JP3278190B2 - Method for producing isotropic high-density graphite material - Google Patents

Method for producing isotropic high-density graphite material

Info

Publication number
JP3278190B2
JP3278190B2 JP06957292A JP6957292A JP3278190B2 JP 3278190 B2 JP3278190 B2 JP 3278190B2 JP 06957292 A JP06957292 A JP 06957292A JP 6957292 A JP6957292 A JP 6957292A JP 3278190 B2 JP3278190 B2 JP 3278190B2
Authority
JP
Japan
Prior art keywords
particle size
graphite material
toluene
weight
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06957292A
Other languages
Japanese (ja)
Other versions
JPH05229810A (en
Inventor
充昭 堂薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP06957292A priority Critical patent/JP3278190B2/en
Publication of JPH05229810A publication Critical patent/JPH05229810A/en
Application granted granted Critical
Publication of JP3278190B2 publication Critical patent/JP3278190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、優れた材質強度を備え
る等方性高密度黒鉛材を安定かつ効率的に製造する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stably and efficiently producing an isotropic high-density graphite having excellent material strength.

【0002】[0002]

【従来の技術】等方性高密度黒鉛材は、例えば放電加工
用電極、高強度治具材、アルミニウム蒸着用ルツボなど
多様な部材として有用されている。一般に、等方性高密
度黒鉛材は、石油系、石炭系などのコークス粉を骨材と
し、これに結合剤であるピッチを添加して混練、再粉砕
したのち、ラバープレスにより成形し、成形体を焼成炭
化および黒鉛化する方法により製造される。この場合、
放電加工用電極を製造目的とする際には、骨材コークス
粉の平均粒子径が大きいと消耗により表面の凹凸が大き
くなり、これによって仕上げ面が粗面となるため、骨材
の平均粒径を10μm 以下に調整する必要がる。また、高
強度治具材やアルミニウム蒸着用ルツボにおいても、高
強度、高密度を得るために骨材コークス粉の平均粒径は
可及的に小さくすることが好ましい。
2. Description of the Related Art Isotropic high-density graphite materials are useful as various members such as electrodes for electric discharge machining, high-strength jig materials, and crucibles for aluminum deposition. Generally, isotropic high-density graphite is made of petroleum-based or coal-based coke powder, aggregated with pitch as a binder, kneaded and re-ground, and then molded by rubber press. It is produced by a method of calcining and graphitizing a body. in this case,
When manufacturing the electrode for electric discharge machining, if the average particle diameter of the aggregate coke powder is large, the unevenness of the surface becomes large due to wear, and the finished surface becomes rough, so the average particle size of the aggregate Must be adjusted to 10 μm or less. Also in the case of high-strength jig materials and crucibles for aluminum deposition, it is preferable to reduce the average particle size of the aggregate coke powder as much as possible in order to obtain high strength and high density.

【0003】ところが、骨材の平均粒径を小さくすると
吸油量が増大し、多量のピッチバインダーを使用しない
と骨材コークス粉との均一な捏合ができなくなる。この
ためバインダー量を多くすると、焼成段階で含有する揮
発成分が一時に多量発生して材質組織に亀裂や破損など
の欠陥現象が生じる原因となる。したがって、大型の等
方性黒鉛材料を製造することは不可能となる。このよう
な問題の解消を図るため、焼成前に混練原料中の揮発分
を調整する技術が開発されている。例えば、混練の終了
後に捏合機の蓋を開放して発生ガスをブロワーで排気す
ることにより揮発分を調整する方法(特公平1−16789
号公報) 、骨材とバインダーを混練したのち粗粉砕して
不活性雰囲気中で加熱することにより揮発分を調整する
方法(特開昭62−182107号公報、特公平1−24724 号公
報、特公平3−29001 号公報) などが提案されている。
However, if the average particle size of the aggregate is reduced, the oil absorption increases, and uniform kneading with the aggregate coke powder cannot be performed unless a large amount of pitch binder is used. For this reason, when the amount of the binder is increased, a large amount of volatile components contained in the firing step is generated at a time, which causes a defect phenomenon such as crack or breakage in the material structure. Therefore, it is impossible to produce a large isotropic graphite material. In order to solve such a problem, a technique for adjusting the volatile content in the kneading raw material before firing has been developed. For example, after kneading is completed, the lid of the kneading machine is opened and the generated gas is exhausted with a blower to adjust the volatile content (Japanese Patent Publication No. 1-16789).
Japanese Patent Application Laid-Open No. 62-182107, Japanese Patent Publication No. 1-272424, and a method of kneading an aggregate and a binder, coarsely pulverizing the mixture, and heating the mixture in an inert atmosphere to adjust volatile components. Japanese Patent Publication No. Hei 3-29001) has been proposed.

【0004】[0004]

【発明が解決しようとする課題】これらの先行技術は、
焼成時に亀裂や破損を引き起こす主因となる揮発成分、
とくにピッチ中に含まれる分子量の小さなトルエン可溶
分を予め除去することにより全体の揮発分量を調整する
ものである。しかしながら、焼成段階における亀裂や破
損などの材質損傷を抑制し、常に安定して優れた材質特
性の等方性高密度黒鉛材を得るためには、それらの現象
に影響を与えるその他の条件因子を解明する必要があ
る。
These prior arts are:
Volatile components that are the main cause of cracking and breakage during firing,
In particular, the total amount of volatile components is adjusted by previously removing the toluene-soluble component having a small molecular weight contained in the pitch. However, in order to suppress material damage such as cracks and breakage in the firing stage, and to always obtain an isotropic high-density graphite material with excellent material properties, other condition factors affecting those phenomena must be considered. It needs to be clarified.

【0005】本発明者は、用いるバインダーの種類、配
合量、揮発分、分子量分布などに着目して多面的に研究
を重ねた結果、バインダー中のトルエン可溶分だけでは
なくこれより高分子量のβ−レジン成分も焼成時の材質
損傷に関係することを突き止め、更にトルエン可溶分と
併せてβ−レジン分を一定範囲に調整すると焼成時の材
質損傷を伴うことなしに安定して高強度の等方性高密度
黒鉛材を製造し得ることを解明した。
The inventor of the present invention has conducted multifaceted studies focusing on the type, blending amount, volatile content, molecular weight distribution, etc. of the binder used. As a result, not only the toluene-soluble component in the binder but also a higher Ascertain that the β-resin component is also related to material damage during firing, and adjust the β-resin content to a certain range together with the toluene-soluble component to stably achieve high strength without material damage during firing. It was clarified that an isotropic high-density graphite material could be manufactured.

【0006】本発明は、上記の知見に基づいて開発され
たもので、その目的は優れた材質強度と正常な材質組織
を有する等方性高密度黒鉛材を安定かつ効率よく得るた
めの工業的な製造方法を提供することにある。
The present invention has been developed on the basis of the above findings, and has as its object to provide an industrial solution for obtaining an isotropic high-density graphite material having excellent material strength and normal material structure stably and efficiently. To provide a simple manufacturing method.

【0007】[0007]

【課題が解決するための手段】上記の目的を達成するた
めの本発明による等方性黒鉛材の製造方法は、最大粒子
径が10μm 以下の非黒鉛性炭素質を主体とする骨材成分
100重量部に対してピッチ系バインダー70〜110 重量部
を添加捏合し、混練物を粗粉砕したのち 250〜450 ℃の
温度域で熱処理することによってトルエン可溶分および
β−レジン分を各5〜15重量%の範囲になるように揮発
分調整し、再度粉砕してラバープレスにより所定形状に
成形し、ついで焼成炭化および黒鉛化処理を施すことを
構成上の特徴とする。
In order to achieve the above object, a method for producing an isotropic graphite material according to the present invention comprises an aggregate component mainly composed of non-graphitic carbonaceous material having a maximum particle diameter of 10 μm or less.
70 to 110 parts by weight of a pitch binder is added to and kneaded with 100 parts by weight, and the kneaded material is roughly pulverized, and then heat-treated in a temperature range of 250 to 450 ° C. to reduce the toluene soluble component and the β-resin component to 5 parts each. The composition is characterized in that the volatile content is adjusted so as to fall within the range of 重量 15% by weight, crushed again, formed into a predetermined shape by a rubber press, and then subjected to calcination carbonization and graphitization.

【0008】本発明に適用される非黒鉛性炭素質を主体
とする骨材成分としては、例えば石油コークス、ピッチ
コークス、カーボンブラック、無煙炭などを挙げること
ができるが、石油コークス、ピッチコークスあるいはそ
の混合物が好ましく用いられる。これらの骨材成分に人
造黒鉛のような黒鉛質の粉末を若干量配合して使用する
ことも可能である。しかし、黒鉛粉末の配合比率が高く
なると製品の等方性が低下する恐れがある。骨材は機械
的粉砕機により微粉砕して使用に供されるが、高密度組
織を得るために最大粒径を10μm 以下にする必要があ
り、好ましくは平均粒径を 0.3〜3μm の範囲に粒度調
整する。
[0008] Examples of the non-graphitic carbonaceous aggregate component applicable to the present invention include petroleum coke, pitch coke, carbon black, anthracite, and the like. Mixtures are preferably used. It is also possible to mix and use a small amount of a graphite powder such as artificial graphite with these aggregate components. However, when the compounding ratio of the graphite powder is increased, the isotropy of the product may be reduced. The aggregate is finely pulverized by a mechanical pulverizer before use. In order to obtain a high-density structure, the maximum particle size needs to be 10 μm or less, and preferably the average particle size is in the range of 0.3 to 3 μm. Adjust the particle size.

【0009】バインダーには、石炭系の硬ピッチ、中ピ
ッチ、軟ピッチ、コールタールのほか石油ピッチなどピ
ッチ系のものが用いられる。該ピッチ系バインダーは、
骨材成分 100重量部に対して70〜110 重量部の割合で配
合する。バインダー量が70重量部未満では結合力が不十
分となり、110 重量部を越えると焼成後の材質に亀裂や
破損を生じるようになる。
As the binder, pitch-based binders such as coal-based hard pitch, medium pitch, soft pitch, coal tar and petroleum pitch are used. The pitch-based binder,
It is blended in an amount of 70 to 110 parts by weight with respect to 100 parts by weight of the aggregate component. If the amount of the binder is less than 70 parts by weight, the bonding strength becomes insufficient. If the amount exceeds 110 parts by weight, cracks and breakage occur in the fired material.

【0010】骨材成分とバインダーとの捏合は、捏合装
置を用いて両成分が均一に分散混練し、バインダーが骨
材を十分に被覆するまでおこなう。捏合時の温度は、ピ
ッチ系バインダーが軟化する温度に保持する必要がある
ため、通常 150℃以上になるまで加熱されるが、250 ℃
を越えるとピッチの揮発分が蒸発するようになるため好
ましくない。したがって、 150〜250 ℃の温度範囲で適
宜に設定される。捏合処理後の混練物は塊状であるた
め、これを最大10mm以下の粒径に粗粉砕する。粒径が10
mmを越える塊状物があると、表面部と内部のトルエン可
溶分およびβ−レジン分の量が均一になり難い。なお、
本発明におけるトルエン不溶分およびΒ−レジンは粒度
212〜 500μm に粉砕した試料をトルエンまたはキノリ
ンで抽出することで測定したものである。
The kneading of the aggregate component and the binder is carried out until both components are uniformly dispersed and kneaded by using a kneading apparatus and the binder sufficiently covers the aggregate. Since the temperature during kneading must be maintained at a temperature at which the pitch binder softens, the temperature is usually increased to 150 ° C. or higher, but 250 ° C.
Exceeding the ratio is undesirable because volatile components of the pitch evaporate. Therefore, the temperature is appropriately set in the temperature range of 150 to 250 ° C. Since the kneaded material after the kneading process is a lump, it is roughly pulverized to a particle size of 10 mm or less at the maximum. Particle size 10
If there is a lump exceeding mm, it is difficult to make the amounts of the toluene-soluble component and the β-resin component in and around the surface uniform. In addition,
The toluene-insoluble content and Β-resin in the present invention have a particle size of
It was measured by extracting a sample pulverized to 212 to 500 μm with toluene or quinoline.

【0011】粗粉砕した混練物は、ついで 250〜450 ℃
の温度域で熱処理を施してトルエン可溶分およびβ−レ
ジン分がそれぞれ5〜15重量%の範囲に入るように揮発
分調整する。この際の熱処理温度が 250℃未満であると
トルエン可溶分の揮散除去に長時間を要し、一方、450
℃を越えるとトルエン可溶分とβ−レジン分が急激に減
少して焼結性が不足し、結果的に得られる等方性黒鉛材
の強度が低下する。熱処理時の雰囲気は、酸化性雰囲気
でも不活性雰囲気でもよいが、酸化性雰囲気を採用する
ときには酸素濃度が高くなり過ぎるとトルエン可溶分お
よびβ−レジン分の減少が極めて急速に進むため、熱処
理温度を低くする必要がある。熱処理は揮発成分が揮散
してトルエン可溶分およびβ−レジン分が共に5〜15重
量%の範囲になった時点で終了する。トルエン可溶分お
よび/またはβ−レジン分が15重量%を越える場合に
は、揮発成分の除去が不十分となって焼成時に材質組織
に亀裂が生じ、製造される等方性黒鉛材の組織密度も上
がらず、期待する材質強度が得られなくなる。また、ト
ルエン可溶分および/またはβ−レジン分が5重量%未
満になるほど揮発分の揮散が進むと結合力が減退して、
同様の材質欠陥と特性不足を招くようになる。
The coarsely ground kneaded material is then heated at 250 to 450 ° C.
The volatile component is adjusted so that the toluene-soluble component and the β-resin component are each in the range of 5 to 15% by weight. If the heat treatment temperature at this time is less than 250 ° C, it takes a long time to volatilize and remove the toluene-soluble component, while
When the temperature exceeds ℃, the toluene-soluble component and β-resin component are sharply reduced, so that the sinterability is insufficient, and the strength of the resulting isotropic graphite material is reduced. The atmosphere during the heat treatment may be an oxidizing atmosphere or an inert atmosphere. However, when an oxidizing atmosphere is employed, if the oxygen concentration becomes too high, the toluene soluble component and the β-resin component decrease very rapidly. It is necessary to lower the temperature. The heat treatment is terminated when the volatile components evaporate and the toluene-soluble component and the β-resin component both fall within the range of 5 to 15% by weight. If the toluene-soluble component and / or β-resin component exceeds 15% by weight, the removal of the volatile components becomes insufficient and the material structure cracks during firing, resulting in the structure of the produced isotropic graphite material. The density does not increase, and the expected material strength cannot be obtained. Further, as the volatilization of volatile components progresses as the toluene-soluble component and / or β-resin component becomes less than 5% by weight, the binding force decreases,
Similar material defects and insufficient properties are caused.

【0012】このようにして揮発分調整した混練物は、
粉砕機により粉砕処理する。使用する粉砕機の種類は限
定されないが、粉砕した粉末の平均粒径は骨材の平均粒
径以上であることが必要である。粉砕を骨材の平均粒径
以下までおこなうと表面にバインダー成分が存在しない
骨材の割合が高くなるため緻密な黒鉛材が得られなくな
る。また、粉砕粉の最大粒径は、骨材の最大粒径の3倍
以内であることが好ましく、これ以上になると黒鉛材の
組織中に大きな気孔が生成して緻密な組織が得られな
い。
[0012] The kneaded material thus adjusted for volatile content is
Pulverize with a crusher The type of crusher to be used is not limited, but the average particle size of the crushed powder needs to be equal to or larger than the average particle size of the aggregate. If the pulverization is performed to the average particle size of the aggregate or less, the ratio of the aggregate having no binder component on the surface increases, so that a dense graphite material cannot be obtained. Further, the maximum particle size of the pulverized powder is preferably within three times the maximum particle size of the aggregate, and if it is more than this, large pores are generated in the structure of the graphite material, so that a dense structure cannot be obtained.

【0013】粉砕した粉末を成形材料としラバープレス
を用いて所定形状に成形したのち、常法により非酸化性
雰囲気下の加熱炉で1000℃までの温度で焼成炭化し、更
に黒鉛化炉に移して2500℃以上の高温度域で黒鉛化処理
して等方性高密度黒鉛材を得る。
After the pulverized powder is used as a molding material and molded into a predetermined shape using a rubber press, it is calcined and carbonized in a heating furnace under a non-oxidizing atmosphere at a temperature of up to 1000 ° C., and further transferred to a graphitization furnace. Graphitization in a high temperature range of 2500 ° C. or more to obtain an isotropic high-density graphite material.

【0014】[0014]

【作用】本発明による揮発分調整の対象は、トルエン可
溶分とβ−レジン分の両成分である。β−レジン分はト
ルエンに不溶であってキノリンに可溶な成分で、トルエ
ン可溶分より大きな分子量をもつためバインダー的な結
合機能を有するが、この調整をおこなわないと焼成工程
での材質損傷を避けることが難しい。本発明では骨材と
ピッチ系バインダーの混練物を熱処理してトルエン可溶
分およびβ−レジン分の両成分が5〜15重量%の範囲に
なる揮発分調整することにより、焼成段階での材質損傷
を伴うことなく等方性高密度黒鉛材の製造が可能にな
る。そのうえ、得られる黒鉛材の強度が向上する効果も
同時にもたらされる。この機構は詳しく解明するに至っ
ていないが、熱処理後の混練物中に存在するバインダー
成分の分子量分布が焼成時に組織破壊を起こさずに円滑
かつ強固に焼結して緻密組織を形成するために最も好適
な状態となっていることに起因するものと推測される。
According to the present invention, the components to be adjusted for volatile components are both the toluene-soluble component and the β-resin component. The β-resin is a component that is insoluble in toluene and soluble in quinoline, and has a binder-like binding function because it has a higher molecular weight than the toluene-soluble component, but if this adjustment is not made, material damage in the firing process Difficult to avoid. In the present invention, the kneaded product of the aggregate and the pitch-based binder is heat-treated to adjust the volatile matter so that both the toluene-soluble component and the β-resin component are in the range of 5 to 15% by weight. It is possible to produce an isotropic high-density graphite material without damage. In addition, the effect of improving the strength of the obtained graphite material is also provided. Although this mechanism has not been elucidated in detail, the molecular weight distribution of the binder component present in the kneaded material after the heat treatment is most likely to form a dense structure by sintering firmly and firmly without causing structural destruction during firing. It is presumed that this is due to the favorable state.

【0015】このような機構が、骨材の粒度、骨材とピ
ッチ系バインダーの配合比率などその他の特定条件によ
る作用と相俟って、常に安定して高品質の等方性高密度
黒鉛材が製造される。
Such a mechanism, combined with the effect of other specific conditions such as the particle size of the aggregate and the mixing ratio of the aggregate and the pitch-based binder, is always stable and high-quality isotropic high-density graphite material. Is manufactured.

【0016】[0016]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0017】実施例1 平均粒径が 2.5μm で最大粒径が10μm のピッチコーク
ス粉 100重量部にピッチ 110重量部を配合してZ型捏合
機に投入し、200 ℃に加熱しながら十分に捏合処理し
た。冷却後、混練物を最大粒径5mm以下に粗粉砕した。
ついで、粗粉砕した混練物を大気雰囲気下で 300℃の温
度に30分熱処理して揮発分調整をおこなった。これをジ
ェット粉砕機で平均粒径が7μm 、最大粒径が28μm に
なるように微粉砕したのちラバープレスでブロック状に
成形し、成形体を焼成炉に詰めて非酸化雰囲気下で約10
00℃に焼成炭化し、さらに黒鉛化炉に移して3000℃の温
度で黒鉛化した。このようにして製造された等方性黒鉛
材の各種特性および材質亀裂の発生状況を測定し、その
結果を熱処理後のトルエン可溶分およびβ−レジン分と
対比させて表1に示した。
Example 1 100 parts by weight of pitch coke powder having an average particle size of 2.5 μm and a maximum particle size of 10 μm were mixed with 110 parts by weight of a pitch, charged into a Z-type kneader, and sufficiently heated at 200 ° C. It was kneaded. After cooling, the kneaded material was roughly pulverized to a maximum particle size of 5 mm or less.
Then, the coarsely ground kneaded material was subjected to a heat treatment at a temperature of 300 ° C. for 30 minutes in an air atmosphere to adjust volatile components. This is finely pulverized by a jet pulverizer so as to have an average particle diameter of 7 μm and a maximum particle diameter of 28 μm, and then molded into a block by a rubber press.
The carbonized material was calcined at 00 ° C., transferred to a graphitization furnace, and graphitized at a temperature of 3000 ° C. The properties of the isotropic graphite material thus produced and the occurrence of cracks in the material were measured, and the results are shown in Table 1 in comparison with the toluene-soluble component and the β-resin component after the heat treatment.

【0018】実施例2 平均粒径が4μm で最大粒径が14μm のピッチコークス
粉 100重量部にピッチ98重量部を配合してZ型捏合機に
投入し、200 ℃に加熱しながら十分に捏合処理した。冷
却後、最大粒径5mm以下に粗粉砕したのち、実施例1と
同一条件で熱処理を施して揮発分調整をおこなった。こ
れをジェット粉砕機で平均粒径が 8.7μm 、最大粒径が
33μm になるように微粉砕し、ラバープレスでブロック
状に成形したのち実施例1と同一条件で焼成炭化および
黒鉛化して等方性黒鉛材を製造した。得られた等方性黒
鉛材の各種特性を測定し、結果を熱処理後のトルエン可
溶分およびβ−レジン分とともに表1に併載した。
Example 2 98 parts by weight of a pitch was mixed with 100 parts by weight of pitch coke powder having an average particle size of 4 μm and a maximum particle size of 14 μm, and the mixture was charged into a Z-type kneading machine and sufficiently kneaded while heating to 200 ° C. Processed. After cooling, the mixture was roughly pulverized to a maximum particle size of 5 mm or less, and then subjected to a heat treatment under the same conditions as in Example 1 to adjust volatile components. Using a jet mill, the average particle size is 8.7 μm and the maximum particle size is
It was pulverized to a size of 33 μm, formed into a block by a rubber press, calcined and carbonized under the same conditions as in Example 1 to produce an isotropic graphite material. Various properties of the obtained isotropic graphite material were measured, and the results are shown in Table 1 together with the toluene-soluble content and the β-resin content after the heat treatment.

【0019】実施例3 平均粒径 2.5μm 、最大粒径10μm のピッチコークス粉
100重量部にピッチ110 重量部を配合してZ型捏合機に
投入し、200 ℃に加熱しながら十分に捏合処理した。冷
却後、最大粒径5mm以下に粗粉砕したのち、窒素雰囲気
下において400℃の温度で30分熱処理して揮発分調整を
おこなった。引き続き、実施例1と同一条件で粉砕、成
形、焼成および黒鉛化処理を施して等方性黒鉛材を製造
した。得られた黒鉛材の各種特性を測定し、結果を熱処
理後のトルエン可溶分およびβ−レジン分と対比させて
表2に併載した。
Example 3 Pitch coke powder having an average particle size of 2.5 μm and a maximum particle size of 10 μm
100 parts by weight and 110 parts by weight of the pitch were mixed, charged into a Z-type kneading machine, and sufficiently kneaded while heating to 200 ° C. After cooling, the mixture was coarsely pulverized to a maximum particle size of 5 mm or less, and then subjected to a heat treatment at a temperature of 400 ° C. for 30 minutes in a nitrogen atmosphere to adjust volatile components. Subsequently, pulverization, molding, firing and graphitization were performed under the same conditions as in Example 1 to produce an isotropic graphite material. Various characteristics of the obtained graphite material were measured, and the results are shown in Table 2 in comparison with toluene-soluble components and β-resin components after heat treatment.

【0020】比較例1 熱処理を、大気雰囲気下で 400℃の温度に30分加熱する
条件でおこなった以外は、全て実施例1と同一の条件に
より等方性黒鉛材を製造した。得られた黒鉛材の各種特
性を測定し、結果を熱処理後のトルエン可溶分およびβ
−レジン分と対比させて表1に併載した。
Comparative Example 1 An isotropic graphite material was produced under the same conditions as in Example 1 except that the heat treatment was carried out in an air atmosphere at a temperature of 400 ° C. for 30 minutes. The various properties of the obtained graphite material were measured, and the results were converted to the toluene soluble matter and β after heat treatment.
The results are shown in Table 1 in comparison with the resin content.

【0021】比較例2 熱処理を、窒素雰囲気中で 300℃の温度に30分加熱する
条件でおこなった以外は、全て実施例1と同一の条件に
より等方性黒鉛材を製造した。得られた黒鉛材の各種特
性を測定し、結果を熱処理後のトルエン可溶分およびβ
−レジン分と対比させて表1に併載した。
Comparative Example 2 An isotropic graphite material was manufactured under the same conditions as in Example 1 except that the heat treatment was performed in a nitrogen atmosphere at a temperature of 300 ° C. for 30 minutes. The various properties of the obtained graphite material were measured, and the results were converted to the toluene soluble matter and β after heat treatment.
The results are shown in Table 1 in comparison with the resin content.

【0022】[0022]

【表1】 [Table 1]

【0023】表1の結果から、熱処理後のトルエン可溶
分およびβ−レジン分の量が本発明の要件を満たす実施
例の等方性黒鉛材は高密度で優れた強度を有しており、
材質亀裂の発生も認められない。これに対し、トルエン
可溶分とβ−レジン分が共に本発明の要件を外れる比較
例1、トルエン可溶分が本発明の要件を外れる比較例2
による等方性黒鉛材は本発明品に比べていずれも密度、
強度とも低く、材質亀裂の発生も認められた。
From the results shown in Table 1, it can be seen that the isotropic graphite materials of the examples in which the amounts of the toluene-soluble component and the β-resin content after the heat treatment satisfy the requirements of the present invention have high density and excellent strength. ,
No cracking of the material is observed. On the other hand, Comparative Example 1 in which both the toluene-soluble component and the β-resin component do not satisfy the requirements of the present invention, and Comparative Example 2 in which the toluene-soluble component does not satisfy the requirements of the present invention.
The isotropic graphite material according to the present invention has a density,
The strength was low, and cracking of the material was observed.

【0024】[0024]

【発明の効果】以上のとおり、本発明によれば高密度、
高強度で正常な材質組織を備える等方性黒鉛材を安定か
つ効率的に製造することができる。したがって、放電加
工用電極、高強度治具材、アルミニウム蒸着用ルツボ等
を用途目的とした黒鉛材料の工業的な製造技術として有
用である。
As described above, according to the present invention, high density,
An isotropic graphite material having a high strength and a normal material structure can be stably and efficiently manufactured. Therefore, it is useful as an industrial production technology for graphite materials for use as electrodes for electric discharge machining, high-strength jig materials, crucibles for aluminum deposition, and the like.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01B 31/04 101 C04B 35/52 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continuation of front page (58) Surveyed field (Int.Cl. 7 , DB name) C01B 31/04 101 C04B 35/52 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 最大粒子径が10μm 以下の非黒鉛性炭素
質を主体とする骨材成分 100重量部に対してピッチ系バ
インダー70〜110 重量部を添加捏合し、混練物を粗粉砕
したのち 250〜450 ℃の温度域で熱処理することによっ
てトルエン可溶分およびβ−レジン分が各5〜15重量%
の範囲になるように揮発分調整し、再度粉砕してラバー
プレスにより所定形状に成形し、ついで焼成炭化および
黒鉛化処理を施すことを特徴とする等方性高密度黒鉛材
の製造方法。
1. A mixture of 100 to 100 parts by weight of a non-graphitic carbonaceous aggregate having a maximum particle size of 10 μm or less, 70 to 110 parts by weight of a pitch binder, kneading, and coarsely pulverizing the kneaded material. Heat treatment in the temperature range of 250 to 450 ° C makes toluene soluble component and β-resin component 5 to 15 wt% each.
The method for producing an isotropic high-density graphite material characterized in that volatile matter is adjusted so as to fall within the range described above, the material is ground again, molded into a predetermined shape by a rubber press, and then calcined and graphitized.
JP06957292A 1992-02-18 1992-02-18 Method for producing isotropic high-density graphite material Expired - Fee Related JP3278190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06957292A JP3278190B2 (en) 1992-02-18 1992-02-18 Method for producing isotropic high-density graphite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06957292A JP3278190B2 (en) 1992-02-18 1992-02-18 Method for producing isotropic high-density graphite material

Publications (2)

Publication Number Publication Date
JPH05229810A JPH05229810A (en) 1993-09-07
JP3278190B2 true JP3278190B2 (en) 2002-04-30

Family

ID=13406639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06957292A Expired - Fee Related JP3278190B2 (en) 1992-02-18 1992-02-18 Method for producing isotropic high-density graphite material

Country Status (1)

Country Link
JP (1) JP3278190B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118066A (en) * 1993-10-22 1995-05-09 Tokai Carbon Co Ltd Production of high strength isotropic graphite material
JP4539147B2 (en) * 2004-04-07 2010-09-08 東海カーボン株式会社 Method for producing graphite electrode for electric discharge machining
JP5025976B2 (en) * 2006-03-31 2012-09-12 ジャパンスーパークォーツ株式会社 High-purity carbon electrode for arc melting and its application
US20100095880A1 (en) * 2008-10-17 2010-04-22 Japan Super Quartz Corporation Arc melting high-purity carbon electrode and application thereof

Also Published As

Publication number Publication date
JPH05229810A (en) 1993-09-07

Similar Documents

Publication Publication Date Title
CA1090068A (en) Production of high-density carbon materials
JP3765840B2 (en) Carbon material manufacturing method
JP3278190B2 (en) Method for producing isotropic high-density graphite material
JP2000007436A (en) Graphite material and its production
JPH0124724B2 (en)
JP2910002B2 (en) Special carbon material kneading method
JPH0234508A (en) Preparation of isotropic carbon material having high density
JPH07165467A (en) Production of isotropic graphite material
JPS5978914A (en) Manufacture of special carbonaceous material
JP2652909B2 (en) Method for producing isotropic high-strength graphite material
JP3198123B2 (en) Method for producing isotropic high-strength graphite material
JP2001130963A (en) Method for producing isotropic high-density carbon material
JPS61295216A (en) Preparation of isotropic graphite material having high density and high strength
JPH04228412A (en) Composition for specific carbon material
JPH0288464A (en) Production of density and high strength carbon material and graphite electrode material for electric spark machining
JPH0764528B2 (en) Method for producing high-quality carbonaceous compact
JPH08337475A (en) Production of carbon-boron carbide sintered material
JP4539147B2 (en) Method for producing graphite electrode for electric discharge machining
JP3094502B2 (en) Manufacturing method of carbon material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPH0158125B2 (en)
KR100321058B1 (en) A Method of Preparing Carbon Particles
JP2924061B2 (en) Production method of raw material powder for carbon material
JP2924062B2 (en) Production method of raw material powder for carbon material
JPH0364448B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees