JPS6021870A (en) | 1983-07-18 | 1983-07-18 | Friction pressure welding method of ceramics and ceramics and metal |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26688288A Division JPH01286971A (en) | 1988-10-21 | 1988-10-21 | Frictional pressure welding between ceramics or ceramic and metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6021870A JPS6021870A (en) | 1985-02-04 |
JPH0324432B2 true JPH0324432B2 (en) | 1991-04-03 |
Family
ID=15038451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13061583A Granted JPS6021870A (en) | 1983-07-18 | 1983-07-18 | Friction pressure welding method of ceramics and ceramics and metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6021870A (en) |
-
1983
- 1983-07-18 JP JP13061583A patent/JPS6021870A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6021870A (en) | 1985-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7383975B2 (en) | Fracture resistant friction stir welding tools | |
Rao et al. | Effect of process parameters on mechanical properties of friction stir spot welded magnesium to aluminum alloys | |
US6253987B1 (en) | Friction pull plug welding: top hat plug design | |
US3121948A (en) | Friction welding | |
CN106735844B (en) | A kind of dissimilar metal spin friction soldering method | |
Lyu et al. | Double-sided friction stir spot welding of steel and aluminum alloy sheets | |
CN105414740A (en) | Solid-phase diffusion bonding method for integrated expanded jointing and welding of tube sheet structure | |
Saju et al. | Friction stir forming of dissimilar grade aluminum alloys: Influence of tool rotational speed on the joint evolution, mechanical performance, and failure modes | |
JPH0324432B2 (en) | ||
JP2000312981A (en) | Coating method of cylinder inner face | |
CN112317947A (en) | Continuous driving friction welding method for aluminum bar and steel bar with outer conical end face | |
JP3419994B2 (en) | Joint for liquid phase diffusion joining of steel pipe with high joining strength | |
KR101771158B1 (en) | Manufacturing method of exhaust valve spindle using high-efficiency friction welding | |
JPH01286971A (en) | Frictional pressure welding between ceramics or ceramic and metal | |
CN214442750U (en) | Tool for forging and receiving tungsten alloy bars | |
JPS5870989A (en) | Joining of different kind members | |
JPH02160187A (en) | Method for joining intermetallic compound of ti-al system | |
JPH06658A (en) | Formation of joint for stainless steel products and different metallic material | |
JP2005271015A (en) | Friction welding method of steel tube and aluminum alloy hollow member | |
JP2005271016A (en) | Friction welding method of steel tube and aluminum alloy hollow member | |
JPH07317844A (en) | High strength drive shaft for power transmission and manufacture thereof | |
CN112207419B (en) | Method for realizing heterogeneous welding of titanium alloy and aluminum alloy | |
JP2001205475A (en) | Method of manufacturing for joined joint having excellent fatigue strength | |
JP3864202B2 (en) | Joining electrodes and materials for high energy density resistant equipment | |
TWI742882B (en) | Stud used for friction welding joint and multilayer sheet metal joining structure using the same |