JPH03243262A - Controlling method in multi-ply steel continuous casting - Google Patents

Controlling method in multi-ply steel continuous casting

Info

Publication number
JPH03243262A
JPH03243262A JP3729890A JP3729890A JPH03243262A JP H03243262 A JPH03243262 A JP H03243262A JP 3729890 A JP3729890 A JP 3729890A JP 3729890 A JP3729890 A JP 3729890A JP H03243262 A JPH03243262 A JP H03243262A
Authority
JP
Japan
Prior art keywords
level
molten steel
outer layer
target
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3729890A
Other languages
Japanese (ja)
Other versions
JPH0773777B2 (en
Inventor
Takashi Ohira
尚 大平
Keihachiro Tanaka
田中 啓八郎
Yoichi Naganuma
永沼 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3729890A priority Critical patent/JPH0773777B2/en
Publication of JPH03243262A publication Critical patent/JPH03243262A/en
Publication of JPH0773777B2 publication Critical patent/JPH0773777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To stably cast a high quality cast slab having clear boundary between inner and outer layers by stabilizing a first meniscus level, a second meniscus level and mold metal surface level to the set value. CONSTITUTION:The molten steel surface level and pouring ratio of the molten steel for inner layer to the molten steel for outer layer are decided from target solidified thickness of the outer layer and drawing velocity for the cast slab. The target total pouring rate is decided through a PID control of molten metal surface from deviation between the molten steel surface level in the mold measured with a molten steel surface level gage and the target molten steel surface level. This target total pouring rate is devided into the target pouring rates for the inner layer and the outer layer according to the set pouring ratio of the inner layer to the outer layer as the operation condition. The target pouring rate is calculated through the PID control from deviation between the target pouring rates for the inner layer and the outer layer and the estimated suitable pouring rates for the inner layer and the outer layer, respectively, and stopper opening degree is decided.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は複層鋼の連続鋳造操業において、鋳片品質向上
と操業安定のため、外層凝固レベルである1次メニスカ
スレベル、および内層凝固レベルである2次メニスカス
レベルを設定値へ安定させ、さらにモールドの湯面レベ
ルを制御する技術に関する。
[Detailed Description of the Invention] Industrial Field of Application The present invention is applied to the continuous casting operation of multi-layer steel, in order to improve the quality of slabs and stabilize the operation, the primary meniscus level, which is the outer layer solidification level, and the inner layer solidification level. The present invention relates to a technique for stabilizing the secondary meniscus level to a set value and further controlling the level of the molten metal in the mold.

従来の技術 従来、複層鋼の連続鋳造操業における湯面レベル制御は
1人手によるストッパ開閉により行っていた。
BACKGROUND OF THE INVENTION Conventionally, the level control in continuous casting of multi-layered steel has been performed by one person manually opening and closing a stopper.

このため湯面レベル変動や注入比変動による、外!’凝
固レベルである1次メニスカスレベルや、内層凝固レベ
ルである2次メニスカスレベル変動のために起こる、内
外層溶鋼混合による遷移層の形成と、内外層鋳造成分拡
散や鋳片性状悪化およびノズル詰まり等、品質管理、操
業管理上問題があった。
For this reason, due to fluctuations in the hot water level and injection ratio, the outside! 'The formation of a transition layer due to the mixing of molten steel in the inner and outer layers, the diffusion of casting components in the inner and outer layers, deterioration of slab properties, and nozzle clogging, which occur due to fluctuations in the primary meniscus level (solidification level) and the secondary meniscus level (inner layer solidification level). There were problems with quality control and operational management.

発明が解決しようとする課題 本発明の目的は複層鋼連続鋳造操業において、内外層溶
鋼の混合を抑制するための直流磁界が印加されたレベル
に内外層溶鋼の境界面を安定させ、内外層の混合抑制効
果を最大に発揮させつつ、モールド湯面レベルを設定値
へ制御し、内外層境界の明瞭で高品質な鋳片を安定して
鋳造する制御方法を提案することにある。
Problems to be Solved by the Invention The purpose of the present invention is to stabilize the interface between the inner and outer layers of molten steel at a level where a DC magnetic field is applied to suppress mixing of the molten steel in the inner and outer layers in continuous casting operations for multilayer steel. The purpose of the present invention is to propose a control method for stably casting high-quality slabs with clear boundaries between the inner and outer layers by controlling the mold level to a set value while maximizing the mixing suppression effect.

課題を解決するための手段 本発明による方法では、前記課題を解決するための手段
として、内外層の注入量計測制御によるモールド湯面レ
ベル制御方法を提案する。
Means for Solving the Problems In the method according to the present invention, as a means for solving the above-mentioned problems, a method for controlling the mold level by measuring and controlling the amount of injection into the inner and outer layers is proposed.

すなわち内層、外層の注入量比を常に一定に保ちつつ、
注入量和操作によりモールド湯面レベルを制御する。
In other words, while keeping the injection amount ratio of the inner layer and outer layer constant,
The mold surface level is controlled by the injection amount sum operation.

または内層注入量を外層厚みと引き抜き速度より決定さ
れる注入量に制御しつつ、湯面レベル制御は外層注入量
操作により行う。
Alternatively, while controlling the inner layer injection amount to the injection amount determined from the outer layer thickness and drawing speed, the hot water level control is performed by controlling the outer layer injection amount.

作用 複層鋼の連続鋳造プロセスにおいて、外層凝固レベルで
ある1次メニスカスレベル、内層凝固レベルである2次
メニスカスレベルおよびモールリド湯面しヘルは、内外
層溶鋼注入比、鋳片引き抜き速度、溶鋼の凝固速度、直
流磁界印加レベルにより決定される。
In the continuous casting process of multi-layer steel, the primary meniscus level (outer layer solidification level), the secondary meniscus level (inner layer solidification level), and the molding surface height are determined by the injection ratio of the molten steel in the inner and outer layers, the slab withdrawal rate, and the molten steel Determined by solidification rate and DC magnetic field application level.

この複層鋼M統鋳造操業において、鋳片の品質は上記メ
ニスカスレベルの変動により太きく左右される。
In this multilayer steel M-type casting operation, the quality of the slab is greatly influenced by the fluctuation of the meniscus level.

すなわち内外層溶鋼の接触している境界面が混合抑制の
ため直流磁界を印加しているレベルから外れると、直流
磁界印加による溶鋼混合抑制の効果が減じられ、内外層
溶鋼の成分混合が進み、目標とする溶鋼成分での鋳造は
不可能となる。また、鋳造操業中の湯面レベル変動は、
鋳片性状に悪影響を与える事が知られている。
In other words, when the interface between the inner and outer layers of molten steel deviates from the level at which a DC magnetic field is applied to suppress mixing, the effect of suppressing molten steel mixing by applying a DC magnetic field is reduced, and the mixing of the components of the molten steel of the inner and outer layers progresses. Casting with the target molten steel composition becomes impossible. In addition, fluctuations in the molten metal level during casting operations are
It is known to have an adverse effect on the properties of slabs.

以上の事より外層凝固レベルである1次メニスカスレベ
ル、内層凝固レベルである2次メニスカスレベルおよび
モールド湯面レベルの設定値への安定は、品質管理上重
要な課題である。
From the above, stabilizing the primary meniscus level which is the outer layer solidification level, the secondary meniscus level which is the inner layer solidification level, and the mold surface level to the set values is an important issue in terms of quality control.

そこで、本発明者らは外層凝固レベルである1次メニス
カスレベル、または内層凝固レベルである2次メニスカ
スレベルの計測による、フィードバック制御を前提とし
て、外層凝固レベルである1次メニスカスレベルおよび
内層凝固レベルである2次メニスカスレベルの可観測性
の検討を行った結果以下の知見を得た。
Therefore, the present inventors assumed feedback control by measuring the first meniscus level, which is the outer layer coagulation level, or the second meniscus level, which is the inner layer coagulation level. As a result of examining the observability of the secondary meniscus level, we obtained the following findings.

外i凝固レベルである1次メニスカスレベルおよび内層
凝固レベルである2次メニスカスレベルは不可観測であ
る。また、現在の計測技術では、溶鋼濡面下のメニスカ
スレベルを直接計測することは不可能である。
The first meniscus level, which is the outer coagulation level, and the second meniscus level, which is the inner coagulation level, are unobservable. Furthermore, with current measurement technology, it is impossible to directly measure the meniscus level below the wet surface of molten steel.

以上の事より、外層凝固レベルである1次メニスカスレ
ベル、または内層凝固レベルである2次メニスカスレベ
ルのフィードバック制御を前提とした制御系の設計は不
可能である。
From the above, it is impossible to design a control system based on feedback control of the first meniscus level, which is the outer layer solidification level, or the second meniscus level, which is the inner layer solidification level.

これより計測制御可能な溶鋼注入量操作による湯面レベ
ル制御方法を検討し、注入量比一定でかつ注入量和操作
によるモールド湯面レベル制御における、外層凝固レベ
ルである1次メニスカスレベルおよび内層凝固レベルで
ある2次メニスカスレベルの安定性を、数値計算による
シミュレーションにより検討した結果、湯面レベルが変
動する外乱を加えた場合でも、本制御法では外層凝固レ
ベルである1次メニスカスレベル、およヒ内層凝固レベ
ルである2次メニスカスレベルは、設定値に収束するこ
とが確認された。
From this, we investigated a method of controlling the level of molten steel by manipulating the amount of molten steel that can be measured and controlled, and we investigated the first meniscus level, which is the outer layer solidification level, and the inner layer solidification level in the mold surface level control using the injection amount sum operation while keeping the injection rate constant. As a result of examining the stability of the secondary meniscus level, which is the outer layer solidification level, by numerical simulation, we found that even when disturbances that fluctuate the hot water surface level are applied, this control method maintains the stability of the primary meniscus level, which is the outer layer solidification level, and It was confirmed that the secondary meniscus level, which is the inner layer coagulation level, converged to the set value.

このため複層鋼の連続鋳造における制御方法として、内
層溶鋼注入量および外層溶鋼注入量の比を一定値に保ち
つつ、注入量和操作によるモールド湯面レベルの制御、
または内層注入量を設定値に保ちつつ外層注入量操作に
よるモールド湯面レベルを制御する方法を適用すると、
外層凝固レベルである1次メニスカスレベルおよび内層
凝固レベルである2次メニスカスレベルは設定値に収束
させることが可能となり、内外層の明瞭に分離された複
層鋼を連続、安定して鋳造することが可能となる。
For this reason, the control method for continuous casting of multi-layer steel is to control the mold level by controlling the sum of injection amounts while keeping the ratio of the amount of molten steel injected into the inner layer and the amount of molten steel injected into the outer layer at a constant value.
Alternatively, if you apply a method of controlling the mold surface level by controlling the outer layer injection amount while keeping the inner layer injection amount at the set value,
The primary meniscus level, which is the solidification level of the outer layer, and the secondary meniscus level, which is the solidification level of the inner layer, can be converged to the set values, making it possible to continuously and stably cast multilayer steel with clearly separated inner and outer layers. becomes possible.

実施例 以下図面を参照しながら本発明の実施例について説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は複層鋳片連続鋳造設備の制御系に本発明の制御
方法を適用した処理フローを示したものである。
FIG. 1 shows a processing flow in which the control method of the present invention is applied to the control system of a multilayer slab continuous casting facility.

目標とする内層、外層の鋳造比および鋳片の引き抜き速
度より、湯面レベル、内層溶鋼および外層溶鋼の注入比
が決定される。
The level of the molten metal and the injection ratio of the molten steel in the inner layer and the molten steel in the outer layer are determined from the target casting ratio of the inner layer and outer layer and the drawing speed of the slab.

湯面レベル計で測定したモールド湯面レベルと目標湯面
レベルの偏差により、湯面レベルをPID制御により目
標とする全注入量を決定する。この目標全注入量を操業
条件として設定されている内層、外層注入比に従い、内
層、外層の目標注入量に分割する。
Based on the deviation between the mold hot water level measured by the hot water level meter and the target hot water level, the target total injection amount is determined by PID control of the hot water level. This target total injection amount is divided into target injection amounts for the inner layer and the outer layer according to the inner layer and outer layer injection ratios set as operating conditions.

内層、外層の目標注入量と、内層、外層で各々適応推定
した注入量の偏差から、PID制御により目標とする注
入量を算出し、ストッパ開度を決定する。
The target injection amount is calculated by PID control from the deviation between the target injection amount for the inner layer and the outer layer and the injection amount adaptively estimated for the inner layer and the outer layer, respectively, and the stopper opening degree is determined.

流量計測制御方法は以下の手順で行う0作動トランスに
より計測したストッパ開度と、羽口、ストッパ形状より
溶鋼がノズルへ注入する面積S (■2)を幾何学的に
算出する。
The flow rate measurement control method is performed by geometrically calculating the area S (■2) through which molten steel is injected into the nozzle based on the stopper opening measured by a 0-operation transformer and the tuyere and stopper shapes.

またタンデイツシュに取り付けたロードセル出力より、
タンデイツシュ内の溶鋼重量を計測し、溶鋼密度および
タンデイツシュ内形状から溶鋼へラドh (ms)を算
出する。
In addition, from the load cell output attached to the tandate,
The weight of the molten steel in the tundish is measured, and the rad h (ms) of the molten steel is calculated from the molten steel density and the shape inside the tundish.

ノズル形状や溶鋼粘性等によるノズル流量係数Cの設定
は、操業開始時は過去の実験値および操業実績での値を
初期操業条件として設定する。
Regarding the setting of the nozzle flow coefficient C based on the nozzle shape, molten steel viscosity, etc., at the start of operation, values based on past experimental values and operation results are set as initial operating conditions.

この時、別口付近での溶鋼流速V (mm/5ee)は
、タンデイツシュ内溶鋼へラドh、ノズル流量係数Cよ
り (1)式で表わされる。
At this time, the molten steel flow velocity V (mm/5ee) near the separate outlet is expressed by equation (1) from the molten steel flow rate h in the tundish and the nozzle flow coefficient C.

v=cJバコ]1    ・・・(1)ノズルより注入
される溶鋼流量Q (mm3/5ee)は (2)式で
算出できる。
v=cJ Bako]1...(1) The flow rate Q (mm3/5ee) of molten steel injected from the nozzle can be calculated using the equation (2).

Q=S−V           ・・・(2)流量係
数Cは、適当なサンプリング時間(120sec)毎に
ロードセル変化から求められる流量実績により、逐次形
最小2乗法により同定を行い、次のサンプリング時間に
おける流量推定制御での流量係数として制御系に取入れ
、流量推定フィードバック制御を行う。
Q=S-V (2) The flow coefficient C is identified by the sequential least squares method based on the flow rate results obtained from the load cell changes at every appropriate sampling time (120 seconds), and the flow rate at the next sampling time is determined by It is incorporated into the control system as a flow rate coefficient in estimated control, and flow rate estimation feedback control is performed.

発明の効果 以上、述べたように本発明によれば複層鋼の連続鋳造に
おいて、内外層境界が明瞭で品質の優れた鋳片を安定し
て製造することが可能となる。
Effects of the Invention As described above, according to the present invention, in continuous casting of multilayer steel, it is possible to stably produce slabs of excellent quality with clear boundaries between inner and outer layers.

この制御方法の期待される効果は、複層鋼連続鋳造操業
自動化による操業安定と運転要員の合理化のみならず、
鋳片品質の高級化および高品質な複層鋼の産業分野への
適用範囲拡大による効果を考えると計り知れない程大き
な効果が期待できる。
The expected effects of this control method are not only stable operations and rationalization of operating personnel through automation of continuous casting operations for multilayer steel, but also
Considering the effects of improving the quality of slabs and expanding the scope of application of high-quality multilayer steel to the industrial field, we can expect immeasurable effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法に従った複層鋼連続鋳造湯面レベル
制御の処理フローの1例を示す図である。 第2図は複層鋼の連続鋳造操業の状態図である。 dr・・・内外層目標鋳造比、マ「・・・目標引き抜き
速度(mm/5ee)、hr ・・・目標湯面レベル(
同)、qA「* * *目標内層溶鋼注入量(mm3/
5ec)、q13r−* a目標外層溶鋼注入量(mm
3/5ec) 、 qA・・・内層注入量(mm3/5
ec) 、 qB・・・外層注入量(+sm3/5ec
) 、 qA・・・推定内層注入量(mm3/5ee)
 、 qB* a m推定外層注入量(mm3/5ec
) 。 h−・・モールド湯面レベル(am)、l・・・し−ド
ル(内層)、2・・・し−ドル(外層)、3・・・ロー
ドセル、4・・・タンデイツシュ(内層)、5・・・タ
ンデイツシュ(外層)、6・・eモールド、7・・・電
磁ブレーキ。
FIG. 1 is a diagram showing an example of a process flow for continuous casting multi-layer steel melt level control according to the method of the present invention. FIG. 2 is a state diagram of a continuous casting operation for multilayer steel. dr...Target casting ratio for inner and outer layers, m...Target drawing speed (mm/5ee), hr...Target level level (
), qA "* * *Target inner layer molten steel injection amount (mm3/
5ec), q13r-*a Target outer layer molten steel injection amount (mm
3/5ec), qA... Inner layer injection amount (mm3/5
ec), qB... Outer layer injection amount (+sm3/5ec
), qA...Estimated inner layer injection amount (mm3/5ee)
, qB* a mEstimated outer layer injection amount (mm3/5ec
). h--mold hot water level (am), l--shi-dol (inner layer), 2--shi-dol (outer layer), 3--load cell, 4--tandish (inner layer), 5・・・Tandish (outer layer), 6...e mold, 7...electromagnetic brake.

Claims (1)

【特許請求の範囲】[Claims]  複層鋼の連続鋳造操業において、内層溶鋼注入量およ
び外層溶鋼注入量の比を一定値に保ちつつ、注入量和操
作によるモールド湯面レベルの制御、または内層注入量
を設定値に保ちつつ、外層注入量操作によりモールド湯
面レベルを制御することにより、外層凝固レベルである
1次メニスカスレベルおよび内層凝固レベルである2次
メニスカスレベルおよびモールド湯面レベルを設定値に
安定させることを特徴とする制御方法。
In continuous casting operations for multi-layer steel, while keeping the ratio of the amount of molten steel injected into the inner layer and the amount of molten steel injected into the outer layer at a constant value, the mold surface level can be controlled by the injection amount sum operation, or while the amount of inner layer injection is kept at the set value, By controlling the mold hot water level by controlling the outer layer injection amount, the primary meniscus level, which is the outer layer solidification level, the secondary meniscus level, which is the inner layer solidification level, and the mold hot water level are stabilized at set values. Control method.
JP3729890A 1990-02-20 1990-02-20 Control method in continuous casting of multi-layer steel Expired - Lifetime JPH0773777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3729890A JPH0773777B2 (en) 1990-02-20 1990-02-20 Control method in continuous casting of multi-layer steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3729890A JPH0773777B2 (en) 1990-02-20 1990-02-20 Control method in continuous casting of multi-layer steel

Publications (2)

Publication Number Publication Date
JPH03243262A true JPH03243262A (en) 1991-10-30
JPH0773777B2 JPH0773777B2 (en) 1995-08-09

Family

ID=12493799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3729890A Expired - Lifetime JPH0773777B2 (en) 1990-02-20 1990-02-20 Control method in continuous casting of multi-layer steel

Country Status (1)

Country Link
JP (1) JPH0773777B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318029A (en) * 1992-05-14 1993-12-03 Nippon Steel Corp Method for continuously casting double layer steel stabilizing double layer ratio
CN112188940A (en) * 2018-06-08 2021-01-05 日本制铁株式会社 Method, device and program for controlling continuous casting process of multilayer cast slab

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318029A (en) * 1992-05-14 1993-12-03 Nippon Steel Corp Method for continuously casting double layer steel stabilizing double layer ratio
CN112188940A (en) * 2018-06-08 2021-01-05 日本制铁株式会社 Method, device and program for controlling continuous casting process of multilayer cast slab
KR20210002692A (en) 2018-06-08 2021-01-08 닛폰세이테츠 가부시키가이샤 Control method, apparatus and program of continuous casting process of multi-layer cast piece
US11161170B2 (en) 2018-06-08 2021-11-02 Nippon Steel Corporation Control method, device, and program of continuous casting process of multilayered slab

Also Published As

Publication number Publication date
JPH0773777B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
EP3750649A1 (en) Method for controlling structure of solidified cast ingot in continuous casting process and control device thereof
KR100312807B1 (en) METHOD AND APPARATUS FOR ADJUSTING LIQUEFIED METAL LEVELS IN A CONTINUOUS CASTING MOLD
GB2172532A (en) Method and apparatus for starting a continuous casting installation
JP2017080788A (en) Method and device for continuously casting double-layered cast slab
JPH03243262A (en) Controlling method in multi-ply steel continuous casting
US7789123B2 (en) Sequence casting process for producing a high-purity cast metal strand
US4220191A (en) Method of continuously casting steel
JP2960225B2 (en) Auto start controller for continuous casting equipment
JP2633764B2 (en) Method for controlling molten steel flow in continuous casting mold
JP3988538B2 (en) Manufacturing method of continuous cast slab
JPH02200362A (en) Method for predicting and restraining nozzle clogging in continuous casting apparatus
JPH07108441B2 (en) Injection amount control method in continuous casting of multi-layer slab
JPH07178525A (en) Method for controlling pouring quantity of molten steel for surface layer in continuous casting of double layered steel plate
JPS6045026B2 (en) Mold content steel level control method
CN112188940B (en) Method and apparatus for controlling continuous casting process of multilayer cast plate, and recording medium
JPH0341884Y2 (en)
JPH07256419A (en) Method for controlling molten steel surface level in continuous casting for duplex layer steel plate
JPS5978763A (en) Controlling method of molten steel level in casting mold in continuous casting
JPH01170569A (en) Method for controlling automatic casting in continuous casting
KR101443587B1 (en) Continuous casting method of ultralow carbon steel
JP2019209366A (en) Method and apparatus for controlling bilayer-billet continuous-casting process, and program
JP2607335B2 (en) Flow control device for molten steel in continuous casting mold
JPH06285604A (en) Method for controlling molten metal surface level in continuous casting for multi-layered steel plate
JPH07308739A (en) Method for continuously casting duplex layer cast slab
JPH03128156A (en) Method for starting casting in continuous casting, and tundish