JP2002154875A - Method for manufacturing supporting member for high temperature heating metal formed body - Google Patents

Method for manufacturing supporting member for high temperature heating metal formed body

Info

Publication number
JP2002154875A
JP2002154875A JP2000344746A JP2000344746A JP2002154875A JP 2002154875 A JP2002154875 A JP 2002154875A JP 2000344746 A JP2000344746 A JP 2000344746A JP 2000344746 A JP2000344746 A JP 2000344746A JP 2002154875 A JP2002154875 A JP 2002154875A
Authority
JP
Japan
Prior art keywords
carbon material
mass
graphitizable carbon
thermosetting resin
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000344746A
Other languages
Japanese (ja)
Inventor
Masanori Kobayashi
正則 小林
Yoshio Sagi
良夫 鷺
Tamio Haga
民雄 芳賀
Tatsuo Kobayashi
辰男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2000344746A priority Critical patent/JP2002154875A/en
Publication of JP2002154875A publication Critical patent/JP2002154875A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently manufacture a homogeneous supporting member made of a non-graphite carbon material (e.g. a base board for a metal powder compacted body for powder metallurgy) suitable to support a high temperature heating metal formed body to be heated at a temperature as high as >=800 deg.C. SOLUTION: A fine carbon material which is hardly graphitized is coated with a thermosetting resin, then press formed and calcined to obtain a non- graphite carbon material having 0.9 to 1.5 g/ml apparent density and <0.5% ash content.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温で加熱される
金属成型体の支持に用いられる非黒鉛質炭素材からなる
支持部材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a support member made of a non-graphitic carbon material used for supporting a metal molded body heated at a high temperature.

【0002】電子部品用ガラス封着における金属シェル
リング用治具(例えば特開平5−319929号公報)
あるいは粉末冶金において金属粉末成型体を還元性ある
いは非酸化性雰囲気中で焼結するに際して金属粉末成型
体を支持する下敷板(セッター)(例えば特開平8−1
98685号公報)等として、軽量性ならびに熱伝導性
にも優れた炭素系材料からなる支持部材が用いられてい
る。これら高温加熱金属成型体の炭素系支持部材には、
800℃以上の高温への加熱と冷却サイクルに耐える耐
熱衝撃性に加えて、高温加熱金属成型体への浸炭現象
(炭素の固体金属への拡散浸透による移行現象)を起さ
ないことが重要な特性として要求される。このような要
求は、金属成型体として鉄(Fe)系金属(Fe単体あ
るいは、Feを主体とするFeとニッケル(Ni)、コ
バルト(Co)、アルミニウム(Al)、珪素(Si)
等の黒鉛化促進元素等あるいは他の元素との合金を含
む)を用いる場合に、特に強い。炭素(C)は重要なF
eとの合金元素であるが、予期せぬ浸炭は、金属製品に
おける目標組成からの局所的ずれを起し、もとより避け
るべきであり、また重度の浸炭は金属製品と支持部材と
の接触個所における焼付(すなわち両者の廃物化)につ
ながる。
[0002] Jigs for metal shell rings in glass sealing for electronic parts (for example, JP-A-5-319929)
Alternatively, when sintering the metal powder molded body in a reducing or non-oxidizing atmosphere in powder metallurgy, an underlay plate (setter) for supporting the metal powder molded body (for example, see JP-A-8-1)
For example, a support member made of a carbon-based material having excellent lightness and thermal conductivity is used. The carbon-based support members of these high-temperature heated metal moldings include:
In addition to thermal shock resistance to withstand heating and cooling cycles to temperatures of 800 ° C. or higher, it is important not to cause carburizing phenomenon (transfer phenomenon by diffusion and infiltration of carbon into solid metal) into a high-temperature heated metal molded body. Required as a property. Such a requirement is that an iron (Fe) based metal (Fe alone or Fe and nickel (Ni), cobalt (Co), aluminum (Al), silicon (Si)
, Etc.) or alloys with other elements, etc.). Carbon (C) is important F
Although it is an alloying element with e, unexpected carburization causes a local deviation from the target composition in the metal product and should be avoided, and severe carburization occurs at the contact point between the metal product and the support member. It leads to seizure (that is, both wastes).

【0003】例えば、Fe系金属粉末成型体の還元性雰
囲気中での焼結に際して、炭素下敷板を用いる場合の浸
炭は、以下のようなメカニズムで進行する。
[0003] For example, when sintering a Fe-based metal powder molded body in a reducing atmosphere, carburization using a carbon underlay proceeds by the following mechanism.

【0004】すなわちFe系金属粉末成型体を構成する
Feは一部酸化物となっており、焼結時に還元性雰囲気
を与える水素で、下式(1)の反応により還元される: Fe23+3H2 →2Fe+3H2O ・・・(1) ここで発生した水蒸気は、炭素下敷板のCと反応して下
式(2)の反応により水性ガスを生ずる: C+H2O →CO+H2 ・・・(2) この水性ガスは、雰囲気の窒素と混合され、炭素含有F
e系合金の製造のためのガス浸炭に用いられる弱浸炭性
搬送ガスと同様な組成となり、Fe系金属粉末成型体の
表面で活性化炭素(C)を生じて製品中に拡散浸透す
る。この反応は次式(3)、(4)で表される。ここ
で、右への反応が浸炭反応、左への反応は脱炭反応であ
る: 2CO⇔〔C〕+CO2 ・・・(3) CO+H2 ⇔〔C〕+H2O ・・・(4) さらに、発生する二酸化炭素は、下式(5)に従い、炭
素下敷板中のCと反応して一酸化炭素を生じる。発生す
る水蒸気は炭素下敷板中のCでさらに(2)式を進行さ
せるため、炭素下敷板と焼結金属体の界面では継続して
反応が進み、製品中への活性化炭素〔C〕の拡散浸透は
継続する: CO2+C→2CO ・・・(5) このように、製品中へのガス浸炭作用が継続すると、製
品の表面にFe3Cが増大して製品品質を著しく低下さ
せる。また、Feよりも炭素との親和力の小さい黒鉛化
促進元素であるNi、Co、Al、Siが含有される場
合には、Fe3Cを不安定にさせることで、黒鉛の析出
を伴い、熱膨張率の違いから製品に割れを生ずることも
ある。
[0004] That is, Fe constituting the Fe-based metal powder compact is partially an oxide, and is reduced by the reaction of the following formula (1) with hydrogen which gives a reducing atmosphere during sintering: Fe 2 O 3 + 3H 2 → 2Fe + 3H 2 O (1) The water vapor generated here reacts with C of the carbon underlay to produce a water gas by the reaction of the following formula (2): C + H 2 O → CO + H 2.・ (2) This water gas is mixed with nitrogen in the atmosphere, and carbon-containing F
It has a composition similar to that of a weakly carburizing carrier gas used for gas carburizing for the production of an e-based alloy, and activated carbon (C) is generated on the surface of the Fe-based metal powder molded body and diffuses and permeates into the product. This reaction is represented by the following formulas (3) and (4). Here, the reaction to the right is a carburization reaction, and the reaction to the left is a decarburization reaction: 2CO⇔ [C] + CO 2 (3) CO + H 2 ⇔ [C] + H 2 O (4) Further, the generated carbon dioxide reacts with C in the carbon underlay plate to generate carbon monoxide according to the following equation (5). The generated steam further progresses the equation (2) at C in the carbon underlay plate, so that the reaction proceeds continuously at the interface between the carbon underlay plate and the sintered metal body, and the activated carbon [C] in the product becomes Diffusion infiltration continues: CO 2 + C → 2CO (5) As described above, when the gas carburizing action in the product continues, Fe 3 C increases on the surface of the product, and the product quality is significantly reduced. Further, when Ni, Co, Al, or Si, which is a graphitization promoting element having a lower affinity for carbon than Fe, is contained, Fe 3 C is destabilized to cause the precipitation of graphite, resulting in heat. The product may crack due to the difference in expansion rate.

【0005】さらに、継続的に(2)〜(5)式の反応
が進行すると、焼結金属体が炭素下敷板と焼き付けを起
こす場合もある。
[0005] Further, when the reactions of formulas (2) to (5) continue, the sintered metal body may be baked with the carbon underlay plate.

【0006】上記浸炭現象を防止するための提案もいく
つかなされている。
Some proposals have been made to prevent the carburizing phenomenon.

【0007】例えば、Feより炭素との親和力の強い元
素として、Ti、Nb、V、Ta、W、Mo、Cr、M
n等が知られており、炭素下敷板の表面にこれら元素の
炭化物の皮膜を形成すれば浸炭現象は防止可能である。
しかし、上記のような金属の炭化物皮膜を形成するため
には、プラズマ溶射法等の高価な処理法が必要なだけで
なく、形成された皮膜と、基材炭素下敷板との熱膨張率
の違いのため、高温への加熱−冷却サイクルの繰り返し
により、皮膜の剥離が起る。
[0007] For example, Ti, Nb, V, Ta, W, Mo, Cr, M
The carburizing phenomenon can be prevented by forming a film of a carbide of these elements on the surface of the carbon underlay plate.
However, in order to form a metal carbide film as described above, not only an expensive treatment method such as a plasma spraying method is required, but also the thermal expansion coefficient between the formed film and the base carbon underlay plate. Due to the difference, the repetition of the heating-cooling cycle to a high temperature causes the peeling of the film.

【0008】その他、炭素下敷板の表面にセラミック層
を形成して浸炭を防止するいくつかの方法も提案されて
いる。例えばクロム酸を塗布後に焼成して、酸化クロム
皮膜を形成する方法(特開平2−212385号公
報)、セラミック粉末を主体とする抄造シートを加熱圧
着する方法(特開平8−198685号公報)、酸化イ
ットリウム(Y23)をプラズマスプレーする方法(特
開2000−509102号公報)などである。しか
し、これら皮膜はいずれも、基材炭素板との熱膨張率差
により、高温への加熱−冷却サイクルの繰り返しに耐え
得るものではなく、限られた寿命を示すのみである。
[0008] In addition, several methods have been proposed for forming a ceramic layer on the surface of a carbon underlay plate to prevent carburization. For example, a method of forming a chromium oxide film by baking after applying chromic acid (JP-A-2-212385), a method of heat-pressing a sheet made mainly of ceramic powder (JP-A-8-198685), A method of plasma spraying yttrium oxide (Y 2 O 3 ) (Japanese Patent Laid-Open No. 2000-509102) and the like. However, none of these films can withstand repeated heating-cooling cycles to a high temperature due to the difference in the coefficient of thermal expansion from the base carbon plate, and only shows a limited life.

【0009】他方、上記浸炭現象において主要な(2)
式の反応は、炭素下敷板を構成する炭素材が黒鉛質であ
る場合に促進され、黒鉛質材料と比べて化学的に安定な
非晶質炭素材においては抑制されることが知られてい
る。従って、熱硬化性樹脂を出発原料とした炭素化物で
あるガラス状炭素(非晶質炭素)の板状成形体(例えば
特開平10−67559号公報の方法により製造)を用
いることも提案されており、浸炭防止に効果があること
も実証されている。しかし、このガラス状炭素板は、熱
硬化性樹脂液を樹脂フィルム間に注入成形し、取り出し
たフィルムを加熱硬化し、更に黒鉛板間に挾持した後、
炭素化に伴う熱収縮を緩やかなものとするため極めて徐
々に炭素化を進めて得られるものである。従って、高価
なものとならざるを得ず、また衝撃に弱く、熱衝撃によ
る破損のおそれもあり、更に製造工程からしても寸法や
形状に制限があるという難点がある。
On the other hand, the main (2) in the above carburizing phenomenon
It is known that the reaction of the formula is promoted when the carbon material constituting the carbon underlay plate is graphite, and is suppressed in the chemically stable amorphous carbon material as compared with the graphite material. . Accordingly, it has been proposed to use a plate-like molded product of glassy carbon (amorphous carbon), which is a carbonized material using a thermosetting resin as a starting material (for example, produced by the method disclosed in JP-A-10-67559). It has also been proven effective in preventing carburization. However, this glassy carbon plate is obtained by injecting a thermosetting resin liquid between resin films, heating and curing the removed film, and further sandwiching it between graphite plates.
It is obtained by progressing carbonization very gradually in order to moderate the heat shrinkage accompanying carbonization. Therefore, it is inevitably expensive, and is susceptible to impact, may be damaged by thermal shock, and has limitations in size and shape even in the manufacturing process.

【0010】[0010]

【発明が解決しようとする課題】上記のような従来材料
の問題点に鑑み、本発明は800℃以上という高温に加
熱される金属成型体の支持に好適に用いられ且つ均質な
非黒鉛質炭素材製の支持部材の効率的な製造方法を提供
することを主要な目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the conventional materials, the present invention provides a homogeneous non-graphitic carbon which is suitably used for supporting a metal molded body heated to a high temperature of 800 ° C. or more. A main object is to provide an efficient method of manufacturing a support member made of a material.

【0011】[0011]

【課題を解決するための手段】本発明者らの研究によれ
ば、上述の目的の達成のためには、熱硬化性樹脂で被覆
した微細難黒鉛化性炭素材料の成型体を焼成して炭素材
を形成することが好ましいことが見出された。より詳し
くは、本発明の高温加熱金属成型体支持部材の製造方法
は、微細難黒鉛化性炭素材料を、熱硬化性樹脂で被覆後
に加圧成型し、成型体を焼成することにより、見掛密度
が0.9〜1.5g/ml、灰分が0.5%未満である
非黒鉛質炭素材とすることを特徴とするものである。
According to the study of the present inventors, in order to achieve the above-mentioned object, a molded article of a fine non-graphitizable carbon material coated with a thermosetting resin is fired. It has been found preferable to form a carbon material. More specifically, the method for producing a high-temperature heated metal molded body support member according to the present invention comprises the steps of coating a finely non-graphitizable carbon material with a thermosetting resin, press-molding the resultant, and firing the molded body. A non-graphitic carbon material having a density of 0.9 to 1.5 g / ml and an ash content of less than 0.5%.

【0012】本発明において、微細難黒鉛化性炭素材料
を被覆する熱硬化性樹脂は、微細難黒鉛化性炭素材料の
加圧成型を助け、自身は焼成により非晶質(非黒鉛質)
炭素に炭素化されて、微細難黒鉛化性炭素材料と一体化
されて全体として均質な非黒鉛質炭素材からなる支持部
材を与える効果を有する。
In the present invention, the thermosetting resin which coats the finely graphitizable carbon material assists the pressure molding of the finely graphitizable carbon material, and itself becomes amorphous (non-graphitic) by firing.
It has the effect of providing a support member made of a non-graphitic carbon material that is carbonized into carbon and integrated with the finely non-graphitizable carbon material as a whole and is uniform as a whole.

【0013】[0013]

【発明の実施の形態】本発明で用いる微細難黒鉛化性炭
素材料は、難黒鉛化性炭素材料の、繊維状あるいは粒状
(球状を含む)の微細化物であり、繊維状の微細化物は
数平均繊維径が7〜30μm、数平均繊維長が0.09
〜0.5mmのものが好ましい。また、粒状(球状を含
む)の微細化物は粒径の平均(質量平均径)が150μ
m〜2mmのものが好ましく、特に0.3〜1mmのも
のが好ましい。炭素材料の難黒鉛化性は、黒鉛化温度で
の炭素化に際し、大きな炭素結晶子成長が起らないこと
で判定され、ここでは、2800℃、10時間での炭素
化後の、炭素結晶子厚さ(Lc002)が300Å以
下、特に100Å以下、の炭素材料が好ましく用いられ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The fine graphitizable carbon material used in the present invention is a fibrous or granular (including spherical) fine material of a non-graphitizable carbon material. Average fiber diameter is 7-30 μm, number average fiber length is 0.09
It is preferably about 0.5 mm. The average particle size (mass average diameter) of the granular (including spherical) fine particles is 150 μm.
m to 2 mm are preferable, and especially 0.3 to 1 mm is preferable. The non-graphitizable property of a carbon material is determined by the fact that large carbon crystallite growth does not occur during carbonization at the graphitization temperature. Here, the carbon crystallite after carbonization at 2800 ° C. for 10 hours is used. A carbon material having a thickness (Lc002) of 300 ° or less, particularly 100 ° or less, is preferably used.

【0014】本発明では、石油系ピッチを前駆体とし、
その微細化物を酸化雰囲気で不融化したものを用いるこ
とが好ましい。不融化は、難黒鉛化性炭素材料の炭素化
中における溶融を防止するためだけでなく、微細難黒鉛
化性炭素材料の難黒鉛化性を担保し、また被覆熱硬化性
樹脂の付着性を改善するために好ましい多孔性を微細難
黒鉛化性炭素材料に付与する上でも好ましい。
In the present invention, petroleum pitch is used as a precursor,
It is preferable to use the finely divided product which is made infusible in an oxidizing atmosphere. Infusibilization not only prevents melting of the non-graphitizable carbon material during carbonization, but also ensures the non-graphitizable nature of the finely graphitizable carbon material and improves the adhesion of the coated thermosetting resin. It is also preferable to impart preferable porosity to the finely non-graphitizable carbon material for improvement.

【0015】微細難黒鉛化性炭素材料は、前駆体の不融
化処理を受けた結果として、5〜30質量%の酸素含有
率を示すことが好ましい。酸素含有率が5%未満である
と、焼成時に加圧成型体の発泡が起り目的形状が得られ
ないことがある。また、高温焼成の際に結晶化度が上
り、目的の非黒鉛質炭素材を得るのが困難になる。他
方、酸素含有率が30質量%を超えると、焼成の際に発
生する水分量が多くなり、炭素と水性ガス反応を起して
酸化消耗を加速させる問題がある。同様な理由により、
800℃での固定炭素分が70質量%以上であることが
好ましい。特に酸素含有率が5〜10質量%の範囲の炭
素材料は、焼成に際し、良好な自己焼結性を示し、緻密
な構造で強度が格段に向上した非黒鉛質炭素材(支持部
材)を与えるので好ましい。
[0015] The finely non-graphitizable carbon material preferably has an oxygen content of 5 to 30% by mass as a result of the infusibilization treatment of the precursor. If the oxygen content is less than 5%, foaming of the pressure-molded body occurs during firing, and the desired shape may not be obtained. In addition, the degree of crystallinity increases during high-temperature firing, making it difficult to obtain the desired non-graphitic carbon material. On the other hand, if the oxygen content exceeds 30% by mass, the amount of water generated at the time of firing increases, and there is a problem that a reaction between carbon and water gas occurs to accelerate oxidative consumption. For similar reasons,
It is preferable that the fixed carbon content at 800 ° C. is 70% by mass or more. In particular, a carbon material having an oxygen content in the range of 5 to 10% by mass gives a good non-graphitic carbon material (support member) which exhibits good self-sintering property when fired, and has a dense structure and markedly improved strength. It is preferred.

【0016】本発明で、特に好ましく用いられる微細難
黒鉛化性炭素材料としては、例えば以下のようにして得
られた多孔質ピッチ系炭素材料が挙げられる。すなわ
ち、石油ピッチに対し、添加剤として沸点200℃以上
の2乃至3環の芳香族化合物又はその混合物を加えて加
熱して溶融混合した後、成形しピッチ成形体を得る。次
にピッチに対し低溶解度を有しかつ添加剤に対して高溶
解度を有する溶剤で、ピッチ成形体から添加剤を抽出除
去し、得られた多孔性ピッチを酸化して不融化物を得
る。不融化後あるいはその前のいずれかの段階で微細化
を行い、微細難黒鉛化性炭素材料を得る。
In the present invention, as the finely non-graphitizable carbon material that is particularly preferably used, for example, a porous pitch-based carbon material obtained as follows can be mentioned. That is, a 2- to 3-ring aromatic compound having a boiling point of 200 ° C. or higher or a mixture thereof is added as an additive to petroleum pitch, heated and melt-mixed, and then molded to obtain a pitch molded body. Next, the additive is extracted and removed from the pitch formed body with a solvent having a low solubility in the pitch and a high solubility in the additive, and the obtained porous pitch is oxidized to obtain an infusible material. Micronization is performed at any stage after or before infusibilization to obtain a finely non-graphitizable carbon material.

【0017】上記した芳香族添加剤は、例えばナフタレ
ン、メチルナフタレン、フェニルナフタレン、ベンジル
ナフタレン、メチルアントラセン、フェナンスレン、ビ
フェニル等の1種又は2種以上の混合物から選択され
る。ピッチに対する添加量は、ピッチ100重量部に対
し30〜70重量部の範囲が好ましい。
The above-mentioned aromatic additive is selected from one or a mixture of two or more of, for example, naphthalene, methylnaphthalene, phenylnaphthalene, benzylnaphthalene, methylanthracene, phenanthrene and biphenyl. The amount added to the pitch is preferably in the range of 30 to 70 parts by weight per 100 parts by weight of the pitch.

【0018】ピッチと添加剤の混合は、均一な混合を達
成するため、加熱し溶融状態で行う。ピッチと添加剤の
混合物は、添加剤を混合物から容易に抽出できるように
するため、粒径1mm以下の粒子に成形することが好ま
しい。成形は溶融状態で行ってもよく、また混合物を冷
却後粉砕する等の方法によってもよい。
The mixing of the pitch and the additive is performed in a heated and molten state in order to achieve uniform mixing. The mixture of the pitch and the additive is preferably formed into particles having a particle size of 1 mm or less so that the additive can be easily extracted from the mixture. The molding may be performed in a molten state, or by a method such as pulverizing the mixture after cooling.

【0019】ピッチと添加剤の混合物から添加剤を抽出
除去するための溶剤としては、ブタン、ペンタン、ヘキ
サン、ヘプタン等の脂肪族炭化水素、ナフサ、ケロシン
等の脂肪族炭化水素主体の混合物、メタノール、エタノ
ール、プロパノール、ブタノール等の脂肪族アルコール
類等が好適である。
Solvents for extracting and removing additives from the mixture of pitch and additives include aliphatic hydrocarbons such as butane, pentane, hexane and heptane; mixtures mainly composed of aliphatic hydrocarbons such as naphtha and kerosene; And aliphatic alcohols such as ethanol, propanol and butanol.

【0020】このような溶剤でピッチと添加剤の混合物
成形体から添加剤を抽出することによって、成形体の形
状を維持したまま、添加剤を成形体から除去することが
できる。この際に成形体中に添加剤の抜け穴が形成さ
れ、均一な多孔性を有するピッチ成形体が得られるもの
と推定される。
By extracting the additive from the mixture of pitch and additive with such a solvent, the additive can be removed from the molded body while maintaining the shape of the molded body. At this time, it is presumed that holes for the additive are formed in the molded article, and a pitch molded article having uniform porosity is obtained.

【0021】次に、かくして得られた多孔性を示すピッ
チ成形体を酸化(不融化)する。酸化は、好ましくは常
温から400℃までの温度で行なう。酸化剤としては、
2、O3、SO3、NO2、これらを空気、窒素等で希釈
した混合ガス、または空気等の酸化性気体、あるいは硫
酸、硝酸、過酸化水素水等の酸化性液体を用いることが
できる。
Next, the thus obtained porous formed compact is oxidized (infusible). The oxidation is preferably performed at a temperature from normal temperature to 400 ° C. As oxidizing agents,
O 2 , O 3 , SO 3 , NO 2 , a mixed gas obtained by diluting them with air, nitrogen, or the like, or an oxidizing gas such as air, or an oxidizing liquid such as sulfuric acid, nitric acid, or hydrogen peroxide can be used. it can.

【0022】多孔性ピッチの酸化は、酸化剤として空気
又は空気と他のガス例えば燃焼ガス等との混合ガスのよ
うな酸素を含むガスを用いて、120℃〜300℃で行
なうことが簡便であり、経済的にも有利である。
It is convenient to oxidize the porous pitch at 120 ° C. to 300 ° C. using an oxygen-containing gas such as air or a mixture of air and another gas such as a combustion gas as an oxidizing agent. Yes, it is economically advantageous.

【0023】上記のようにして得られた多孔質ピッチ系
炭素材料は、開放細孔を有することが特徴的であり、例
えば水銀圧入法により求めた直径3〜100nmの開放
細孔が0.02〜0.1ml/gの比容積を示すものが
好適に用いられる。
The porous pitch-based carbon material obtained as described above is characterized by having open pores. For example, open pores having a diameter of 3 to 100 nm determined by a mercury intrusion method have a diameter of 0.02. Those exhibiting a specific volume of 0.1 ml / g are preferably used.

【0024】本発明においては、上記したような微細不
融化炭素材料、その炭素化物(例えば非酸化性雰囲気中
で900〜1500℃の温度での焼成化物)、あるいは
これらの混合物を、微細難黒鉛化性炭素材料として好適
に用いることができる。特に微細不融化炭素材料単独、
あるいはこれを主たる成分とするその炭素化物との混合
物、が好ましく用いられる。
In the present invention, the above-mentioned fine infusibilized carbon material, its carbonized material (for example, calcined at a temperature of 900 to 1500 ° C. in a non-oxidizing atmosphere), or a mixture thereof is used as the fine graphite powder. It can be suitably used as a carbonizable material. In particular, fine infusibilized carbon material alone,
Alternatively, a mixture thereof with a carbonized material having the main component is preferably used.

【0025】次いで、上記のようにして得られた微細難
黒鉛化性炭素材料を、熱硬化性樹脂で被覆して、圧縮成
型原材料を得る。熱硬化性樹脂による被覆は、微細難黒
鉛化性炭素材料に欠ける常温での結着性を付与し、所定
の形状への圧縮成型性を付与し、焼成時に自身は微細難
黒鉛化性炭素材料間の空隙を埋めて炭素化され、微細難
黒鉛化性炭素材料の炭素化物と一体の非黒鉛質炭素材を
与えるために用いられる。この場合、微細難黒鉛化性炭
素材料90〜60質量部に対し、熱硬化性樹脂を10〜
40質量部(炭素材料との合計量が100質量部)とな
る割合で被覆することが好ましい。熱硬化性樹脂が10
質量部未満では所定の効果を充分に得ることが困難であ
り、40質量部を超えると、焼成の際に発生する揮発分
が多くなり、成型体が発泡するため、所定の形状の非黒
鉛質炭素材を得ることが困難となる。熱硬化性樹脂は、
焼成に際し、非黒鉛質炭素への炭素化率が高く、微細難
黒鉛化性炭素材料の炭素化物と良好なC/Cコンポジッ
トを形成しやすいため、熱可塑性樹脂より好ましく用い
られる。微細難黒鉛化性炭素材料の炭素化物と、熱硬化
性樹脂の炭素化物は、同様な非黒鉛質構造を与えるた
め、焼成後に熱膨張率を含めて全体として均質な耐熱衝
撃性の良好な非黒鉛質炭素材を与える。熱硬化性樹脂
は、少なくとも一部が液状であることが好ましく、例え
ばフェノール樹脂、フラン樹脂、不飽和ポリエステル樹
脂、ポリイミド樹脂(前駆体)等が挙げられる。なかで
もフェノール樹脂が好ましく、特に微細難黒鉛化性炭素
材料に、まずレゾール型の液状フェノール樹脂を表面コ
ーティングしたのち、ノボラック型の固体フェノール樹
脂を付着する形態で用いることが好ましい。液状フェノ
ール樹脂と、固体フェノール樹脂とは、重量比で1:
0.5〜1:3の比で用いることが好ましい。
Next, the finely graphitizable carbon material obtained as described above is coated with a thermosetting resin to obtain a compression molding raw material. The coating with a thermosetting resin imparts the binding property at room temperature, which lacks the fine graphitizable carbon material, and imparts compression moldability to a predetermined shape. It is carbonized by filling gaps between them, and is used to give a non-graphitic carbon material integral with the carbonized fine non-graphitizable carbon material. In this case, the thermosetting resin is added in an amount of 10 to 60 parts by mass of the fine non-graphitizable carbon material.
It is preferable to coat at a ratio of 40 parts by mass (the total amount with the carbon material is 100 parts by mass). 10 thermosetting resins
If the amount is less than 40 parts by mass, it is difficult to obtain the predetermined effect sufficiently. If the amount is more than 40 parts by mass, the volatile matter generated at the time of firing increases, and the molded body foams. It becomes difficult to obtain a carbon material. Thermosetting resin is
During firing, it is more preferably used than thermoplastic resin because it has a high carbonization rate to non-graphitic carbon and easily forms a good C / C composite with a carbonized fine non-graphitizable carbon material. The carbonized material of the finely non-graphitizable carbon material and the carbonized material of the thermosetting resin give similar non-graphitic structures. Gives a graphitic carbon material. The thermosetting resin is preferably at least partially liquid, and examples thereof include a phenol resin, a furan resin, an unsaturated polyester resin, and a polyimide resin (precursor). Among them, a phenol resin is preferable, and it is particularly preferable to use a form in which a resol type liquid phenol resin is first coated on the surface of a finely non-graphitizable carbon material, and then a novolak type solid phenol resin is adhered. The liquid phenol resin and the solid phenol resin are in a weight ratio of 1:
It is preferable to use a ratio of 0.5 to 1: 3.

【0026】次いで、熱硬化性樹脂で被覆した微細難黒
鉛化性炭素材料を圧縮成型して成型体を得る。本発明の
非黒鉛質炭素材支持部材の製造方法においては、原材料
として用いる被覆微細難黒鉛化性炭素材料が、全体とし
て粒状に近く、圧縮成形において基本的には任意の形状
付与が可能なことが特徴である。これは、前記特開平1
0−67559号公報に記載の方法によるガラス状炭素
材の製造方法に対する重要な利点と解される。従って、
圧縮成型においては、平型により平板成型体を得ること
はもちろん、予め彫刻を施した型を用いることで、凹凸
や山形状を一体成型により賦与できる。例えば、本発明
の支持部材を、粉末冶金用の金属粉末成型体の下敷板と
して用いる場合、凹凸は、金属粉末成型体が小さい場合
に、金属粉末成型体同士が接触しないために好ましく、
山形状は、金属粉末成型体と炭素下敷板との接触面積を
低減するために好ましい。金属粉末成型体が接触したま
ま焼結すると、接触部が溶融する際に合一してしまう問
題が生じる。また、接触面積を低減することで、炭素下
敷板と金属との炭化反応面積を低減することで、金属焼
結用下敷板の寿命を向上させることが可能となる。
Next, the finely graphitizable carbon material coated with the thermosetting resin is compression molded to obtain a molded body. In the method for producing a non-graphitic carbon material supporting member of the present invention, the coated finely non-graphitizable carbon material used as a raw material is almost granular as a whole, and can be given any shape in compression molding. Is the feature. This is disclosed in
It is understood that this is an important advantage over the method for producing a glassy carbon material according to the method described in JP-A-0-67559. Therefore,
In compression molding, not only a flat molded body can be obtained by a flat mold, but also a concavo-convex shape or a mountain shape can be imparted by integral molding by using a previously engraved mold. For example, when the support member of the present invention is used as an underlaying plate of a metal powder molded body for powder metallurgy, unevenness is preferable because the metal powder molded body does not contact each other when the metal powder molded body is small,
The mountain shape is preferable for reducing the contact area between the metal powder molded body and the carbon underlay plate. If the metal powder molded body is sintered while being in contact, a problem arises in that the contact portions are united when melting. In addition, by reducing the contact area, the carbonization reaction area between the carbon underlay plate and the metal is reduced, so that the life of the underlay plate for metal sintering can be improved.

【0027】圧縮成型は、一般に被覆した微細難黒鉛化
性炭素材料からなる原材料を型に充填して、型にかかる
面圧が投影断面積で5から100MPaになるように加
圧することにより行われる。面圧が5MPa未満である
と、成型後の成型体の強度が低いことで、焼成炉中に移
送する際に破損し易い。また、100MPaを超過する
と成型体の見掛け密度が上昇して、焼成時に焼成割れを
起こす問題を生じる。成型用の型は、成型時の面圧によ
り材質を選定する必要があり、成型面圧が50MPa未
満であればカーボン型を用いることが可能であるが、5
0MPa以上の場合には、金属の型を用いることが好ま
しい。
The compression molding is generally carried out by filling a mold with a coated raw material made of a finely non-graphitizable carbon material and applying a pressure such that a surface pressure applied to the mold is 5 to 100 MPa in a projected sectional area. . When the surface pressure is less than 5 MPa, the strength of the molded body after molding is low, so that the molded body is likely to be damaged when transferred into a firing furnace. On the other hand, if it exceeds 100 MPa, the apparent density of the molded body increases, which causes a problem that firing cracks occur during firing. It is necessary to select a material for the molding die according to the surface pressure at the time of molding. If the molding surface pressure is less than 50 MPa, a carbon mold can be used.
When the pressure is 0 MPa or more, it is preferable to use a metal mold.

【0028】成型する場合に熱源を用いる熱間成型の場
合は、熱を受けた場合に熱硬化性樹脂が可塑化して難黒
鉛性炭素の空隙を埋めながらバインダーとして働く。さ
らに熱を加える事で硬化して成型体となる。特に、難黒
鉛化性炭素の表面に熱硬化性樹脂を被覆した場合には、
成型圧力による難黒鉛化性炭素の破壊を防止でき、難黒
鉛化性炭素の形状を維持した状態で空隙だけを埋められ
ることにある。従って、熱を加えない冷間成型と比較し
て、熱硬化性樹脂の可塑化を促進できる、例えば60〜
170℃での、熱間成型は本発明にとって有効である。
In the case of hot molding using a heat source for molding, when heat is applied, the thermosetting resin plasticizes and acts as a binder while filling the voids of the non-graphitizable carbon. By further applying heat, it cures and becomes a molded body. In particular, when the surface of non-graphitizable carbon is coated with a thermosetting resin,
The object is to prevent the destruction of non-graphitizable carbon due to molding pressure and to fill only the voids while maintaining the shape of non-graphitizable carbon. Therefore, plasticization of the thermosetting resin can be promoted as compared with cold molding without applying heat, for example, 60 to
Hot forming at 170 ° C. is effective for the present invention.

【0029】次に、圧縮成型体を、不活性ないしは非酸
化性雰囲気中で焼成して、焼成体を得る。微細難黒鉛化
性炭素材料及び熱硬化性樹脂は、炭素化の過程で水素や
メタン、二酸化炭素、一酸化炭素、水等を放出して炭素
化する。この場合の焼成温度としては1000℃から2
000℃が好ましく、さらに好ましくは1200℃から
1500℃である。難黒鉛化性炭素材料の場合は、15
00℃を超えても、3000℃までは、大きな構造変化
を受けないためである。また、必要に応じて2000℃
以上の高純度処理やハロゲン処理を行ない、含有不純物
の純化処理を行なうことにより、灰分を例えば200p
pm以下に低減することも好ましい。この脱灰処理は、
原材料の純度が低い場合に有効である。特に、低い焼成
温度で含有不純物が残留する場合、金属粉末成型体を焼
結する際に含有不純物との反応することにより、製品品
質が低下してしまう。しかし、脱灰(純化)処理を行な
うことで、このような反応を抑制できるほかに、金属焼
結用下敷板に対する含有不純物の触媒作用による劣化を
未然に防止できる効果もある。
Next, the compression molded body is fired in an inert or non-oxidizing atmosphere to obtain a fired body. The finely non-graphitizable carbon material and the thermosetting resin carbonize by releasing hydrogen, methane, carbon dioxide, carbon monoxide, water, and the like during the carbonization process. The firing temperature in this case is from 1000 ° C. to 2
The temperature is preferably 000 ° C, more preferably from 1200 ° C to 1500 ° C. 15 for non-graphitizable carbon materials
This is because even if the temperature exceeds 00 ° C., no significant structural change is received until 3000 ° C. 2000 ° C if necessary
The ash content is reduced to, for example, 200 p
It is also preferable to reduce it to pm or less. This demineralization process
This is effective when the purity of raw materials is low. In particular, when the contained impurities remain at a low sintering temperature, the product quality deteriorates due to the reaction with the contained impurities when the metal powder molded body is sintered. However, by performing the demineralization (purification) treatment, such a reaction can be suppressed, and in addition, there is an effect that deterioration due to catalysis of impurities contained in the metal sintering base plate can be prevented.

【0030】[0030]

【実施例】以下、実施例および比較例により、本発明を
更に具体的に説明する。以下の例を含めて、本明細書中
に記載する物性値は、以下の方法により求めた値に基づ
く。
The present invention will be described more specifically with reference to the following examples and comparative examples. The physical property values described in the present specification including the following examples are based on the values obtained by the following methods.

【0031】(1)酸素含有率 試料炭素材料を、0.1mm程度に粉砕後、115℃±
2℃で1時間乾燥して得られた粉末試料の約2mgにつ
いて、Yanaco社製「MT−5」を用いて測定す
る。 (2)固定炭素分 JIS K2425「クレオソート油、加工タール、タ
ールピッチ試験方法」に記載の固定炭素分定量方法に従
い、800℃での固定炭素分を測定する。 (3)灰分 JIS K2425「クレオソート油、加工タール、タ
ールピッチ試験方法」に記載のタールピッチの灰分定量
方法に従い測定する。 (4)平均粒径 JIS K1474「活性炭試験方法」記載の質量平均
粒径を測定する。 (5)開放細孔比容積 細孔径が3〜100nmの範囲の開放細孔比容積(ml
/g)を水銀圧入法により測定する。
(1) Oxygen content After grinding the sample carbon material to about 0.1 mm,
About 2 mg of a powder sample obtained by drying at 2 ° C. for 1 hour is measured using “MT-5” manufactured by Yanaco. (2) Fixed carbon content The fixed carbon content at 800 ° C. is measured according to the method for determining the fixed carbon content described in JIS K2425 “Testing method for creosote oil, processed tar, tar pitch”. (3) Ash content The ash content is measured according to the method for determining the ash content of tar pitch described in JIS K2425 “Testing method for creosote oil, processed tar, tar pitch”. (4) Average particle size The mass average particle size described in JIS K1474 “Test method for activated carbon” is measured. (5) Open pore specific volume An open pore specific volume (ml) having a pore diameter in a range of 3 to 100 nm.
/ G) is measured by a mercury intrusion method.

【0032】(実施例1)微細難黒鉛化性炭素材料とし
て平均粒径が0.62mmの球状不融化石油系ピッチ粒
子(呉羽化学工業(株)製「KH−1B」;酸素含有率
=7.1%、固定炭素分=72.1%、開放細孔比容積
=約0.05ml/g)80質量部の表面を、レゾール
型液状フェノール樹脂(群栄化学工業(株)製「レジト
ップPL−4804」)8質量部で濡らした後、ノボラ
ック型固体フェノール樹脂(群栄化学工業(株)製「P
G−2411」;平均粒径=20〜80μm)を付着さ
せて、原材料とした。該原材料を、170℃に加熱した
平金型中に充填し、初温60℃から昇温させて、内温1
50℃以上において10分間、投影断面積当り5MPa
の加圧により成型して、約7mm厚の平板状圧縮成型体
を得た。次いで、該成型体を黒鉛ルツボ内に平置きし、
該ルツボとともに焼成炉内に配置して、真空置換後、窒
素気流中、1500℃で1時間焼成して寸法420mm
×250mm×6mmの金属焼結用下敷板を得た。該下
敷板は、見掛密度が1.42g/mlであり、灰分は
0.04質量%であった。
Example 1 Spherical infusible petroleum-based pitch particles having an average particle diameter of 0.62 mm ("KH-1B" manufactured by Kureha Chemical Industry Co., Ltd .; oxygen content = 7) as a fine non-graphitizable carbon material 0.1%, fixed carbon content = 72.1%, open pore specific volume = about 0.05 ml / g) 80 parts by mass of the surface was coated with a resol type liquid phenolic resin (Gunei Chemical Industry Co., Ltd. “Regitop” PL-4804 ") after wetting with 8 parts by mass, a novolak-type solid phenolic resin (" P-4 "manufactured by Gunei Chemical Industry Co., Ltd.)
G-2411 ”; average particle size = 20 to 80 μm) to obtain a raw material. The raw materials are filled in a flat mold heated to 170 ° C., and the temperature is raised from an initial temperature of 60 ° C. to an internal temperature of 1 ° C.
5MPa per projected sectional area at 50 ° C or more for 10 minutes
To obtain a flat compression molded body having a thickness of about 7 mm. Next, the molded body is placed flat in a graphite crucible,
Placed in a firing furnace together with the crucible, and after vacuum replacement, fired at 1500 ° C. for 1 hour in a nitrogen stream to obtain a size of 420 mm
An underlaying plate for metal sintering of × 250 mm × 6 mm was obtained. The underlay plate had an apparent density of 1.42 g / ml and an ash content of 0.04% by mass.

【0033】この金属焼結用下敷板上に、それぞれ10
0MPaの圧力で圧縮成型した直径20mm×厚み5m
mの円板状であり、鉄99質量%+黒鉛1質量%の混合
粉末からなる金属粉末成型体1および鉄97質量%+黒
鉛1質量%+ニッケル2質量%の混合粉末からなる金属
粉末成型体2を載置し、1120℃のアンモニア改質ガ
ス(H2:30容量%、N2:70容量%)中で1時間保
持して、焼結した後、該焼結体および炭素下敷板の表面
を目視観察して、浸炭(焼結体表面の肌あれあるいは変
色)の有無を測定した。結果は、下記の基準により評価
した。 A:浸炭は認められない。 B:焼結体および炭素下敷板の少なくとも一方に浸炭が
認められる。 C:焼結体に顕著な浸炭が認められ、また炭素下敷板と
の焼付きを起している。
On the metal sintering base plate, 10
Diameter 20mm x thickness 5m, compression molded at 0MPa pressure
m and a metal powder compact 1 composed of a mixed powder of 99% by mass of iron + 1% by mass of graphite and a powdered mixture of 97% by mass of iron + 1% by mass of graphite + 2% by mass of nickel The body 2 is placed and held for 1 hour in an ammonia reforming gas (H 2 : 30% by volume, N 2 : 70% by volume) at 1120 ° C., and sintered, the sintered body and the carbon underlay plate Was visually observed to determine the presence or absence of carburization (skin appearance or discoloration on the surface of the sintered body). The results were evaluated according to the following criteria. A: Carburizing is not recognized. B: Carburization is observed in at least one of the sintered body and the carbon underlay plate. C: Remarkable carburization was observed in the sintered body, and seizure with the carbon underlay plate was caused.

【0034】次いで、上記1120℃での焼結試験によ
り問題のない炭素下敷板試料については、1150℃お
よび1180℃のアンモニア改質ガス(H2:60容量
%、N2:40容量%)中で1時間の同様の焼結試験を
行い、浸炭の有無を判定した。
Then, for the carbon underlaying plate sample having no problem in the sintering test at 1120 ° C., the sample was prepared in an ammonia reforming gas (H 2 : 60% by volume, N 2 : 40% by volume) at 1150 ° C. and 1180 ° C. A 1 hour similar sintering test was performed to determine the presence or absence of carburization.

【0035】その結果、上記炭素下敷板はいずれの焼結
試験後においても、浸炭を示さず、満足な金属焼結用下
敷板であることが認められた。試験およびその結果の概
要を、以下の実施例および比較例とまとめて後記表1に
記す。
As a result, it was confirmed that the carbon underlaying plate did not show carburization after any of the sintering tests and was a satisfactory underlaying plate for metal sintering. An outline of the test and the results are summarized in Table 1 below together with the following Examples and Comparative Examples.

【0036】(実施例2)球状不融化石油系ピッチ粒子
(呉羽化学工業(株)製「KH−1B」)90質量部
を、レゾール型液状フェノール樹脂(群栄化学工業
(株)製「レジトップPL−4804」)4質量部およ
びノボラック型固体フェノール樹脂(群栄化学工業
(株)製「PG−2411」)6質量部で実施例1と同
様にして処理した原材料を用いて、実施例1と同様に炭
素下敷板を得、金属粉末成型体1および金属粉末成型体
2の焼結を行ない、浸炭状況の判定を行った。
Example 2 90 parts by mass of spherical infusibilized petroleum-based pitch particles ("KH-1B" manufactured by Kureha Chemical Industry Co., Ltd.) were mixed with a resole type liquid phenol resin ("Registration" manufactured by Gunei Chemical Industry Co., Ltd.). Using a raw material treated in the same manner as in Example 1 with 4 parts by mass of Top PL-4804 ") and 6 parts by mass of a novolak type solid phenol resin (" PG-2411 "manufactured by Gunei Chemical Industry Co., Ltd.), In the same manner as in Example 1, a carbon underlay plate was obtained, and the metal powder molded body 1 and the metal powder molded body 2 were sintered to determine the state of carburization.

【0037】(実施例3)球状不融化石油系ピッチ粒子
(呉羽化学工業(株)製「KH−1B」)60質量部
を、レゾール型液状フェノール樹脂(群栄化学工業
(株)製「レジトップPL−4804」)16質量部お
よびノボラック型固体フェノール樹脂(群栄化学工業
(株)製「PG−2411」)24質量部で実施例1と
同様にして処理した原材料を用いて、実施例1と同様
に、炭素下敷板を得、金属粉末成型体1および金属粉末
成型体2の焼結を行い、浸炭状況の判定を行った。
Example 3 60 parts by mass of spherical infusibilized petroleum-based pitch particles ("KH-1B" manufactured by Kureha Chemical Industry Co., Ltd.) were mixed with a resole type liquid phenol resin ("Regiseki" manufactured by Gunei Chemical Industry Co., Ltd.). Using raw materials treated in the same manner as in Example 1 with 16 parts by mass of Top PL-4804) and 24 parts by mass of a novolak type solid phenol resin (“PG-2411” manufactured by Gunei Chemical Industry Co., Ltd.), In the same manner as in Example 1, a carbon underlay plate was obtained, and the metal powder molded body 1 and the metal powder molded body 2 were sintered, and the carburizing state was determined.

【0038】(比較例1)市販黒鉛押出材((株)エス
イーシー社製「PS−G12」)から切り出した寸法が
420mm×250mm×6mmの黒鉛シートを下敷板
として用いて、実施例1と同様に、金属粉末成型体1お
よび金属粉末成型体2の焼結を行ない、浸炭状況の判定
を行った。
(Comparative Example 1) As in Example 1, a graphite sheet having a size of 420 mm x 250 mm x 6 mm cut out from a commercially available graphite extruded material ("PS-G12" manufactured by SSC Corporation) was used as an underlaying plate. Then, the metal powder molded body 1 and the metal powder molded body 2 were sintered, and the carburizing state was determined.

【0039】(比較例2)球状不融化石油系ピッチ粒子
(呉羽化学工業(株)製「KH−1B」)99.2質量
部に、20.5%水溶性アクリル樹脂水溶液(中央理化
工業(株)製41%アクリル樹脂水溶液の2倍希釈液)
0.8質量部を塗布した原材料を、10MPaの圧力で
圧縮成型して得た成型体を、実施例1と同様な条件で焼
して下敷板を得、これを用いて実施例1と同様に、金属
粉末成型体1および金属粉末成型体2の焼結を行ない、
浸炭状況の判定を行なった。
Comparative Example 2 99.2 parts by mass of spherical infusibilized petroleum-based pitch particles (“KH-1B” manufactured by Kureha Chemical Industry Co., Ltd.) were added to a 20.5% water-soluble acrylic resin aqueous solution (Chuo Rika Kogyo Co., Ltd.) (Two-fold dilution of 41% aqueous solution of acrylic resin)
A molded body obtained by compression-molding the raw material coated with 0.8 parts by mass under a pressure of 10 MPa is baked under the same conditions as in Example 1 to obtain an underlay plate, and is used in the same manner as in Example 1 Then, the metal powder molded body 1 and the metal powder molded body 2 are sintered,
The carburization status was determined.

【0040】(比較例3)平均粒径が9μmの粒状不融
化石油系ピッチ粒子(呉羽化学工業(株)製「KH−1
P」=「KH−1B」の粉砕品)80質量部と、熱硬化
性樹脂としての平均粒径が20〜80μmの粒状ノボラ
ック型フェノール樹脂(カシュー樹脂工業(株)製「カ
シューNo.05」)20質量部とを常温、常圧下で、
ヘンシェルミキサーにより混合して得た原材料を用いる
以外は、実施例1と同様に下敷板を得、金属粉末成型体
1および金属粉末成型体2の焼結を行い、浸炭状況の判
定を行った。その結果、金属粉末成型体1の1180℃
での焼結において浸炭が認められた。これは、粒状ノボ
ラック型固体フェノール樹脂としては、20質量%で
は、微細難黒鉛化性炭素材料の空隙を埋めるには、不充
分であったためと考えられる。
Comparative Example 3 Granulated infusible petroleum-based pitch particles having an average particle size of 9 μm (“KH-1” manufactured by Kureha Chemical Industry Co., Ltd.)
P "= pulverized product of" KH-1B ") 80 parts by mass, and a granular novolak phenol resin having an average particle size of 20 to 80 [mu] m as a thermosetting resin (" Cashew No. 05 "manufactured by Cashew Resin Industry Co., Ltd.) ) 20 parts by weight at normal temperature and normal pressure,
Except for using raw materials obtained by mixing with a Henschel mixer, an underlaying plate was obtained in the same manner as in Example 1, and the metal powder molded bodies 1 and 2 were sintered to determine the state of carburization. As a result, the 1180 ° C.
Carburization was observed in the sintering of the steel. This is considered to be because the granular novolak-type solid phenol resin was insufficient at 20% by mass to fill the voids of the finely non-graphitizable carbon material.

【0041】(参考例)球状不融化石油系ピッチ粒子
(呉羽化学工業(株)製「KH−1B」)94.5質量
部を、レゾール型液状フェノール樹脂(群栄化学工業
(株)製「レジトップPL−4804」)1.8質量部
およびノボラック型固体フェノール樹脂(群栄化学工業
(株)製「PG−2411」)2.7質量部で実施例1
と同様にして処理した原材料を用いて、実施例1と同様
に、炭素下敷板を得、金属粉末成型体1および金属粉末
成型体2の焼結を行い、浸炭状況の判定を行なった。金
属粉末成型体1に対しては1150℃まで浸炭しない
が、金属性成型体2では1150℃で浸炭を起した。こ
れは、熱硬化性樹脂量が少ないため、難黒鉛化性炭素の
表層部のみにコーティングされて成型は出来るが、内部
に空隙が多く存在するために酸化消耗が加速して進んだ
と考えられる。
(Reference Example) 94.5 parts by mass of spherical infusibilized petroleum-based pitch particles ("KH-1B" manufactured by Kureha Chemical Industry Co., Ltd.) were mixed with a resol type liquid phenol resin ("Gunei Chemical Industry Co., Ltd."). Example 1 using 1.8 parts by mass of REGISTOP PL-4804 ") and 2.7 parts by mass of a novolak type solid phenol resin (" PG-2411 "manufactured by Gunei Chemical Industry Co., Ltd.)
Using the raw materials treated in the same manner as in Example 1, a carbon underlay plate was obtained in the same manner as in Example 1, and the metal powder molded bodies 1 and 2 were sintered to determine the state of carburization. The metal powder molded body 1 was not carburized to 1150 ° C., but the metal molded body 2 was carburized at 1150 ° C. This is because the amount of the thermosetting resin is small, so that only the surface layer of the non-graphitizable carbon can be coated and molded. However, it is considered that oxidative consumption accelerated due to the presence of many voids inside. .

【0042】上記例の概要をまとめて、下表1に示す。The summary of the above example is summarized in Table 1 below.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【発明の効果】本発明によれば、浸炭を起しにくい高温
加熱金属成型体支持用の均質な非黒鉛質炭素材を効率よ
く製造することが可能になる。
According to the present invention, it is possible to efficiently produce a homogeneous non-graphitic carbon material for supporting a high-temperature-heated metal molded body, which hardly causes carburization.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芳賀 民雄 福島県いわき市錦町落合16 呉羽化学工業 株式会社錦工場内 (72)発明者 小林 辰男 福島県いわき市錦町落合16 呉羽化学工業 株式会社錦工場内 Fターム(参考) 4G032 AA09 AA13 AA14 AA52 BA01 GA06 GA12  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tamio Haga 16 Nishimachi Ochiai, Iwaki City, Fukushima Prefecture Kureha Chemical Industry Co., Ltd. F term (reference) 4G032 AA09 AA13 AA14 AA52 BA01 GA06 GA12

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 微細難黒鉛化性炭素材料を、熱硬化性樹
脂で被覆後に加圧成型し、成型体を焼成することによ
り、見掛密度が0.9〜1.5g/ml、灰分が0.5
%未満である非黒鉛質炭素材とすることを特徴とする高
温加熱金属成型体支持部材の製造方法。
1. A finely non-graphitizable carbon material is coated with a thermosetting resin and then molded under pressure, and the molded body is baked to obtain an apparent density of 0.9 to 1.5 g / ml and an ash content of 0.5
% Of a non-graphitic carbon material having a content of less than 10% by weight.
【請求項2】 微細難黒鉛化性炭素材料が、石油ピッチ
成形体微細化物の不融化物、その炭素化物、又はこれら
の混合物である請求項1の製造方法。
2. The method according to claim 1, wherein the non-graphitizable fine carbon material is an infusibilized petroleum pitch compact, a carbonized product thereof, or a mixture thereof.
【請求項3】 微細難黒鉛化性炭素材料が、酸素含有率
が5〜30質量%の難黒鉛化性炭素材料粒子である請求
項1または2の製造方法。
3. The process according to claim 1, wherein the fine graphitizable carbon material is particles of a non-graphitizable carbon material having an oxygen content of 5 to 30% by mass.
【請求項4】 微細難黒鉛化性炭素材料が、酸素含有率
が5〜10質量%の難黒鉛化性炭素材料粒子である請求
項1または2の製造方法。
4. The process according to claim 1, wherein the fine graphitizable carbon material is particles of a graphitizable carbon material having an oxygen content of 5 to 10% by mass.
【請求項5】 難黒鉛化性炭素材料粒子の平均粒径が
0.3〜1mmである請求項3または4の製造方法。
5. The method according to claim 3, wherein the non-graphitizable carbon material particles have an average particle size of 0.3 to 1 mm.
【請求項6】 微細難黒鉛化性炭素材料が、800℃の
固定炭素分が70質量%以上の炭素材料である請求項1
〜5のいずれかの製造方法。
6. The finely graphitizable carbon material is a carbon material having a fixed carbon content at 800 ° C. of 70% by mass or more.
5. The production method according to any one of items 1 to 5,
【請求項7】 60〜90質量部の微細難黒鉛化性炭素
材料を、10〜40質量部の熱硬化性樹脂(微細難黒鉛
化性炭素材料との合計で100質量部)で被覆後に、加
圧成型する請求項1〜6のいずれかの製造方法。
7. After coating 60 to 90 parts by mass of the fine graphitizable carbon material with 10 to 40 parts by mass of a thermosetting resin (100 parts by mass in total with the fine graphitizable carbon material), The production method according to any one of claims 1 to 6, wherein pressure molding is performed.
【請求項8】 加圧成型に際し、成型体に表面凹凸を付
与する請求項1〜7のいずれかの製造方法。
8. The production method according to claim 1, wherein surface irregularities are imparted to the molded body during pressure molding.
【請求項9】 焼成過程において脱灰処理を行い灰分が
200ppm以下の非黒鉛質炭素材とする請求項1〜8
のいずれかの製造方法。
9. A non-graphitic carbon material having a ash content of 200 ppm or less by performing a deashing treatment in a firing process.
Manufacturing method.
【請求項10】 熱硬化性樹脂が液状熱硬化性樹脂であ
る請求項1〜9のいずれかの製造方法。
10. The method according to claim 1, wherein the thermosetting resin is a liquid thermosetting resin.
【請求項11】 微細難黒鉛化性炭素材料を液状熱硬化
性樹脂で被覆後に、更に固体熱硬化性樹脂を付着させて
から加圧成型する請求項10の製造方法。
11. The production method according to claim 10, wherein after the finely non-graphitizable carbon material is coated with a liquid thermosetting resin, a solid thermosetting resin is further adhered and then pressure molded.
JP2000344746A 2000-11-13 2000-11-13 Method for manufacturing supporting member for high temperature heating metal formed body Pending JP2002154875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000344746A JP2002154875A (en) 2000-11-13 2000-11-13 Method for manufacturing supporting member for high temperature heating metal formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000344746A JP2002154875A (en) 2000-11-13 2000-11-13 Method for manufacturing supporting member for high temperature heating metal formed body

Publications (1)

Publication Number Publication Date
JP2002154875A true JP2002154875A (en) 2002-05-28

Family

ID=18818897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000344746A Pending JP2002154875A (en) 2000-11-13 2000-11-13 Method for manufacturing supporting member for high temperature heating metal formed body

Country Status (1)

Country Link
JP (1) JP2002154875A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7989066B2 (en) 2003-06-18 2011-08-02 Kureha Corporation Support member for high-temperature heat-treated metal molding object and process for production thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369756A (en) * 1986-09-10 1988-03-29 新日本製鐵株式会社 Manufacture of high density graphitic material
JPH05102363A (en) * 1991-10-11 1993-04-23 Ibiden Co Ltd Graphite jig for glass sealing
JPH05345666A (en) * 1992-06-15 1993-12-27 Kobe Steel Ltd Production of formed carbon material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369756A (en) * 1986-09-10 1988-03-29 新日本製鐵株式会社 Manufacture of high density graphitic material
JPH05102363A (en) * 1991-10-11 1993-04-23 Ibiden Co Ltd Graphite jig for glass sealing
JPH05345666A (en) * 1992-06-15 1993-12-27 Kobe Steel Ltd Production of formed carbon material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7989066B2 (en) 2003-06-18 2011-08-02 Kureha Corporation Support member for high-temperature heat-treated metal molding object and process for production thereof

Similar Documents

Publication Publication Date Title
JP3755150B2 (en) High density self-sintered silicon carbide / carbon / graphite composite material and method for producing the same
JP4647370B2 (en) Fiber-reinforced silicon carbide composite material and method for producing the same
JP4207218B2 (en) Metal porous body, method for producing the same, and metal composite using the same
US20050020431A1 (en) Silicon carbide-based, porous structural material being heat-resistant and super lightweight
US7011786B2 (en) Process for producing shaped bodies comprising fiber-reinforced ceramic materials
JP5665122B2 (en) Silicon carbide heat-resistant ultralight porous structure material and method for producing the same
US6860910B2 (en) Carbon foam abrasives
US9534845B2 (en) Method for manufacturing a refractory for an inner lining of a blast furnace and blast furnace having the inner lining
US20110116964A1 (en) Support member for high-temperature heat-treated metal molding object and process for production thereof
JP2002154875A (en) Method for manufacturing supporting member for high temperature heating metal formed body
EP0178753A1 (en) Process for producing a sintered silicon carbide/carbon composite ceramic body having ultrafine grain microstructure
JP4004180B2 (en) Method for producing carbon / graphite composite molded body
JP2005008476A5 (en)
KR101017926B1 (en) Fabrication method for sintered silicon carbide with high density
JP3297977B2 (en) Manufacturing method of carbon material
JPH0812474A (en) Production of carbon-sic composite material
JPS63242969A (en) Silicon carbide base ceramics
JP2007084395A (en) Setter material for sintering
CN1566023A (en) Ceramic-metal and ceramic-ceramic light composite material and manufacturing method thereof
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPH02129071A (en) Production of silicon carbide ceramics
JPS62297279A (en) Manufacture of porous silicon carbide base material
JPH02102177A (en) Porous corrosion-resistant material and production thereof
JPH04164861A (en) Graphite material and production thereof
JPH04357497A (en) Manufacture of boron/carbon composite based neutron shielding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025