JP2633764B2 - Method for controlling molten steel flow in continuous casting mold - Google Patents

Method for controlling molten steel flow in continuous casting mold

Info

Publication number
JP2633764B2
JP2633764B2 JP13489792A JP13489792A JP2633764B2 JP 2633764 B2 JP2633764 B2 JP 2633764B2 JP 13489792 A JP13489792 A JP 13489792A JP 13489792 A JP13489792 A JP 13489792A JP 2633764 B2 JP2633764 B2 JP 2633764B2
Authority
JP
Japan
Prior art keywords
mold
molten steel
meniscus
continuous casting
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13489792A
Other languages
Japanese (ja)
Other versions
JPH05329594A (en
Inventor
琢巳 近藤
一彦 堤
淳 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13489792A priority Critical patent/JP2633764B2/en
Publication of JPH05329594A publication Critical patent/JPH05329594A/en
Application granted granted Critical
Publication of JP2633764B2 publication Critical patent/JP2633764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は連続鋳造モールド内溶鋼
流動制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling molten steel flow in a continuous casting mold.

【0002】[0002]

【従来の技術】連続鋳造に際し、鋳片の未凝固部分を電
磁撹拌することによって、鋳片内部の偏析を軽減し、良
好な鋳片を得ることは、一般に行われている。例えば特
公昭64−10305号公報では鋳型の少なくとも1方
の長辺側のメニスカス近傍に、2つの電磁撹拌装置を対
向して設置し、長辺側に設置した電磁撹拌装置によっ
て、鋳型内溶鋼に巾方向の中心に向う流れを付与し、浸
漬ノズルからの溶鋼流の鋳型内溶鋼への浸透深さを浅く
して、良好な品質の鋳片を製造することが開示されてい
る。
2. Description of the Related Art In continuous casting, it is common practice to reduce the segregation inside a slab and obtain a good slab by electromagnetically stirring an unsolidified portion of the slab. For example, in Japanese Patent Publication No. 64-10305, two electromagnetic stirrers are installed facing each other near the meniscus on at least one long side of the mold, and the molten steel in the mold is formed by the electromagnetic stirrer installed on the long side. It is disclosed that a flow toward the center in the width direction is provided to reduce the penetration depth of the molten steel flow from the immersion nozzle into the molten steel in the mold, thereby producing a slab of good quality.

【0003】又特開昭64−2771号公報では浸漬ノ
ズルの左右吐出口からの溶鋼吐出流の強さに応じて移動
磁界を作用させて適正な大きさの湯面変動を実現して異
常な湯面変動にともなうモールドパウダー巻込み及び鋳
片の表面割れによる表面欠陥を防止することが開示され
ている。
In Japanese Patent Application Laid-Open No. 64-2771, a moving magnetic field is applied in accordance with the strength of a molten steel discharge flow from the left and right discharge ports of an immersion nozzle to achieve an appropriate magnitude of level change of the molten metal. It is disclosed to prevent surface defects due to mold powder wrapping due to fluctuations in the molten metal level and surface cracks of the slab.

【0004】[0004]

【発明が解決しようとする課題】連続鋳造モールド内の
溶鋼の流動は鋳片品質を左右する重要な要素である。本
発明はモールド内のメニスカス流速を制御して表面性状
の優れた鋳片を得る連続鋳造モールド内溶鋼流動制御方
法を提供するものである。
The flow of molten steel in a continuous casting mold is an important factor affecting slab quality. The present invention provides a method of controlling molten steel flow in a continuous casting mold to obtain a slab having excellent surface properties by controlling the meniscus flow rate in the mold.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、連続鋳
造モールドの溶鋼にノズルを浸漬して連続鋳造するに当
たり、モールド幅方向に2分割以上に区分されたコイル
により、下記式により定まる移動磁界で、鋳造鋼種、鋳
造幅、鋳造速度、浸漬ノズル形状等の操業条件に応じ
て、(a)モールドの中心から一方の短辺方向にのみ向
かって電磁力を印加する、(b)モールドの一方の短辺
のみから中心に向かって電磁力を印加する、(c)モー
ルドの一方の短辺側と中心の間において、両長辺側で相
対する方向の電磁力を印加する、又は(d)モールドの
両長辺側で、相対する方向の電磁力を印加する、のいず
れかを選択して、メニスカス部の溶鋼流速を10cm/sec
〜60cm/secとすることを特徴とする連続鋳造モールド
内溶鋼流動制御方法である。
SUMMARY OF THE INVENTION The gist of the present invention is that, when a nozzle is immersed in molten steel of a continuous casting mold and continuous casting is performed, a coil defined by two or more divisions in the width direction of the mold is moved by the following formula. With magnetic field, cast steel grade, casting
According to operating conditions such as width, casting speed, immersion nozzle shape, etc.
Te, is applied an electromagnetic force toward only one short side direction from the center of (a) a mold, applying an electromagnetic force toward the center of only one short side of (b) mold, (c), the mold in between one short side and the center, applying an electromagnetic force in the opposite directions on both long sides, in or (d) both long sides of the mold, applying an electromagnetic force in the opposite direction, Neu Without
By selecting these, the flow rate of molten steel at the meniscus part is set to 10 cm / sec.
It is a method for controlling the flow of molten steel in a continuous casting mold, wherein the flow rate is set to 60 cm / sec.

【0006】以下本発明を詳述する。図1は本発明に係
る連続鋳造用の鋳型要部を一部破断して示した図であ
る。鋳型は長辺鋳型銅板1−1,1−2と短辺鋳型銅板
1−3,1−4からなり、図示しないタンディッシュに
取付けられた浸漬ノズル2の下部が挿入されている。こ
の浸漬ノズル2の下部に設けられた吐出孔は鋳型短辺方
向に対向して浸漬ノズルの両側に1個ずつ開口している
が格別限定されない。この浸漬ノズルを介してタンディ
ッシュから鋳型内に溶鋼3が注入されるが、浸漬ノズル
から吐出した吐出流5は短辺方向に向かい短辺に当って
上,下に別れ、上方に向かった溶鋼流は吐出反転流aと
なり、メニスカス流6を形成する。一方下方に向かった
溶鋼流bは下降流となる。
Hereinafter, the present invention will be described in detail. FIG. 1 is a partial cutaway view of a main part of a continuous casting mold according to the present invention. The mold is composed of long-side mold copper plates 1-1 and 1-2 and short-side mold copper plates 1-3 and 1-4, and the lower part of an immersion nozzle 2 attached to a tundish (not shown) is inserted. The discharge holes provided at the lower part of the immersion nozzle 2 are opened one by one on both sides of the immersion nozzle so as to face each other in the short side direction of the mold, but are not particularly limited. Molten steel 3 is injected into the mold from the tundish through the immersion nozzle, and the discharge flow 5 discharged from the immersion nozzle is directed upward and downward on the short side toward the short side, and the molten steel 3 is directed upward. The flow becomes the discharge inversion flow a and forms the meniscus flow 6. On the other hand, the molten steel flow b directed downward is a downward flow.

【0007】本発明は鋳型の相対向する長辺側面1−
1,1−2の外側にモールド幅方向に2分割以上に区分
された撹拌用コイル7−1,7−2が設けられ移動磁界
を発生する。又鋳型から離れた制御室10に移動磁界の
方向を変える切換器と電流制御器が設けられ、交流電源
に導通される。図3のLはコイルのポールピッチであ
る。
[0007] The present invention relates to a long side 1-
Stir coils 7-1 and 7-2 divided into two or more in the width direction of the mold are provided outside the first and the first 1-2 to generate a moving magnetic field. Further, a switch and a current controller for changing the direction of the moving magnetic field are provided in the control room 10 remote from the mold, and are connected to an AC power supply. L in FIG. 3 is the pole pitch of the coil.

【0008】本発明者らの実験によると浸漬ノズルから
注湯された溶鋼の凝固シェルへの衝突強さを確保しつ
つ、かつ吐出反転流により形成されるメニスカス流を一
定範囲に制御することは鋳片の表面性状向上に極めて有
効なる知見を得た。即ち本発明においては50≦L×f
≦40000(ただしコイルピッチ:Lmm、磁界周波
数:fHzとする)を満足する移動磁界を溶鋼に印加して
10cm/sec〜60cm/secのメニスカス流速を得るもので
あるが、これは次の理由による。
According to experiments by the present inventors, it is impossible to control the meniscus flow formed by the discharge reversal flow within a certain range while ensuring the collision strength of molten steel poured from the immersion nozzle against the solidified shell. We have obtained knowledge that is extremely effective in improving the surface properties of cast slabs. That is, in the present invention, 50 ≦ L × f
A moving magnetic field satisfying ≦ 40000 (coil pitch: Lmm, magnetic field frequency: fHz) is applied to the molten steel to obtain a meniscus flow rate of 10 cm / sec to 60 cm / sec for the following reason. .

【0009】即ちモールド内溶鋼に移動磁界を印加する
とき、磁界移動速度Vは(1)式で表される。 V=C1 ×L×f+C2 …………………(1) (L:コイルのポールピッチ、f:磁界周波数、C1
2 :調整係数) 又、メニスカス流速Vpによって磁界移動速度を決定す
るため、磁界移動速度VはVpの関数となる。このと
き、関数は1次式(2)、又は2次式(3)で考える。
That is, when a moving magnetic field is applied to the molten steel in the mold, the moving speed V of the magnetic field is expressed by equation (1). V = C 1 × L × f + C 2 (1) (L: pole pitch of coil, f: magnetic field frequency, C 1 ,
(C 2 : adjustment coefficient) Further, since the magnetic field moving speed is determined by the meniscus flow velocity Vp, the magnetic field moving speed V is a function of Vp. At this time, the function is considered by a linear expression (2) or a quadratic expression (3).

【0010】 V=f(Vp)=C3 ×Vp+C4 …………………(2) =C3 ×Vp2 +C4 ×Vp+C5 …………………(3)V = f (Vp) = C 3 × Vp + C 4 (2) = C 3 × Vp 2 + C 4 × Vp + C 5 (3)

【0011】(1)式と(2)式又は(3)式を連立さ
せてVpについて解くと、(4)式又は(5)式とな
る。 Vp=C6 ×L×f+C7 …………………(4) =C6 ×L0.5 ×f0.5 +C7 …………………(5) 又、V=f(Vp)を高次式で表す場合を考えるとVp
は一般的には(6)式のようになる(C7 =1/次
数)。 Vp=C6 ×LC7×fC7+C8 …………………(6) このとき、L,fと同様にVpに影響を与えるコイル電
流Iの変動は、C6 ,C8 の変化範囲に含まれる。実際
には0〜2500mAの範囲で操業を行った。
When equation (1) and equation (2) or equation (3) are combined and solved for Vp, equation (4) or (5) is obtained. Vp = C 6 × L × f + C 7 (4) = C 6 × L 0.5 × f 0.5 + C 7 (5) Also, V = f (Vp) is increased. Considering the case expressed by the following equation, Vp
Is generally as shown in equation (6) (C 7 = 1 / order). Vp = C 6 × L C7 × f C7 + C 8 (6) At this time, like L and f, the variation of the coil current I which affects Vp is caused by the variation of C 6 and C 8 . Included in the range. Actually, the operation was performed in the range of 0 to 2500 mA.

【0012】ここで、メニスカス流速Vpの適正値範囲
(Vpmin ,Vpmax )と(6)式より(7)式が得ら
れる。 Vpmin ≦C6 ×LC7×fC7+C8 ≦Vpmax …………………(7) これを変形すると(8)式が得られる。 C9 ≦L×f≦C10 …………………(8)
Here, equation (7) is obtained from the proper value range (Vp min , Vp max ) of the meniscus flow velocity Vp and equation (6). Vp min ≦ C 6 × L C7 × f C7 + C 8 ≦ Vp max (7) By transforming this, the equation (8) is obtained. C 9 ≦ L × f ≦ C 10 (8)

【0013】以上の導出より、V=f(Vp)の次数を
問わず(8)式は得られることが明白なため、C9 ,C
10を得るために図5のように横軸をL×f、縦軸をVp
という1次式前提で示す。
[0013] From the above derivation, regardless of the degree of V = f (Vp) (8 ) for expression obvious that is obtained, C 9, C
In order to obtain 10 , the horizontal axis is L × f and the vertical axis is Vp as shown in FIG.
It is shown on the assumption of a linear expression.

【0014】図5により、モールド電磁撹拌装置のコイ
ルピッチと磁界周波数の積L×fを50≦L×f≦40
000(L:コイルピッチ(mm)、f:磁界周波数(H
z))とすれば、メニスカス流速を適正に制御すること
が可能となる。
According to FIG. 5, the product L × f of the coil pitch and the magnetic field frequency of the mold electromagnetic stirring device is set to 50 ≦ L × f ≦ 40.
000 (L: coil pitch (mm), f: magnetic field frequency (H
z)), it is possible to appropriately control the meniscus flow velocity.

【0015】又実験によると凝固シェルの表層を洗い流
し、介在物や偏析を除去するために、ある程度の溶鋼吐
出流速は必要である。さらに、メニスカスでの介在物捕
捉防止のためにはメニスカス流のコントロールが必要で
ある。
According to experiments, a certain amount of molten steel discharge flow rate is required to wash away the surface layer of the solidified shell and remove inclusions and segregation. Further, it is necessary to control the meniscus flow in order to prevent inclusions from being captured by the meniscus.

【0016】即ち、溶鋼吐出流をメニスカスからの距離
別にみると図6となる。即ちメニスカスから300mmを
臨界点とすることができる。従って、メニスカス流のみ
が存在するメニスカスから直下300mm下までの範囲に
コイル中心を設置し、メニスカス流のみをコントロール
する。
That is, FIG. 6 shows the molten steel discharge flow by distance from the meniscus. That is, the critical point can be 300 mm from the meniscus. Therefore, the coil center is set within a range of 300 mm directly below the meniscus where only the meniscus flow exists, and only the meniscus flow is controlled.

【0017】メニスカス流速が10cm/sec未満の場合、
メニスカス流速が小さくなることにより、メニスカス部
への熱の供給量が減少してよどんだ状態となり、例えば
パウダーが凝固した固まりが生成して溶鋼中に巻き込ま
れ、凝固シェルに捕捉されて鋳片表面欠陥の原因となっ
たり、あるいはメニスカス部の溶鋼が凝固し皮が張った
ような状態となり、操業トラブルの原因となる。また逆
にメニスカス流速が60cm/sec超では、溶鋼湯面の波立
ちが大きくなると共に、パウダーの削り込みが発生し、
パウダー性表面欠陥の原因となる。従って、本発明はメ
ニスカス流速を10〜60cm/secの範囲に制御するもの
である。
When the meniscus flow rate is less than 10 cm / sec,
As the meniscus flow velocity decreases, the meniscus
The supply of heat to
A solidified mass of powder forms and gets caught in molten steel
Is trapped in the solidified shell and causes slab surface defects.
Or the molten steel in the meniscus part solidified and skinned
This will cause operation trouble. And vice versa
When the meniscus flow velocity exceeds 60 cm / sec,
As the size increases, powder is cut off,
It causes a powdery surface defect. Therefore, the present invention controls the meniscus flow rate in the range of 10 to 60 cm / sec.

【0018】このため電磁撹拌コイル中心は鋳造方向の
メニスカス〜直下300mmに設置することが必要であ
る。メニスカス流速は、例えば溶鋼流中にサーモアロイ
製の円筒を装入し流れによる抵抗力Fを歪みゲージで測
定する。歪みと抵抗力は予め分銅を用いて検量線を引き
回帰式より定めることができる。
For this reason, it is necessary to set the center of the electromagnetic stirring coil at a position 300 mm directly below the meniscus in the casting direction. The meniscus flow velocity is measured, for example, by inserting a thermo-alloy cylinder into a molten steel flow and measuring the resistance F due to the flow with a strain gauge. The strain and the resistance can be determined in advance by drawing a calibration curve using a weight and using a regression equation.

【0019】浸漬ノズルに設けられる吐出孔の数は格別
限定されない。即ち図7はノズル吐出孔数別にメニスカ
ス流速のEMS制御可能範囲をプロットしたものである
が、ノズル吐出孔1〜6箇を適時選択することができ
る。
The number of discharge holes provided in the immersion nozzle is not particularly limited. That is, FIG. 7 is a plot of the EMS controllable range of the meniscus flow velocity for each number of nozzle discharge holes.

【0020】又図8はノズル吐出孔の形状(ただし孔面
積は同じ)をメニスカス流速のEMS制御可能範囲にプ
ロットしたものであるが、本発明においては丸、楕円、
長方形又は正方形のいずれも用いられる。
FIG. 8 is a graph in which the shape of the nozzle discharge hole (the hole area is the same) is plotted in the EMS controllable range of the meniscus flow velocity.
Either a rectangle or a square is used.

【0021】本発明における撹拌パターンを図4に示
す。(a)はモールドの中心から一方の短辺方向にのみ
向かって電磁力を印加するもの、(b)はモールドの一
方の短辺のみから中心に向かって電磁力を印加するも
の、(c)はモールドの一方の短辺側と中心の間におい
て、両長辺側で相対する方向の電磁力を印加するもの、
(d)はモールドの両長辺側で、相対する方向の電磁力
を印加するものである。なお、(a),(b),(c)
の撹拌パターンでは電磁力が直接溶鋼に印加されない領
域が存在するが、片側の電磁力の印加によって溶鋼流動
が誘起され、その流動の慣性力により、(d)のような
全体に電磁力を印加したパターンと同様の流動状況にな
らないまでも、それに近い鋳片品質向上効果が得られ
る。 これらのパターンは、例えば鋳型内の偏流と称す
る、浸漬ノズルから出る溶鋼吐出流が鋳型の片側に多く
流れ出る現象が発生した場合に、その偏流に伴う溶鋼流
動を適正に抑制する手段として有効である。
FIG. 4 shows the stirring pattern in the present invention. (A) Only in one short side direction from the center of the mold
(B) shows one of the molds
Electromagnetic force is applied from only the short side to the center
(C) shows the position between one short side and the center of the mold.
That apply electromagnetic force in opposite directions on both long sides,
(D) Electromagnetic force in opposite directions on both long sides of the mold
Is applied . (A), (b), (c)
Area where electromagnetic force is not directly applied to molten steel
Exists, but molten steel flows due to the application of electromagnetic force on one side.
Is induced, and due to the inertial force of the flow, as shown in FIG.
The flow condition is the same as the pattern where the electromagnetic force is applied to the whole.
If not, a slab quality improvement effect close to it can be obtained.
You. These patterns are referred to, for example, as drift in the mold.
The flow of molten steel from the immersion nozzle is large on one side of the mold.
When the phenomenon of flowing out occurs, the molten steel flow accompanying the drift
This is effective as means for appropriately suppressing movement.

【0022】図2に示す制御部10は、各コイル7−
1,7−2…を各別に移動磁界の方向と強さを50≦L
×f≦40000の範囲に制御して、鋳造幅等のスラブ
形状や、鋳造鋼種、鋳造速度、浸漬ノズル形状、吐出孔
等の操業条件に応じて、図4に示す所望の撹拌パターン
を選択することができる。
The control unit 10 shown in FIG.
.., 50 ≦ L
Xf ≦ 40,000 , slabs such as casting width
Shape, casting steel type, casting speed, immersion nozzle shape, discharge hole
The desired stirring pattern shown in FIG. 4 can be selected according to operating conditions such as the above.

【0023】[0023]

【実施例】表1に示すモールド条件及び電磁撹拌条件に
よって連続鋳造して表面欠陥の発生率を調べた。図9に
比較例とともに示す。
EXAMPLE Continuous casting was conducted under the molding conditions and electromagnetic stirring conditions shown in Table 1 to examine the incidence of surface defects. FIG. 9 shows a comparative example.

【0024】[0024]

【表1】 [Table 1]

【0025】このときのコイル仕様及び能力を表2に示
す。
Table 2 shows the coil specifications and capabilities at this time.

【0026】[0026]

【表2】 [Table 2]

【0027】本発明によれば図9(b)に示すように、
メニスカス流速10〜60cm/secの範囲内で表面欠陥の
発生率は5%以下であった。
According to the present invention, as shown in FIG.
The incidence of surface defects was 5% or less within the range of the meniscus flow rate of 10 to 60 cm / sec.

【0028】[0028]

【発明の効果】本発明によると連続鋳造の鋳型内溶鋼の
メニスカス流速を制御するので、表面性状に優れた鋳片
を得ることができる。
According to the present invention, since the meniscus flow rate of molten steel in a continuous casting mold is controlled, a cast piece having excellent surface properties can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一部切欠き説明図である。FIG. 1 is a partially cutaway explanatory view of the present invention.

【図2】本発明の部分斜視図である。FIG. 2 is a partial perspective view of the present invention.

【図3】本発明の部分平面図である。FIG. 3 is a partial plan view of the present invention.

【図4】(a)〜(d)は本発明の撹拌パターンであ
る。
FIGS. 4A to 4D are stirring patterns of the present invention.

【図5】メニスカス流速とL×fとの関係の図表であ
る。
FIG. 5 is a table showing a relationship between a meniscus flow velocity and L × f.

【図6】単位体積当りの溶鋼吐出流とメニスカスからの
距離との関係の図表である。
FIG. 6 is a table showing a relationship between a molten steel discharge flow per unit volume and a distance from a meniscus.

【図7】メニスカス流速のEMS制御可能範囲とノズル
吐出孔の数との関係の図表である。
FIG. 7 is a chart showing the relationship between the EMS controllable range of the meniscus flow velocity and the number of nozzle ejection holes.

【図8】メニスカス流速のEMS制御可能範囲とノズル
吐出孔の形との関係の図表である。
FIG. 8 is a chart showing the relationship between the EMS controllable range of the meniscus flow velocity and the shape of the nozzle discharge hole.

【図9】(a)と(b)はメニスカス流速と表面欠陥発
生率との関係の図表である。
FIGS. 9A and 9B are tables showing the relationship between the meniscus flow velocity and the incidence rate of surface defects.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−70354(JP,A) 特開 昭63−104763(JP,A) 特公 昭63−28702(JP,B2) 特公 平2−38303(JP,B2) ──────────────────────────────────────────────────の Continuation of the front page (56) References JP-A-2-70354 (JP, A) JP-A-63-104763 (JP, A) JP-B-63-28702 (JP, B2) JP-B 2-70354 38303 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 連続鋳造モールドの溶鋼にノズルを浸漬
して連続鋳造するに当たり、モールド幅方向に2分割以
上に区分されたコイルにより、下記式により定まる移動
磁界で、鋳造鋼種、鋳造幅、鋳造速度、浸漬ノズル形状
等の操業条件に応じて、 (a)モールドの中心から一方の短辺方向にのみ向かっ
て電磁力を印加する、 (b)モールドの一方の短辺のみから中心に向かって電
磁力を印加する、 (c)モールドの一方の短辺側と中心の間において、両
長辺側で相対する方向の電磁力を印加する、又は (d)モールドの両長辺側で、相対する方向の電磁力を
印加する、のいずれかを選択して、メニスカス部の溶鋼
流速を10cm/sec〜60cm/secとすることを特徴とする
連続鋳造モールド内溶鋼流動制御方法。
When a nozzle is immersed in molten steel of a continuous casting mold to perform continuous casting, a coil divided into two or more in a mold width direction and a moving magnetic field determined by the following formula are used for a casting steel type, a casting width, and a casting. Speed, immersion nozzle shape
Depending on the operating conditions, such as (a) applying an electromagnetic force only in one short side direction from the center of the mold, (b) applying an electromagnetic force only from one short side of the mold toward the center (C) applying electromagnetic force in opposite directions on both long sides between one short side and the center of the mold, or (d) applying electromagnetic forces in opposite directions on both long sides of the mold. Wherein the flow rate of the molten steel in the meniscus portion is set to 10 cm / sec to 60 cm / sec.
JP13489792A 1992-05-27 1992-05-27 Method for controlling molten steel flow in continuous casting mold Expired - Fee Related JP2633764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13489792A JP2633764B2 (en) 1992-05-27 1992-05-27 Method for controlling molten steel flow in continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13489792A JP2633764B2 (en) 1992-05-27 1992-05-27 Method for controlling molten steel flow in continuous casting mold

Publications (2)

Publication Number Publication Date
JPH05329594A JPH05329594A (en) 1993-12-14
JP2633764B2 true JP2633764B2 (en) 1997-07-23

Family

ID=15139084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13489792A Expired - Fee Related JP2633764B2 (en) 1992-05-27 1992-05-27 Method for controlling molten steel flow in continuous casting mold

Country Status (1)

Country Link
JP (1) JP2633764B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741404B1 (en) 2002-03-01 2007-07-20 제이에프이 스틸 가부시키가이샤 Method and Apparatus for Controlling Flow of Molten Steel in Mold, and Method for Producing Continuous Castings

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1077470C (en) * 1994-03-07 2002-01-09 新日本制铁株式会社 Continuous casting and appts.
WO1995026243A1 (en) * 1994-03-29 1995-10-05 Nippon Steel Corporation Method of controlling flow in casting mold by using dc magnetic field
ES2480466T3 (en) 2006-07-06 2014-07-28 Abb Ab Method and apparatus for controlling the flow of molten steel in a mold
JP7159630B2 (en) * 2018-06-11 2022-10-25 日本製鉄株式会社 Electromagnetic stirring method, electromagnetic stirring device and mold facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741404B1 (en) 2002-03-01 2007-07-20 제이에프이 스틸 가부시키가이샤 Method and Apparatus for Controlling Flow of Molten Steel in Mold, and Method for Producing Continuous Castings
KR100741403B1 (en) 2002-03-01 2007-07-20 제이에프이 스틸 가부시키가이샤 Method for Controlling Flow of Molten Steel in Mold, and Method for Producing Continuous Castings

Also Published As

Publication number Publication date
JPH05329594A (en) 1993-12-14

Similar Documents

Publication Publication Date Title
US7305271B2 (en) Device and a method for continuous casting
KR100741403B1 (en) Method for Controlling Flow of Molten Steel in Mold, and Method for Producing Continuous Castings
KR20090033212A (en) Method and apparatus for controlling the flow of molten steel in a mould
JP2633764B2 (en) Method for controlling molten steel flow in continuous casting mold
JP3188273B2 (en) Control method of flow in mold by DC magnetic field
JP4591156B2 (en) Steel continuous casting method
JPH0555220B2 (en)
JP2633766B2 (en) Method for controlling molten steel flow in continuous casting mold
JP2607334B2 (en) Flow control device for molten steel in continuous casting mold
JP2633769B2 (en) Method for controlling molten steel flow in continuous casting mold
JP2922363B2 (en) Flow control device for molten steel in continuous casting mold
JP2633768B2 (en) Method for controlling molten steel flow in continuous casting mold
JP2633765B2 (en) Method for controlling molten steel flow in continuous casting mold
JP2607333B2 (en) Flow control device for molten steel in continuous casting mold
JP2607335B2 (en) Flow control device for molten steel in continuous casting mold
JP2633767B2 (en) Method for controlling molten steel flow in continuous casting mold
JP2607332B2 (en) Flow control device for molten steel in continuous casting mold
JP7151247B2 (en) Flow controller for thin slab continuous casting and thin slab continuous casting method
JP2626861B2 (en) Flow control device for molten steel in continuous casting mold
JP3257546B2 (en) Steel continuous casting method
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
JP2005152996A (en) Method for continuously casting steel
JP4432263B2 (en) Steel continuous casting method
JPH06297092A (en) Continuous width variable casting apparatus for composite metallic material
JPH0671403A (en) Controller for fluid of molten steel in continuous casting mold

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees