JPH0324428B2 - - Google Patents

Info

Publication number
JPH0324428B2
JPH0324428B2 JP61211455A JP21145586A JPH0324428B2 JP H0324428 B2 JPH0324428 B2 JP H0324428B2 JP 61211455 A JP61211455 A JP 61211455A JP 21145586 A JP21145586 A JP 21145586A JP H0324428 B2 JPH0324428 B2 JP H0324428B2
Authority
JP
Japan
Prior art keywords
coke
aggregate
pitch
grinding
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61211455A
Other languages
Japanese (ja)
Other versions
JPS6369756A (en
Inventor
Koichiro Mukai
Kenichi Shinohara
Kenichi Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Nippon Steel Corp filed Critical Shin Etsu Chemical Co Ltd
Priority to JP61211455A priority Critical patent/JPS6369756A/en
Publication of JPS6369756A publication Critical patent/JPS6369756A/en
Publication of JPH0324428B2 publication Critical patent/JPH0324428B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、機械材料、放電加工用電極、導電材
料、るつぼ、ヒーターあるいは原子炉用材料など
極めて広い範囲にわたつて利用されている高密度
黒鉛に適した原料コークスおよびそれを使用した
高密度黒鉛材の製造方法に関するものである。 (従来の技術) 高密度黒鉛製品は、〓焼したピツチコークス、
石油コークスなどを用いて、これを振動ミル、ジ
エツトミルなどの粉砕機を用いて、10〜20μm以
下に微粉砕し、粉砕した〓焼コークスを骨材とし
て、バインダーピツチの様な結合材を添加し、混
〓した後、押出し法又は型込め法で成型してか
ら、約800〜1000℃で焼成した後、更に3000℃に
近い高温で黒鉛化して作られる(特開昭52−
108412号、特開昭54−40074号公報)。 然るに、この様な粉砕方法で粉砕したコークス
は、粉砕コークスの形状が針状に近い形状を呈し
ているため、これらの粉砕コークスを用いて混〓
物を成型した場合には、高密度の炭素成型体を得
ることが困難であつた。 また、緻密で高強度の炭素成型体を得るために
は、骨材コークスの粒径を数μmに微粉砕する必
要があるが、骨材コークスを微粉砕すると、比表
面積が増大するため、結合材の添加量をそれに見
合つて増量することが必要になる。 従つて、この様にして作られた成型体を焼成す
ると、バイーダーピツチ等の結合材が炭化する
際、揮発成分が発生するため気孔が多数生じて、
高密度の炭素成型体を得ることが困難であつた。 又近年生コークスを磨砕して、バインダーを用
いないで、高密度炭素成型体を製造しようとする
方法(特公昭55−46968号、特開昭55−150505号
公報)が提案されている。 しかしこの方法では、使用する生コークスが〓
焼コークスと違つて、揮発成分を5〜10%程度含
むため、磨砕する際に磨擦熱により粒子間の融着
が起り微粉砕することが難しい。従つて、生コー
クスを粉砕する場合は、水又は灯油などの液中で
行なわれており、このため磨砕後、粉体を乾燥す
る必要があるため作業が煩雑である。 また、生コークスを磨砕した場合、炭素の結晶
子が破壊されるため、この様にして粉砕された微
粉コークスを骨材とした場合には、得られる黒鉛
成型体は、黒鉛化性の低いものであり、黒鉛化性
の高い高密度成型体を得る方法としては不適当で
ある。 (発明が解決しようとする問題点) 本発明は、骨材に〓焼ピツチコークスを用い、
この骨材コークスを空気中で磨砕することによ
り、微細化するとともに表面酸化を行なうことに
よつて、骨材コークス表面に酸素官能基を付与し
て、骨材コークスと結合材とのぬれ性を改善し、
結合材が従来より少なくても、高密度、高強度で
易黒鉛化性の炭素成型体を製造することを意図し
たものである。 (問題点を解決するための手段) 本発明は、石炭系、石油系等の〓焼ピツチコー
クスを原料として用い、この〓焼ピツチコークス
を空気中で磨砕し、磨砕した〓焼ピツチコークス
中の酸素含有量を0.5wt%以上に調製した後、こ
の〓焼ピツチコークスを骨材として、バインダー
ピツチと混〓し、再粉砕して、ラバーあるいは、
金型などで成型した後、炭化、黒鉛化して高密度
黒鉛材を製造する方法である。 本発明で使用する骨材コークスは、石炭系、石
油系のいずれの〓焼ピツチコークスを用いても良
い。 又、本発明で用いられる磨砕の方法としては、
アトライターのほかに雷潰機、ボールミルのよう
なものもあるが、実用的にはアトライター、振動
ボールミルなどの磨砕方式の粉砕機を用いること
が望しい。 この磨砕方法を用いる理由としては、得られる
骨材コークス粉の粒形が、ジエツトミルあるいは
ハンマーミルの様な粉砕方式に比べて丸みを帯び
ており、ジエツトミルなどで粉砕した骨材コーク
スを用いた場合に比べて、成型体の嵩密度が高く
なる。 又、磨砕が繰り返されることによつて炭素表面
が活性化されるため、酸素原子との結合が起り易
くなるなどである。 磨砕時間としては、骨材コークスの酸素含有量
を0.5%以上に調整できればよく、原料となる〓
焼ピツチコークスの性状にもよるが、ほぼ2時間
程度で目的を達することができる。 しかも、本発明で骨材とする〓焼ピツチコーク
スの場合は、磨砕を24時間以上行なつても、その
磨砕コークスの黒鉛化性の低下が認められず、磨
砕前のコークスを黒鉛化した場合と、同程度の黒
鉛化性を示す。 骨材コークス中の酸素含有量を増加すること
は、磨砕時間を長くするか、磨砕の際に雰囲気中
の酸素量を多くすることによつて可能である。 〓焼ピツチコークスを磨砕すると、磨砕時間の
経過とともに、磨砕したピツチコークス微粉中の
酸素濃度は増加する。骨材とする微細化した〓焼
ピツチコークス中の酸素含有量を0.5wt%以上と
することによつて、バインダーピツチとのぬれ性
が向上し、従来の方法に比べバインダーピツチの
量は1/2になる。〓焼ピツチコークス中の酸素含
有量は、より好ましくは0.8wt%以上とすること
がよい。 これまでのジエツトミルなどによる粉砕で得ら
れる針状の骨材コークスでは、高密度高強度の黒
鉛材を得ることは困難であるが、本発明のアトラ
イター等で磨砕し、酸素含有量を増加させた骨材
コークスを用いることによつて、高密度高強度の
黒鉛材を容易に製造できる。 アトライター等で磨砕した骨材コークスは、平
均粒径が数μmと微粒であるにもかかわらず、バ
インダーピツチの添加量は、骨材コークス100重
量部に対して50重量部と少なくて良好な結果が得
られた。 ジエツトミルなどで粉砕した骨材コークスは、
平均粒径が数μmの粒子では、粒子形状が針状で
酸素含有量が少ないためバインダーピツチの添加
量が、骨材コークス100重量部に対し100〜130重
量部必要であつた。 この様に、本発明の磨砕した〓焼ピツチコーク
スを骨材コークスとすることによつて、バインダ
ーピツチを従来より大巾に少なくすることが出
来、しかも含浸をすることなく、緻密な高密度黒
鉛材を製造することが可能である。 さらに本発明の方法を用いて、次のような要領
で黒鉛材を製造することができる。 まず〓焼ピツチコークスをアトライター等で粉
砕し、これを骨材としてバインダーピツチ等の結
合材と混〓した後、さらにこれまでのように骨材
コークスの粒径を均一化するために再粉砕する。 これを常法に従つて成型した後、不活性ガス雰
囲気下で800〜1100℃程度で焼成する。この焼成
物を黒鉛化炉に入れ、2600℃以上に加熱して黒鉛
化することによつて、高密度黒鉛材を製造するこ
とができる。 (実施例〕 実施例 1 1400〜1450℃で〓焼して得たピツチコークス
を、衝撃粉砕機を用いて20〜30μmに粉砕した後、
この粉体をアトライターに500g投入し、空気中
で4時間磨砕を行なつた。この磨砕コークス(酸
素含有量1.0wt%)100重量部に対し、バインダー
ピツチ60重量部を添加した後、250℃に加熱した
Z型ニーダーで1時間混練した。 この混練物をアトライターで再粉砕し平均粒径
10μmにした。これを40W×40H×120L(単位mm)
の金型に90g充填し、50Kg/cm2の圧力で1次成型
した後ラバーに詰め、2t/cm2の圧力でラバープレ
ス成型した。 得られた成型体のサイズは34W×20H×100L
(単位mm)であつた。この成型体をコークスブリ
ーズでパツキングし、窒素気流下0.05℃/minの
昇温速度で1100℃まで昇温し焼成体を得た。 更に、この焼成体を10℃/minの昇温速度で
2600℃まで昇温し、この温度で1時間保持して黒
鉛化した。 この黒鉛化物の性状を表1に示した。 実施例 2 〓焼ピツチコークスを衝撃粉砕機を用いて20〜
30μmに粉砕した後、この粉砕をアトライターに
500g投入し、空気中で24時間磨砕を行なつた。
この磨砕コークス(酸素含有量1.9wt%)を骨材
として、実施例1と同じ方法で混練、焼成、黒鉛
化した。この黒鉛化物の性状を表1に示した。 比較例 1 〓焼ピツチコークスを衝撃粉砕機を用いて20〜
30μmに粉砕した後、この粉体を更にジエツトミ
ルで平均粒径4μmに粉砕した。この粉砕コークス
(酸素含有量0.3wt%)100重量部に対し、バイン
ダーピツチ110重量部添加した後、250℃に加熱し
たZ型ニーダーで混練した。 この混練物を更にジエツトミルで再粉砕し平均
粒径を4μmにした。これを40W×40H×120L(単
位mm)の金型に90g充填し50Kg/cm2の圧力で1次
成型した後、ラバーに詰め2t/cm2の圧力でラバー
プレス成型した。 得られた成型体のサイズは33W×18H×100L
(単位mm)であつた。 この成型体をコークスブリーズでパツキング
し、窒素気流下0.05℃/minの昇温速度で1100℃
まで昇温し焼成体を得た。この焼成体を10℃/
minの昇温速度で2600℃まで昇温し、この温度で
1時間保持して黒鉛化した。この黒鉛化物の性状
を表1に示した。
(Field of Industrial Application) The present invention is directed to raw material coke and material suitable for high-density graphite, which is used in an extremely wide range of applications such as mechanical materials, electrodes for electrical discharge machining, conductive materials, crucibles, heaters, and materials for nuclear reactors. The present invention relates to a method for producing high-density graphite material using the same. (Conventional technology) High-density graphite products are produced by baking pitch coke,
Using petroleum coke, etc., it is finely pulverized to 10 to 20 μm or less using a pulverizer such as a vibration mill or jet mill, and the pulverized burnt coke is used as aggregate and a binding material such as binder pitch is added. After mixing, it is molded using an extrusion method or a die-casting method, and then fired at about 800 to 1000℃, and then graphitized at a high temperature close to 3000℃.
No. 108412, Japanese Unexamined Patent Publication No. 54-40074). However, since the coke crushed by this type of crushing method has a shape close to that of a needle, it is difficult to mix the coke using these crushed cokes.
When molding a product, it was difficult to obtain a high-density carbon molded body. In addition, in order to obtain a dense and high-strength carbon molded body, it is necessary to finely crush the aggregate coke to a particle size of several μm, but when the aggregate coke is finely crushed, the specific surface area increases, so It is necessary to increase the amount of material added accordingly. Therefore, when the molded body made in this way is fired, when the binding material such as binder pitch is carbonized, volatile components are generated, resulting in a large number of pores.
It was difficult to obtain a high-density carbon molded body. Furthermore, in recent years, a method has been proposed for producing high-density carbon molded bodies by grinding raw coke without using a binder (Japanese Patent Publication No. 55-46968, Japanese Patent Application Laid-open No. 55-150505). However, in this method, the raw coke used is
Unlike burnt coke, it contains about 5 to 10% of volatile components, so during grinding, the heat of friction causes particles to fuse together, making it difficult to grind them finely. Therefore, when raw coke is crushed, it is carried out in a liquid such as water or kerosene, and the work is complicated because it is necessary to dry the powder after crushing. In addition, when raw coke is ground, the carbon crystallites are destroyed, so if the fine coke ground in this way is used as aggregate, the resulting graphite molded body has a low graphitizability. Therefore, it is inappropriate as a method for obtaining a high-density molded body with high graphitizability. (Problems to be solved by the invention) The present invention uses baked pitch coke as the aggregate,
By grinding this aggregate coke in the air, it becomes fine and oxidizes the surface, which gives oxygen functional groups to the surface of the aggregate coke and improves the wettability between the aggregate coke and the binder. improve the
It is intended to produce a carbon molded body with high density, high strength, and easy graphitization even if the amount of binder is less than conventional ones. (Means for Solving the Problems) The present invention uses burnt pitch coke made of coal or petroleum as a raw material, grinds the burnt pitch coke in air, and oxygen in the ground burnt pitch coke is used as a raw material. After adjusting the content to 0.5wt% or more, this baked pitch coke is used as aggregate, mixed with binder pitch, re-pulverized, and made into rubber or
This is a method of manufacturing high-density graphite material by molding it with a mold, etc., and then carbonizing and graphitizing it. The aggregate coke used in the present invention may be either coal-based or petroleum-based calcined pitch coke. Furthermore, the grinding method used in the present invention is as follows:
In addition to the attriter, there are other types such as lightning crushers and ball mills, but for practical purposes, it is preferable to use attritor, vibrating ball mill, and other grinding type crushers. The reason for using this grinding method is that the particle shape of the aggregate coke powder obtained is more rounded than in grinding methods such as jet mills or hammer mills. The bulk density of the molded body becomes higher than that in the case of the molded body. Furthermore, repeated grinding activates the carbon surface, making it easier to bond with oxygen atoms. The grinding time is sufficient as long as the oxygen content of the aggregate coke can be adjusted to 0.5% or more, which is used as a raw material.
Depending on the properties of the roasted pitch coke, the goal can be achieved in about two hours. Furthermore, in the case of calcined pitch coke used as the aggregate in the present invention, no decrease in the graphitization property of the ground coke was observed even after grinding for more than 24 hours, and the coke before grinding was graphitized. Graphitization properties are similar to those obtained when It is possible to increase the oxygen content in the aggregate coke by increasing the milling time or by increasing the amount of oxygen in the atmosphere during milling. = When burnt pitch coke is ground, the oxygen concentration in the ground pitch coke fine powder increases as the grinding time passes. By setting the oxygen content in the finely baked pitch coke used as aggregate to 0.5wt% or more, the wettability with the binder pitch is improved, and the amount of binder pitch is halved compared to the conventional method. become. The oxygen content in the baked pitch coke is more preferably 0.8 wt% or more. It is difficult to obtain high-density, high-strength graphite material with needle-shaped aggregate coke obtained by crushing with conventional jet mills, etc., but by grinding with the attritor of the present invention, the oxygen content can be increased. By using aggregate coke, a high-density and high-strength graphite material can be easily manufactured. Although the aggregate coke ground with an attritor is fine with an average particle size of several μm, the amount of binder pitch added is as small as 50 parts by weight per 100 parts by weight of aggregate coke. The results were obtained. Aggregate coke crushed with a jet mill etc.
For particles with an average particle diameter of several μm, the particle shape is acicular and the oxygen content is low, so the amount of binder pitch needed to be added is 100 to 130 parts by weight per 100 parts by weight of aggregate coke. In this way, by using the ground calcined pitch coke of the present invention as aggregate coke, it is possible to reduce the binder pitch to a greater extent than before, and moreover, it is possible to form dense high-density graphite without impregnation. It is possible to manufacture materials. Further, using the method of the present invention, graphite material can be manufactured in the following manner. First, roasted pitch coke is crushed using an attritor, etc., and this is mixed with a binding material such as binder pitch as aggregate, and then re-pulverized as before to make the particle size of the aggregate coke uniform. . After molding this according to a conventional method, it is fired at about 800 to 1100°C under an inert gas atmosphere. A high-density graphite material can be produced by placing this fired product in a graphitization furnace and heating it to 2600° C. or higher to graphitize it. (Example) Example 1 Pitch coke obtained by burning at 1400 to 1450°C was crushed to 20 to 30 μm using an impact crusher, and then
500 g of this powder was put into an attritor and ground in air for 4 hours. After adding 60 parts by weight of binder pitch to 100 parts by weight of this ground coke (oxygen content: 1.0 wt%), the mixture was kneaded for 1 hour in a Z-type kneader heated to 250°C. This kneaded material is re-pulverized with an attritor to obtain an average particle size of
It was set to 10 μm. This is 40W x 40H x 120L (unit: mm)
90g was filled into a mold, and after primary molding at a pressure of 50Kg/cm 2 , it was packed into rubber and rubber press molded at a pressure of 2t/cm 2 . The size of the obtained molded body is 34W x 20H x 100L
(Unit: mm) This molded body was packed with coke breeze, and the temperature was raised to 1100°C at a rate of 0.05°C/min under a nitrogen stream to obtain a fired body. Furthermore, this fired body was heated at a heating rate of 10℃/min.
The temperature was raised to 2600°C and maintained at this temperature for 1 hour to graphitize. The properties of this graphitized product are shown in Table 1. Example 2 = Use an impact crusher to crush baked pitch coke for 20~
After pulverizing to 30 μm, this pulverization is used as an attritor.
500g was added and grinding was carried out in air for 24 hours.
This ground coke (oxygen content: 1.9 wt%) was used as an aggregate, and was kneaded, calcined, and graphitized in the same manner as in Example 1. The properties of this graphitized product are shown in Table 1. Comparative Example 1 = Use an impact crusher to grind roasted pitch coke for 20~
After pulverizing to 30 μm, this powder was further pulverized with a jet mill to an average particle size of 4 μm. After adding 110 parts by weight of binder pitch to 100 parts by weight of this pulverized coke (oxygen content 0.3 wt%), the mixture was kneaded in a Z-type kneader heated to 250°C. This kneaded material was further ground again using a jet mill to give an average particle size of 4 μm. 90g of this was filled into a mold of 40W x 40H x 120L (unit: mm) and primary molded at a pressure of 50Kg/cm 2 , then packed in rubber and rubber press molded at a pressure of 2t/cm 2 . The size of the obtained molded body is 33W x 18H x 100L
(Unit: mm) This molded body was packed with coke breeze and heated to 1100℃ at a heating rate of 0.05℃/min under nitrogen flow.
The temperature was increased to obtain a fired body. This fired body is heated to 10℃/
The temperature was raised to 2600° C. at a heating rate of min, and was maintained at this temperature for 1 hour to graphitize. The properties of this graphitized product are shown in Table 1.

【表】 (発明の効果) 〓焼コークスを磨砕することによつて得られた
骨材コークスを用いることによつて、従来よりも
バインダーピツチの添加量が大巾に少なくてすむ
ためコストが安くなる。 又、この骨材コークスを用いて成型されたもの
は、含浸せずに黒鉛化後の嵩密度を1.7以上にす
ることが可能である。さらに、黒鉛化された高密
度炭素材は、硬度が高く高密度なために、各種用
途に適用できる。
[Table] (Effects of the invention) By using aggregate coke obtained by grinding burnt coke, the amount of binder pitch added can be significantly smaller than in the past, resulting in lower costs. Become cheap. Furthermore, products molded using this aggregate coke can have a bulk density of 1.7 or more after graphitization without impregnation. Furthermore, graphitized high-density carbon material has high hardness and high density, so it can be applied to various uses.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭系あるいは石油系の〓焼ピツチコークス
を空気中で磨砕し、磨砕した〓焼ピツチコークス
中の酸素含有量を0.5wt%以上に調整した後、こ
の〓焼ピツチコークスを骨材として結合材と混合
した後、成型、焼成、黒鉛化することを特徴とす
る高密度黒鉛材の製造方法。
1. After grinding coal-based or petroleum-based burnt pitch coke in the air and adjusting the oxygen content in the ground burnt pitch coke to 0.5 wt% or more, the burnt pitch coke is used as an aggregate and a binder. A method for producing high-density graphite material, which comprises mixing, molding, firing, and graphitizing.
JP61211455A 1986-09-10 1986-09-10 Manufacture of high density graphitic material Granted JPS6369756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61211455A JPS6369756A (en) 1986-09-10 1986-09-10 Manufacture of high density graphitic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61211455A JPS6369756A (en) 1986-09-10 1986-09-10 Manufacture of high density graphitic material

Publications (2)

Publication Number Publication Date
JPS6369756A JPS6369756A (en) 1988-03-29
JPH0324428B2 true JPH0324428B2 (en) 1991-04-03

Family

ID=16606224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61211455A Granted JPS6369756A (en) 1986-09-10 1986-09-10 Manufacture of high density graphitic material

Country Status (1)

Country Link
JP (1) JPS6369756A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154875A (en) * 2000-11-13 2002-05-28 Kureha Chem Ind Co Ltd Method for manufacturing supporting member for high temperature heating metal formed body

Also Published As

Publication number Publication date
JPS6369756A (en) 1988-03-29

Similar Documents

Publication Publication Date Title
JP4311777B2 (en) Method for producing graphite material
JPH0324428B2 (en)
JPH0124724B2 (en)
JPH07223809A (en) Graphite material and production thereof
JPS61295216A (en) Preparation of isotropic graphite material having high density and high strength
JP3278190B2 (en) Method for producing isotropic high-density graphite material
JP2910002B2 (en) Special carbon material kneading method
JPH0645505B2 (en) Manufacturing method of isotropic graphite material with high resistivity
JPS5978914A (en) Manufacture of special carbonaceous material
US3202619A (en) Graphitic neutron reflector containing beryllium and method of making same
JP2558173B2 (en) Method for producing carbon material having fine pores
JPH0337108A (en) Isotropic carbon material
JPH01290559A (en) Production of high-density carbon material
JPS6013962B2 (en) Manufacturing method of isotropic special carbon material
JPH0288464A (en) Production of density and high strength carbon material and graphite electrode material for electric spark machining
JP2909662B2 (en) Manufacturing method of heat storage
JPH0158125B2 (en)
JPH01270576A (en) Production of porous carbon material
JPS6331429B2 (en)
SU768756A1 (en) Method of preparing carbon articles
JP2924062B2 (en) Production method of raw material powder for carbon material
JPH0364448B2 (en)
JPH05139831A (en) Production of high-quality carbonaceous molding
JP2924061B2 (en) Production method of raw material powder for carbon material
JPS6235964B2 (en)