JPH08337475A - Production of carbon-boron carbide sintered material - Google Patents

Production of carbon-boron carbide sintered material

Info

Publication number
JPH08337475A
JPH08337475A JP7169190A JP16919095A JPH08337475A JP H08337475 A JPH08337475 A JP H08337475A JP 7169190 A JP7169190 A JP 7169190A JP 16919095 A JP16919095 A JP 16919095A JP H08337475 A JPH08337475 A JP H08337475A
Authority
JP
Japan
Prior art keywords
boron carbide
powder
carbon
precursor powder
carbon precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7169190A
Other languages
Japanese (ja)
Inventor
Shigeru Tatsuno
茂 辰野
Yuji Ushijima
裕次 牛嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP7169190A priority Critical patent/JPH08337475A/en
Publication of JPH08337475A publication Critical patent/JPH08337475A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE: To produce a large-sized carbon-baron carbide sintered material contg. uniformly dispersed boron carbide and having high strength. CONSTITUTION: Calcined coke is kneaded with pitch, pulverized and screened to form carbon precursor powder, 100 pts.wt. of this precursor powder is dry- mixed with 1-5 pts.wt. boron carbide powder whose particle size is almost equal to that of carbon precursor powder and the resultant powdery mixture is carbonized by firing at <=2,200 deg.C in a nonoxidizing atmosphere after cold isostatic pressing. The average particle diameter of each of the carbon precursor powder and the boron carbide powder is preferably regulated to 15-50μm and the volatile matter content of the carbon precursor powder is preferably regulated to 13-15%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化ホウ素が均一に分
散した高強度を有する大型の炭素/炭化ホウ素焼結材の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a large carbon / boron carbide sintered material having high strength in which boron carbide is uniformly dispersed.

【0002】[0002]

【従来の技術】炭素材中に炭化ホウ素を分散した複合焼
結材は、耐酸化性に優れ、高強度を有する素材として高
温用の部材をはじめ多くの工業分野で有用されている。
また、炭素/炭化ホウ素焼結材に含まれるホウ素成分は
中性子の吸収断面積が大きいため、原子炉の中性子遮蔽
材としても用いられている。
2. Description of the Related Art A composite sintered material in which boron carbide is dispersed in a carbon material is used as a material having excellent oxidation resistance and high strength in many industrial fields including high temperature members.
Further, since the boron component contained in the carbon / boron carbide sintered material has a large neutron absorption cross section, it is also used as a neutron shielding material for a nuclear reactor.

【0003】炭素/炭化ホウ素焼結材の製造技術につい
ては従来から多くの方法が知られており、例えば特開昭
62−108767号公報にはピッチ類を加熱処理して
生成する光学的異方性小球体をピッチマトリックス中か
ら分離して得られる炭素質粉末を原料とし、該原料粉末
100重量部に対して炭化ホウ素を1〜50重量部の割
合で添加混合した後、該混合粉末を成形、焼成する方法
が提案されている。また、特公平5−27589号公報
にはピッチ類から製造される炭素質光学的異方性小球体
を微粉砕し、これに炭化ホウ素及び黒鉛を加えて混合し
たのち、成形、予備焼成、減圧下乃至真空下での高温焼
成を順次に施す製造方法が提案されている。
Many methods have been conventionally known for producing a carbon / boron carbide sintered material. For example, Japanese Patent Application Laid-Open No. 62-108767 discloses an optical anisotropic method in which pitches are heat-treated. Of the carbonaceous powder obtained by separating the small spheres from the pitch matrix as a raw material, and adding and mixing boron carbide at a ratio of 1 to 50 parts by weight to 100 parts by weight of the raw material powder, and then molding the mixed powder. , A method of firing has been proposed. Further, in Japanese Examined Patent Publication (Kokoku) No. 5-27589, carbonaceous optically anisotropic small spheres produced from pitches are finely pulverized, and boron carbide and graphite are added thereto and mixed, followed by molding, pre-baking and depressurization. A manufacturing method has been proposed in which high temperature firing under lower or vacuum is sequentially performed.

【0004】しかしながら、これらの方法では炭素質原
料として高価な光学的異方性炭素質小球体を使用するた
め、コスト的に不利になるばかりではなく、光学的異方
性炭素質小球体は加熱時の体積収縮率が大きい関係で大
型の炭素/炭化ホウ素焼結材を製造することが困難であ
る。
However, since these methods use expensive optically anisotropic carbonaceous spheres as a carbonaceous raw material, not only is it disadvantageous in terms of cost, but the optically anisotropic carbonaceous spheres are heated. It is difficult to manufacture a large-sized carbon / boron carbide sintered material due to a large volume shrinkage ratio.

【0005】また、特公昭58−38386号公報には
残留揮発分4重量%以上を有するコークスとセラミック
ス粉末を混合したのち、摩砕処理した混合粉末をそのま
ま加圧成形して焼成する方法が、また特公平2−790
7号公報には生コークスとセラミックス粉末の混合摩砕
粉末を予め非酸化性雰囲気中で800℃以上乃至セラミ
ックスの焼結開始温度以下の温度で焼成し、ついで成形
・焼成する方法が提案されている。ところが、これらの
製造方法においては摩砕処理によるメカノケミカル効果
を高度に発現させるために、原料とするコークスは残留
揮発分を有する半成コ−クスあるいは生コークスを用い
る必要があるため焼成時の体積収縮が大きくなって大型
材の製造が困難となる欠点があり、更に摩砕処理に長時
間を要する問題点もある。
Further, Japanese Patent Publication No. 58-38386 discloses a method in which coke having a residual volatile content of 4% by weight or more and ceramic powder are mixed, and then the milled mixed powder is directly pressed and fired. In addition, it is 2-790
No. 7 discloses a method in which a mixed ground powder of raw coke and ceramics powder is preliminarily fired in a non-oxidizing atmosphere at a temperature of 800 ° C. or higher to a temperature at which the ceramics start to be sintered or less, and then molding / firing. There is. However, in these production methods, in order to highly express the mechanochemical effect by the milling treatment, it is necessary to use a semi-coke or a raw coke having a residual volatile component as the coke as a raw material. There is a drawback that the volumetric shrinkage becomes large and it becomes difficult to manufacture a large-sized material, and there is also a problem that it takes a long time for the grinding treatment.

【0006】特開平4−89355号公報では炭素材料
に酸化ホウ素又は(及び)その水和化合物を含浸せし
め、不活性ガスの加圧下、1500℃以上の条件下で焼
成を行う炭素とホウ素を主成分としてなる複合材料の製
造法が提案されている。しかしながら、炭素材料中に酸
化ホウ素やその水和物を均一に含浸させることが難しい
ため、特に大型材の場合には材料組成が不均質化し易い
欠点がある。
In Japanese Patent Laid-Open No. 4-89355, carbon and boron which are obtained by impregnating a carbon material with boron oxide or (and) a hydrated compound thereof and firing it under a pressure of an inert gas at 1500 ° C. or higher are mainly used. A method of manufacturing a composite material as a component has been proposed. However, since it is difficult to uniformly impregnate the carbon material with boron oxide or a hydrate thereof, there is a drawback that the material composition tends to be inhomogeneous particularly in the case of a large material.

【0007】[0007]

【発明が解決しようとする課題】本発明者等はこれらの
問題点を解消するために仮焼コークスを原料とし、これ
にピッチを加えて捏合したのち粉砕し、粒度調整して得
られた特定粒径の炭素前駆体粉末に、同等粒度の炭化ホ
ウ素粉末を加えて乾式混合した混合粉末を原料系として
使用することにより、炭素中に炭化ホウ素が均一に分散
した大型の焼結材が得られることを確認した。
In order to solve these problems, the present inventors have used calcined coke as a raw material, added pitch to this, kneaded it, then pulverized it, and specified the particle size obtained by adjusting the particle size. A large-sized sintered material in which boron carbide is uniformly dispersed in carbon can be obtained by using, as a raw material system, a mixed powder obtained by dry-mixing boron carbide powder of the same particle size with boron carbide powder of the same particle size. It was confirmed.

【0008】本発明は上記知見に基づいて開発されたも
ので、その目的とするところは、炭素材中に炭化ホウ素
が均一に分散した高密度、高強度および低固有抵抗を具
備する大型の炭素/炭化ホウ素焼結材を工業的に製造す
るための方法を提供することにある。
The present invention was developed on the basis of the above findings, and its object is to provide a large-sized carbon having high density, high strength and low specific resistance in which boron carbide is uniformly dispersed in a carbon material. / To provide a method for industrially producing a boron carbide sintered material.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による炭素/炭化ホウ素焼結材の製造方法
は、仮焼コークスにピッチを加えて捏合し、捏合物を粉
砕、粒度調整して得られた炭素前駆体粉末100重量部
に対し、同等粒度の炭化ホウ素粉末1〜5重量部を乾式
混合し、該混合粉末をCIP成形したのち非酸化性雰囲
気中2200℃以下の温度で焼成炭化処理することを構
成上の特徴とする。
A method for producing a carbon / boron carbide sintered material according to the present invention to achieve the above object is to add a pitch to a calcined coke and knead the mixture to pulverize the kneaded product to adjust the particle size. 100 parts by weight of the carbon precursor powder thus obtained was dry-mixed with 1 to 5 parts by weight of boron carbide powder having the same particle size, and the mixed powder was CIP-molded and then at a temperature of 2200 ° C. or lower in a non-oxidizing atmosphere. The constitutional feature is the firing and carbonization treatment.

【0010】本発明において炭素原料としては、生コー
クスをロータリーキルンなどの加熱炉により1300〜
1500℃の温度で熱処理した仮焼コークスで、生コー
クス中の水分、揮発分が除去されてそれ以後の熱処理に
よる収縮が極めて少ないものが用いられる。
In the present invention, as a carbon raw material, raw coke is heated in a rotary kiln or other heating furnace at 1300 to 300
A calcined coke that has been heat-treated at a temperature of 1500 ° C., in which moisture and volatile components in the raw coke are removed and shrinkage due to subsequent heat treatment is extremely small, is used.

【0011】この仮焼コークス粉末にバインダーとして
タールピッチ、石油ピッチなどのピッチ類を加え、捏合
機に入れて充分に捏合する。ピッチは捏合物が適度の可
塑性を示すように適宜な割合で仮焼コークスに添加され
るが、ピッチの添加量が少ないと炭化ホウ素粉末を加え
た場合にバインダー不足の状態となって成形性が低下
し、一方多過ぎると熱処理時に体積収縮が増大するた
め、仮焼コークス100重量部に対して30〜80重量
部の割合で添加することが好ましい。
Pitches such as tar pitch and petroleum pitch are added as a binder to the calcined coke powder, and the mixture is put into a kneading machine and kneaded sufficiently. Pitch is added to the calcined coke at an appropriate ratio so that the kneaded product exhibits appropriate plasticity, but if the amount of pitch added is small, the formability will become insufficient when the boron carbide powder is added and the binder becomes insufficient. On the other hand, if too much, volume shrinkage increases during heat treatment, so it is preferable to add 30 to 80 parts by weight to 100 parts by weight of calcined coke.

【0012】次いで、捏合物は粉砕機により粉砕したの
ち、篩分けにより粒度調整して炭素前駆体粉末を得る。
炭素前駆体粉末の粒度は平均粒子径が15〜50μm の
範囲に調整することが好ましい。平均粒子径が15μm
を下回ると成形体の嵩密度が低くなって焼結体の強度が
低下し、一方平均粒子径が50μm を上回る場合には炭
化ホウ素粉末との収縮率の差により高強度の焼結体を得
ることが困難となるためである。また、炭素前駆体粉末
の揮発分は13〜15%に調整することが望ましい。揮
発分が13%を下回るとバインダー成分が不足して焼結
材の密度や強度が低下し、15%を越えると炭化ホウ素
粉末の混合時に未分散塊が生じて混合粉末の均質性が低
下するためである。
Next, the kneaded product is crushed by a crusher and then the particle size is adjusted by sieving to obtain a carbon precursor powder.
The particle size of the carbon precursor powder is preferably adjusted to have an average particle size of 15 to 50 μm. Average particle size is 15μm
When the average particle size is less than 50 μm, the bulk density of the molded product is reduced, and the strength of the sintered product is reduced. Because it will be difficult. Further, it is desirable to adjust the volatile content of the carbon precursor powder to 13 to 15%. When the volatile content is less than 13%, the binder component is insufficient to reduce the density and strength of the sintered material, and when it exceeds 15%, undispersed lumps are generated during mixing of the boron carbide powder and the homogeneity of the mixed powder is deteriorated. This is because.

【0013】炭素前駆体粉末に混合する炭化ホウ素粉末
の粒度は、均一な混合粉末を調製するために炭素前駆体
粉末の粒度と同程度であることが必要である。同等粒度
とは炭素前駆体粉末と炭化ホウ素粉末の平均粒子径の比
が1±0.2の範囲内にあることをいい、炭化ホウ素粉
末の平均粒子径としては炭素前駆体粉末と同様に15〜
50μm の粉末が用いられる。また混合する炭化ホウ素
量は目的とする炭素/炭化ホウ素焼結材の材質特性に応
じて適宜に設定されるが、炭素前駆体粉末100重量部
に対して1〜5重量部の範囲で添加する。
The particle size of the boron carbide powder mixed with the carbon precursor powder needs to be similar to the particle size of the carbon precursor powder in order to prepare a uniform mixed powder. The equivalent particle size means that the ratio of the average particle diameters of the carbon precursor powder and the boron carbide powder is within the range of 1 ± 0.2, and the average particle diameter of the boron carbide powder is 15 as in the carbon precursor powder. ~
50 μm powder is used. The amount of boron carbide to be mixed is appropriately set according to the material characteristics of the target carbon / boron carbide sintered material, but is added in the range of 1 to 5 parts by weight with respect to 100 parts by weight of the carbon precursor powder. .

【0014】このように調製された炭素前駆体粉末と炭
化ホウ素粉末はV型混合器などの混合器を用いて乾式混
合により充分に混合し、得られた混合粉末はゴム型に詰
めてCIP成形により所定形状に成形した後、非酸化性
雰囲気に保持された加熱炉内で800℃以上の温度に加
熱処理することにより炭素/炭化ホウ素焼結材が製造さ
れる。なお、炭化ホウ素は2300℃以上の温度では分
解を始めるので熱処理温度は2200℃以下に設定する
必要があり、好ましい熱処理温度は2000〜2200
℃の範囲である。
The carbon precursor powder and the boron carbide powder thus prepared were thoroughly mixed by dry mixing using a mixer such as a V-type mixer, and the resulting mixed powder was packed in a rubber mold and CIP molded. After being formed into a predetermined shape by the above, the carbon / boron carbide sintered material is manufactured by performing heat treatment at a temperature of 800 ° C. or higher in a heating furnace maintained in a non-oxidizing atmosphere. Since boron carbide begins to decompose at a temperature of 2300 ° C or higher, the heat treatment temperature needs to be set to 2200 ° C or lower, and a preferable heat treatment temperature is 2000 to 2200.
It is in the range of ° C.

【0015】[0015]

【作用】本発明によれば、予め調製した炭素前駆体粉末
と炭化ホウ素粉末の粒度を調整して乾式混合するもので
あるから、捏合などの強力な混合エネルギーを必要とす
ることなく均一な混合粉末を得ることができる。更に、
コークス粉末、バインダーピッチおよび炭化ホウ素粉末
を同時に混合して捏合する方法に比べて混合過程におけ
る硬質の炭化ホウ素による混合機器の摩耗に伴う不純物
の混入も効果的に抑制することが可能となる。
According to the present invention, since the particle size of the carbon precursor powder and the boron carbide powder prepared in advance are adjusted and dry-mixed, uniform mixing is not required without strong mixing energy such as kneading. A powder can be obtained. Furthermore,
Compared to the method of simultaneously mixing and kneading the coke powder, the binder pitch, and the boron carbide powder, it is possible to effectively suppress the mixing of impurities due to the wear of the mixing equipment due to the hard boron carbide in the mixing process.

【0016】また、コークス粉末、バインダーピッチお
よび炭化ホウ素粉末を同時に混合して捏合する場合に
は、通常200〜250℃の温度に加熱してバインダー
ピッチを軟化溶融させて混練する必要があるため、炭化
ホウ素粉末の一部が酸化されてB2 3 となり、生成し
たB2 3 は焼成炭化処理時に揮散するので炭化ホウ素
の複合量が減少し、また炭化ホウ素の分散均一性も低下
する。ところが、本発明の方法においては混合する際に
加熱する必要がないので、炭化ホウ素は酸化されること
がなく、焼成炭化処理時に炭化ホウ素の揮散を生じるこ
とがない。
When the coke powder, the binder pitch and the boron carbide powder are mixed and kneaded at the same time, it is usually necessary to heat the mixture to a temperature of 200 to 250 ° C. to soften and melt the binder pitch for kneading. Part of the boron carbide powder is oxidized to B 2 O 3 , and the generated B 2 O 3 is volatilized during the firing and carbonization treatment, so that the composite amount of boron carbide is reduced, and the uniformity of boron carbide dispersion is also reduced. However, in the method of the present invention, since it is not necessary to heat during the mixing, the boron carbide is not oxidized and the volatilization of the boron carbide does not occur during the firing carbonization treatment.

【0017】更に、炭素原料として仮焼コークスを用い
るので熱処理時の体積収縮が少なく炭化ホウ素が均一に
分散した高密度、高強度を有する大型の炭素/炭化ホウ
素焼結材を安価に製造することが可能となる。
Furthermore, since calcined coke is used as a carbon raw material, a large-sized carbon / boron carbide sintered material having high density and high strength in which volumetric shrinkage during heat treatment is small and boron carbide is uniformly dispersed can be manufactured at low cost. Is possible.

【0018】[0018]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0019】実施例1 仮焼ピッチコークス100重量部にバインダーピッチ6
0重量部を加え、ニーダーにより250℃の温度で2時
間捏合したのち、捏合物を粉砕し、篩分けにより平均粒
子径20μm(粒子径範囲1〜48μm)の粒度に調整して
炭素前駆体粉末を作製した。この炭素前駆体粉末の揮発
分は14.2%であった。次いで、この炭素前駆体粉末
100重量部に対し平均粒子径18μm(粒子径範囲1〜
40μm)の炭化ホウ素粉末を5重量部の割合で加え、V
型混合器により1時間乾式混合した。該混合粉末をゴム
型に詰め、CIP成形により750×650×350mm
の成形体を得た。得られた成形体を不活性ガス中100
0℃で3時間熱処理したのち、アチソン炉に移し220
0℃の温度で1時間熱処理して炭素/炭化ホウ素焼結材
を製造した。
Example 1 Binder pitch 6 was added to 100 parts by weight of calcined pitch coke.
After adding 0 part by weight and kneading with a kneader at a temperature of 250 ° C. for 2 hours, the kneaded product was crushed and adjusted to an average particle size of 20 μm (particle size range of 1 to 48 μm) by sieving to give a carbon precursor powder. Was produced. The volatile content of this carbon precursor powder was 14.2%. Then, with respect to 100 parts by weight of this carbon precursor powder, an average particle diameter of 18 μm (particle diameter range 1 to
40 μm) of boron carbide powder at a ratio of 5 parts by weight, V
Dry mix for 1 hour with a mold mixer. The mixed powder is packed in a rubber mold, and CIP molding is performed to obtain 750 × 650 × 350 mm.
A molded body of was obtained. 100% of the obtained molded body in an inert gas
After heat-treating at 0 ° C for 3 hours, move it to the Acheson furnace and
A carbon / boron carbide sintered material was manufactured by heat treatment at a temperature of 0 ° C. for 1 hour.

【0020】実施例2〜4、比較例1〜4 実施例1と同一の仮焼ピッチコークスおよびバインダー
ピッチを用いて、仮焼ピッチコークス100重量部にバ
インダーピッチ60重量部を加えてニーダーにより温度
および捏合時間を変えて捏合したのち粉砕し、篩分けに
より平均粒子径ならびに揮発分の異なる炭素前駆体粉末
を作製した。次いで、平均粒子径の異なる炭化ホウ素粉
末を炭素前駆体粉末に対する配合重量部を変えてV型混
合器により1時間乾式混合した。得られた混合粉末を実
施例1と同一の方法により成形ならびに熱処理して炭素
/炭化ホウ素焼結材を製造した。
Examples 2 to 4, Comparative Examples 1 to 4 Using the same calcined pitch coke and binder pitch as in Example 1, 100 parts by weight of calcined pitch coke and 60 parts by weight of binder pitch were added and the temperature was adjusted by a kneader. And kneading after changing the kneading time, and then pulverizing and sieving to prepare carbon precursor powders having different average particle diameters and volatile contents. Then, the boron carbide powders having different average particle diameters were dry-mixed for 1 hour by a V-type mixer while changing the blending weight part with respect to the carbon precursor powder. The obtained mixed powder was molded and heat treated in the same manner as in Example 1 to produce a carbon / boron carbide sintered material.

【0021】比較例5 仮焼ピッチコークス100重量部にバインダーピッチ6
0重量部および平均粒子径18μm の炭化ホウ素粉末5
重量部を加え、ニーダーにより250℃の温度で2時間
捏合して得られた捏合物を実施例1と同一の方法により
成形および熱処理して炭素/炭化ホウ素焼結材を製造し
た。
Comparative Example 5 Binder pitch 6 was added to 100 parts by weight of calcined pitch coke.
Boron carbide powder 5 with 0 parts by weight and an average particle size of 18 μm
A kneader was added thereto and kneaded at a temperature of 250 ° C. for 2 hours to obtain a kneaded product, which was then molded and heat-treated in the same manner as in Example 1 to produce a carbon / boron carbide sintered material.

【0022】比較例6 比較例5の仮焼コークスに代えて生コークスを用いたほ
かは、比較例5と同一の方法により炭素/炭化ホウ素焼
結材を製造した。
Comparative Example 6 A carbon / boron carbide sintered material was produced by the same method as in Comparative Example 5 except that raw coke was used instead of the calcined coke of Comparative Example 5.

【0023】上記各例における炭素/炭化ホウ素焼結材
の製造条件を対比して表1に、また各種特性を測定して
その結果を表2にまとめて示した。なお、測定値は下記
の方法による値である。 (1)嵩密度(g/cc): 寸法重量法(JIS R7202-1965) (2)曲げ強度(Kg/cm2): 3点曲げ法(JIS R7202-1965) (3)固有抵抗 (μΩcm):電圧降下法(JIS R7202-1965) (4)ホウ素濃度 (%):ICP−AES法(ICP発光分
光分析法) (5)B2O3濃度 (%):クルクミン吸光光度法(JIS R7223-1
979) (6)Fe 含有量(ppm):ICP−AES法(ICP発光分
光分析法)
Table 1 shows the production conditions of the carbon / boron carbide sintered materials in each of the above examples, and Table 2 shows the results obtained by measuring various characteristics. The measured value is a value obtained by the following method. (1) Bulk density (g / cc): Dimensional weight method (JIS R7202-1965) (2) Bending strength (Kg / cm 2 ): Three-point bending method (JIS R7202-1965) (3) Specific resistance (μΩcm) : Voltage drop method (JIS R7202-1965) (4) Boron concentration (%): ICP-AES method (ICP emission spectroscopy) (5) B 2 O 3 concentration (%): Curcumin absorption spectrophotometric method (JIS R7223- 1
979) (6) Fe content (ppm): ICP-AES method (ICP emission spectroscopy)

【0024】[0024]

【表1】 脚注 (*1) 炭素前駆体粉末100重量部に対する炭化ホウ素粉末の混合重量部 (*2) 捏合物(コークス+ピッチ)100重量部に対する炭化ホウ素粉末の 混合重量部 (*3) 捏合物の揮発分 (*4) 生コークス重量部[Table 1] Footnote (* 1) 100 parts by weight of carbon precursor powder mixed with 100 parts by weight of boron carbide powder (* 2) 100 parts by weight of coke (coke + pitch) mixed with 100 parts by weight of boron carbide powder (* 3) Volatilization of compound Min (* 4) Weight of raw coke

【0025】[0025]

【表2】 〔表注〕測定サンプルは炭素/炭化ホウ素焼結材の表面から40mmの位置から切 り出したものである。[Table 2] [Table Note] The measurement sample was cut from a position of 40 mm from the surface of the carbon / boron carbide sintered material.

【0026】表1、2の結果から炭素前駆体粉末と同等
粒度の炭化ホウ素粉末を1〜5重量部の割合で混合した
実施例1〜4の炭素/炭化ホウ素焼結材は比較例1〜4
の炭素/炭化ホウ素焼結材に比べて嵩密度、曲げ強度と
も高く、又ホウ素濃度の分布が狭く均等に炭化ホウ素が
分散していることが判る。また、仮焼コークス、バイン
ダーピッチおよび炭化ホウ素粉末を同時に混合し捏合し
た比較例5はB2 3の生成が多く、Fe不純物の混入
も多いことが認められ、生コークスを用いた比較例6で
は焼成炭化時にひび割れが発生していた。
From the results shown in Tables 1 and 2, the carbon / boron carbide sintered materials of Examples 1 to 4 in which the boron carbide powder having the same particle size as the carbon precursor powder were mixed at a ratio of 1 to 5 parts by weight were used. Four
It is understood that the bulk density and bending strength are higher than those of the carbon / boron carbide sintered material, and the boron concentration distribution is narrow and the boron carbide is uniformly dispersed. Further, in Comparative Example 5 in which the calcined coke, the binder pitch and the boron carbide powder were mixed and kneaded at the same time, it was observed that B 2 O 3 was produced in a large amount and Fe impurities were mixed in a large amount. In that case, cracking occurred during carbonization by firing.

【0027】[0027]

【発明の効果】以上のとおり、本発明によれば仮焼コー
クスにピッチを加えて捏合し、捏合物を粉砕、粒度調整
して得られた炭素前駆体粉末と、同等粒度を有する炭化
ホウ素粉末を特定割合で乾式混合した混合粉末を原料と
することにより、炭化ホウ素が均質に分散した高密度、
高強度特性を備えた大型の炭素/炭化ホウ素焼結材を安
価に製造することが可能となる。したがって、各種高温
用素材をはじめ原子炉用の中性子遮蔽材として用いられ
る炭素/炭化ホウ素焼結材の製造方法として極めて有用
である。
As described above, according to the present invention, a carbon precursor powder obtained by adding a pitch to a calcined coke and kneading, crushing the kneaded product, and adjusting the particle size, and a boron carbide powder having the same particle size By using a mixed powder as a raw material, which is dry-mixed in a specific ratio, a high density in which boron carbide is uniformly dispersed,
It is possible to inexpensively manufacture a large-sized carbon / boron carbide sintered material having high strength characteristics. Therefore, it is extremely useful as a method for producing a carbon / boron carbide sintered material used as a neutron shielding material for nuclear reactors including various high temperature materials.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 仮焼コークスにピッチを加えて捏合し、
捏合物を粉砕、粒度調整して得られた炭素前駆体粉末1
00重量部に対し、同等粒度の炭化ホウ素粉末1〜5重
量部を乾式混合し、該混合粉末をCIP成形したのち非
酸化性雰囲気中2200℃以下の温度で焼成炭化処理す
ることを特徴とする炭素/炭化ホウ素焼結材の製造方
法。
1. A pitch is added to a calcined coke, which is then kneaded,
Carbon precursor powder 1 obtained by crushing the kneaded product and adjusting the particle size
It is characterized in that 1 to 5 parts by weight of boron carbide powder of the same particle size is dry mixed with 00 parts by weight, the mixed powder is CIP-molded, and then calcined and carbonized at a temperature of 2200 ° C. or less in a non-oxidizing atmosphere. A method for producing a carbon / boron carbide sintered material.
【請求項2】 炭素前駆体粉末および炭化ホウ素粉末の
粒度が、平均粒子径15〜50μm である請求項1記載
の炭素/炭化ホウ素焼結材の製造方法。
2. The method for producing a carbon / boron carbide sintered material according to claim 1, wherein the particle diameters of the carbon precursor powder and the boron carbide powder are 15 to 50 μm in average particle diameter.
【請求項3】 炭素前駆体粉末の揮発分が13〜15%
である請求項1又は2記載の炭素/炭化ホウ素焼結材の
製造方法。
3. The carbon precursor powder has a volatile content of 13 to 15%.
The method for producing a carbon / boron carbide sintered material according to claim 1 or 2.
JP7169190A 1995-06-12 1995-06-12 Production of carbon-boron carbide sintered material Pending JPH08337475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7169190A JPH08337475A (en) 1995-06-12 1995-06-12 Production of carbon-boron carbide sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7169190A JPH08337475A (en) 1995-06-12 1995-06-12 Production of carbon-boron carbide sintered material

Publications (1)

Publication Number Publication Date
JPH08337475A true JPH08337475A (en) 1996-12-24

Family

ID=15881903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7169190A Pending JPH08337475A (en) 1995-06-12 1995-06-12 Production of carbon-boron carbide sintered material

Country Status (1)

Country Link
JP (1) JPH08337475A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377369B2 (en) 2004-12-20 2013-02-19 Georgia Tech Research Corporation Density and hardness pressureless sintered and post-HIPed B4C
CN113345615A (en) * 2021-05-31 2021-09-03 中国工程物理研究院材料研究所 Paraffin/boron carbide neutron protection composite material and preparation method thereof
CN115090183A (en) * 2022-06-21 2022-09-23 郑州嵩山硼业科技有限公司 Production method of high-enrichment boron carbide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377369B2 (en) 2004-12-20 2013-02-19 Georgia Tech Research Corporation Density and hardness pressureless sintered and post-HIPed B4C
CN113345615A (en) * 2021-05-31 2021-09-03 中国工程物理研究院材料研究所 Paraffin/boron carbide neutron protection composite material and preparation method thereof
CN113345615B (en) * 2021-05-31 2022-12-27 中国工程物理研究院材料研究所 Paraffin/boron carbide neutron protection composite material and preparation method thereof
CN115090183A (en) * 2022-06-21 2022-09-23 郑州嵩山硼业科技有限公司 Production method of high-enrichment boron carbide
CN115090183B (en) * 2022-06-21 2023-03-10 郑州嵩山硼业科技有限公司 Production method of high-enrichment boron carbide

Similar Documents

Publication Publication Date Title
EP0094591B1 (en) Polycrystalline, virtually pore-free sintered articles of alpha-silicon carbide, boron carbide and free carbon, and process for producting it
DE2449662C2 (en) Process for the production of a sealed object made of silicon carbide ceramic as well as preformed, pressure-free sintered ceramic object made of silicon carbide
US7723247B2 (en) Method for pressurelessly sintering zirconium diboride/silicon carbide composite bodies to high densities
EP0628525B1 (en) Composites based on boron carbide, titanium boride and elemental carbon and method of their production
US5032332A (en) Process for making a silicon carbide whisker reinforced alumina ceramic composite precursor
JP3765840B2 (en) Carbon material manufacturing method
JPH08337475A (en) Production of carbon-boron carbide sintered material
US3892644A (en) Method of making cermet powders
JPH0234508A (en) Preparation of isotropic carbon material having high density
JP3278190B2 (en) Method for producing isotropic high-density graphite material
JP2910002B2 (en) Special carbon material kneading method
CN113979768A (en) High-conductivity carbon electrode material and preparation method thereof
RU2460706C2 (en) Method of producing titanium carbosilicide-based powdered composition
JPS61295216A (en) Preparation of isotropic graphite material having high density and high strength
JP2001130963A (en) Method for producing isotropic high-density carbon material
JPS5978914A (en) Manufacture of special carbonaceous material
US3202619A (en) Graphitic neutron reflector containing beryllium and method of making same
KR102541863B1 (en) Method for Manufacturing High-purity Silicon Carbide Nanopowder
DE2930847C2 (en) Process for making a silicon carbide sintered product
EP0136151A1 (en) Graphitic articles and their production
DE2128280A1 (en) Process for the production of finely divided hard metal powder from homogeneously distributed hard materials and binding metals and process for the production of a consumable anode for high-current arcs
JP3118557B2 (en) Method for growing graphite particles in carbon-based moldings
JPS6331429B2 (en)
JPH0288464A (en) Production of density and high strength carbon material and graphite electrode material for electric spark machining
JPS6265916A (en) Production of high-grade carbonaceous molded body