JP2863485B2 - Control method of molten steel level in mold in continuous casting - Google Patents

Control method of molten steel level in mold in continuous casting

Info

Publication number
JP2863485B2
JP2863485B2 JP6066596A JP6066596A JP2863485B2 JP 2863485 B2 JP2863485 B2 JP 2863485B2 JP 6066596 A JP6066596 A JP 6066596A JP 6066596 A JP6066596 A JP 6066596A JP 2863485 B2 JP2863485 B2 JP 2863485B2
Authority
JP
Japan
Prior art keywords
opening
control
switching
molten steel
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6066596A
Other languages
Japanese (ja)
Other versions
JPH09248662A (en
Inventor
英樹 田中
進 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP6066596A priority Critical patent/JP2863485B2/en
Publication of JPH09248662A publication Critical patent/JPH09248662A/en
Application granted granted Critical
Publication of JP2863485B2 publication Critical patent/JP2863485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、連続鋳造における
鋳型内の溶鋼レベルを鋳造条件に応じてストッパー方式
により、或いはスライディングノズル方式により使い分
けて制御する制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method for controlling the level of molten steel in a mold in continuous casting by using a stopper system or a sliding nozzle system depending on casting conditions.

【0002】[0002]

【従来技術】連続鋳造における鋳型内の溶鋼レベルの安
定化は、鋳型と鋳片との間にパウダーを一様に流入させ
て、鋳片の表面に一定厚みのパウダーフィルムを均一に
形成させ、均一な凝固シェルを形成して表面疵の発生を
防止すると共に、鋳型内溶鋼面上のスラグの巻込みを減
少させて、内部品質の良好な鋳片を製造する上での重要
な要件である。
2. Description of the Related Art To stabilize the level of molten steel in a mold in continuous casting, powder is made to flow uniformly between the mold and the slab so that a powder film having a constant thickness is uniformly formed on the surface of the slab. This is an important requirement for producing a slab of good internal quality by forming a uniform solidified shell to prevent the occurrence of surface flaws and reducing slag entrainment on the molten steel surface in the mold. .

【0003】鋳型内の溶鋼レベルを一定に制御するため
の方法として従来、鋳型内の溶鋼レベルをレベル計によ
って検出し、この検出値と目標レベル値との偏差が0と
なるように、ストッパーを昇降して溶鋼通過流量を制御
するストッパー(以下、STという)方式によるもの
と、ノズルを開閉して溶鋼通過流量を制御するスライデ
ィングノズル(以下、SNという)方式によるものとが
あり、ST方式ではその構造上、鋳造開始や終了時等の
低流量のレベル制御が可能である反面、図1のST流量
特性で見られるように、連続鋳造の高流量における流量
制御性が悪くなったり、STのセット誤差やST予熱時
の曲がり等によるノズル中心部からのずれのため、レベ
ル制御の安定性に劣る難点がある。これに対しSN方式
では、図1の流量特性で見られるように低流量から高流
量に至る流量制御性が良く、またSNセットのばらつき
や予熱による変形が生じ難く、レベル制御性の安定性に
優れているが、鋳造開始や終了時のようなSN開度が少
ない低流量制御時において、溶鋼の凝固現象が発生し、
ノズル詰まりとなり、安定した溶鋼流量制御性が得られ
なくなる場合がある。
Conventionally, as a method for controlling the level of molten steel in a mold to a constant level, conventionally, the level of molten steel in the mold is detected by a level meter, and a stopper is provided so that the deviation between the detected value and the target level value becomes zero. There is a stopper (hereinafter, referred to as ST) system that moves up and down to control the flow rate of molten steel, and a sliding nozzle (hereinafter, referred to as SN) method that controls the flow rate of molten steel by opening and closing a nozzle. Due to its structure, it is possible to control the flow rate at a low flow rate at the start and end of casting, but as shown in the ST flow rate characteristic in FIG. There is a problem that the stability of the level control is inferior due to a deviation from the center of the nozzle due to a setting error or a bending at the time of ST preheating. On the other hand, in the SN system, as shown in the flow characteristics in FIG. 1, the flow controllability from a low flow rate to a high flow rate is good, and the variation in SN set and deformation due to preheating are unlikely to occur. Although excellent, at the time of low flow rate control with a small SN opening such as at the start and end of casting, solidification of molten steel occurs,
The nozzle may become clogged, and stable molten steel flow rate controllability may not be obtained.

【0004】鋳型内の溶鋼ベルを制御する方法として、
特願平2−262600号、特開平6−15426号、
或いは特開平7−88607号には、鋳造条件に応じて
ST方式とSN方式の使い分けを行う方法が提案されて
いる。すなわち特開平6−15426号においては、S
T若しくはSNのいずれか一方によるレベル制御を行っ
た状態で、他方の開度を一定の変化率で徐々に変化さ
せ、これに伴い変化する一方の開度が設定値に達したと
き、制御方式の切換えを行う制御方法が提案されてい
る。この方法による場合、他方の開度の変化率を大きく
すると、鋳型内の溶鋼レベルの変動をもたらすことがあ
り、溶鋼レベルの変動をもたらさないように開度の変化
率を小さくすると、切換えまでの時間が長くかゝるよう
になる。
[0004] As a method of controlling the molten steel bell in the mold,
Japanese Patent Application No. 2-262600, JP-A-6-15426,
Alternatively, Japanese Patent Application Laid-Open No. 7-88607 proposes a method of selectively using the ST method and the SN method according to casting conditions. That is, in JP-A-6-15426, S
When the level control by either T or SN is performed, the other opening is gradually changed at a constant rate of change, and when one of the opening changes accordingly reaches a set value, the control method is executed. Has been proposed. According to this method, if the rate of change of the other opening is increased, the molten steel level in the mold may fluctuate, and if the rate of change of the opening is reduced so as not to cause the molten steel level to fluctuate, the change up to switching is not possible. The time will be longer.

【0005】上述の問題を解決するために、特開平7−
88607号においては、ST方式からSN方式へ、或
いはSN方式からST方式へ切換える場合において、S
TとSNのいづれか一方によるレベル制御を行った状態
で、他方の開度を変化率が段階的に減少するように変化
させ、これに伴い変化する一方の開度が設定値に達した
ときに、制御方式の切換えを行う方法が提案されてい
る。
In order to solve the above-mentioned problem, Japanese Patent Laid-Open No.
No. 88607, when switching from the ST system to the SN system or from the SN system to the ST system,
With the level control based on one of T and SN, the other opening is changed so that the rate of change gradually decreases, and when one of the opening changes with this reaches the set value. In addition, a method of switching the control method has been proposed.

【0006】[0006]

【発明が解決しようとする課題】STとSNのいづれか
一方によるレベル制御を行った状態で、他方の開度を変
化率が段階的に減少するように変化させる後者の方法に
よれば、切換え時間の短縮と、SN方式からST方式へ
の制御切換え時点での鋳型内溶鋼レベルの変動防止は実
現させることができたが、ST方式からSN方式への制
御切換え時点については、鋳型内溶鋼レベルの変動がも
たらされることがあった。この点について以下に詳述す
る。
According to the latter method of changing the opening degree of the other so that the rate of change gradually decreases while the level control is performed by one of ST and SN, the switching time is reduced. And the prevention of fluctuations in the molten steel level in the mold at the time of control switching from the SN method to the ST method could be realized. Fluctuations could be introduced. This will be described in detail below.

【0007】後者の方法において、ST方式からSN方
式への制御切換えを行う場合には図5に示すように、S
T方式からSN方式による制御方式への切換えが開始さ
れた時点から、SNを低下率βn 、βn-1 、βn-2 /se
c と段階的に絞り込み、これに伴い上昇するST開度を
開度検出器によって検出し、検出した開度が切換え開始
時点より設定値Δ1 %上昇した時点でSN方式によるレ
ベル制御に切換え、切換え後、ST開度を全開まで上昇
率α1 %/sec で開き、以後STが全開状態でSN方式
単独によるレベル制御を行う方法をとっていた。
In the latter method, when the control is switched from the ST system to the SN system, as shown in FIG.
From the time point when the switching from the T method to the control method by the SN method is started, the SN is decreased by β n , β n−1 , β n−2 / se.
c stepwise refinement, the ST opening degree increases with this detected by the opening detector, switched to level control by SN method when the detected degree of opening is increased set value delta 1% than switching start time, After switching, the ST opening is opened at a rate of increase α 1 % / sec until the ST is fully opened, and thereafter, the level is controlled by the SN method alone when the ST is fully opened.

【0008】ST方式からSN方式への制御切換え中の
ST開度は、ST流量制御、SN流量制御の特性を示し
た図1の点線で囲んだ部分Aに相当する。切換え開始
後、SNが全開状態から開度を絞り始めると、それに伴
ってST開度は徐々に上昇するが、この時に用いている
STの流量特性曲線がのような場合は吐出流量の変化
に対するST開度の変化量が比較的大きく、ST開度が
Δ1 %以上上昇するまでの時間が短くなるため、ST方
式からSN方式への制御切換えが早期に起こり、ST開
度の上昇量が大きいことにより、溶鋼の吐出量が必要以
上に多くなって、鋳型内の溶鋼レベルが上昇し易くな
る。逆にSTの流量特性線がのような場合は、吐出流
量の変化に対するST開度の変化量が比較的小さく、S
T開度がΔ1%以上上昇するまでの供給量が少なくなり
がちで、ST方式からSN方式への制御切換えが遅れ、
ST開度が絞られた状態で溶鋼が吐出されるため、溶鋼
の供給量が少なくなりがちで、鋳型内の溶鋼レベルが下
がり易くなる。
The ST opening during control switching from the ST system to the SN system corresponds to a portion A surrounded by a dotted line in FIG. 1 showing characteristics of ST flow control and SN flow control. After the switching is started, when the SN starts to narrow the opening from the fully open state, the ST opening gradually increases accordingly. However, when the flow rate characteristic curve of the ST used at this time is as shown in FIG. Since the amount of change in the ST opening is relatively large and the time required for the ST opening to increase by 1 % or more is short, control switching from the ST method to the SN method occurs early, and the amount of increase in the ST opening is small. When it is large, the discharge amount of molten steel becomes unnecessarily large, and the molten steel level in the mold tends to increase. Conversely, when the flow rate characteristic line of ST is as follows, the change amount of the ST opening degree with respect to the change of the discharge flow rate is relatively small.
T opening tends less supply amount of up to 1% increase or delta, delay control switching of the SN method from the ST method,
Since molten steel is discharged in a state where the ST opening is narrowed, the supply amount of molten steel tends to decrease, and the level of molten steel in the mold tends to decrease.

【0009】本発明は、ST方式及びSN方式による鋳
型内の溶鋼レベル制御の特性を充分に生かしてST方式
及びSN方式間の制御方式の切換えが鋳型内溶鋼レベル
の変動をもたらすことなく、よりスムーズに行えるよう
にしたものである。
The present invention makes full use of the characteristics of the molten steel level control in the mold by the ST method and the SN method so that the switching of the control method between the ST method and the SN method does not cause the fluctuation of the molten steel level in the mold. It is intended to be able to perform smoothly.

【0010】[0010]

【課題の解決手段】第1の発明は、STを昇降させてS
T開度を自動調整するST制御方式と、SN開度を自動
調整するSN制御方式とを鋳造条件に応じて使い分け、
ST方式からSN方式への制御切換え時に、STによる
レベル制御を行った状態でSNの開度を段階的に変化さ
せる方法において、鋳造開始から一定鋳造速度になった
のちにSN開度が切換え時点のノズルの吐出流量から算
出したSN開度まで絞り込まれたときにSN制御方式に
切り換えることを特徴とし、第2の発明は、STを昇降
させてST開度を自動調整するST制御方式と、SN開
度を自動調整するSN制御方式とを鋳造条件に応じて使
い分け、ST方式からSN方式への制御切換え時に、S
Tによるレベル制御を行った状態でSNの開度を段階的
に変化させる方法において、鋳造開始から一定の吐出流
量に達したのちに、切換え時点の吐出流量から算出した
ノズル径より補正SN開度を算出し、SN開度が補正S
N開度まで絞り込まれたときにSN制御方式に切り換え
ることを特徴とする。
According to a first aspect of the present invention, an ST is raised and lowered and S
The ST control method for automatically adjusting the T opening and the SN control method for automatically adjusting the SN opening are selectively used according to casting conditions.
In the method of changing the SN opening stepwise with the level control by ST performed when the control is switched from the ST method to the SN method, the time when the SN opening is switched after the casting speed reaches a constant casting speed from the start of casting. The present invention is characterized in that when the aperture is narrowed down to the SN opening calculated from the discharge flow rate of the nozzle, switching to the SN control method is performed. The SN control method for automatically adjusting the SN opening is properly used depending on the casting conditions. When the control is switched from the ST method to the SN method, the S
In the method in which the opening degree of SN is changed stepwise while the level control by T is performed, after reaching a constant discharge flow rate from the start of casting, the corrected SN opening degree is calculated from the nozzle diameter calculated from the discharge flow rate at the time of switching. Is calculated, and the SN opening is corrected S
When the aperture is narrowed down to the N opening, switching to the SN control method is performed.

【0011】更に第3の発明は、STを昇降させてST
開度を自動調整するST制御方式と、SN開度を自動調
整するSN制御方式とを鋳造条件に応じて使い分け、S
T方式からSN方式への制御切換え時に、STによるレ
ベル制御を行った状態でSNの開度を段階的に変化させ
る方法において、鋳造開始後、一定の鋳造速度になって
一定の吐出流量に達するまでの間は、SN開度が切換え
時点の吐出流量から算出したSN開度まで絞り込まれた
ときにSN制御方式に切換え、一定の吐出流量に達した
のちは、切換え時点の吐出流量から算出したノズル径よ
り補正SN開度を算出し、SN開度が補正SN開度まで
絞り込まれたときにSN制御方式に切換えることを特徴
とする。
In a third aspect of the present invention, the ST is moved up and down to
The ST control method for automatically adjusting the opening and the SN control method for automatically adjusting the SN opening are selectively used according to casting conditions.
In the method in which the opening degree of SN is changed stepwise while the level control by ST is performed when the control is switched from the T method to the SN method, a constant casting speed is reached after starting the casting to reach a constant discharge flow rate. Until the SN opening is switched to the SN control method when the SN opening is narrowed down to the SN opening calculated from the discharge flow at the time of switching, and after reaching a certain discharge flow, the SN opening is calculated from the discharge flow at the time of switching. A corrected SN opening is calculated from the nozzle diameter, and when the SN opening is narrowed down to the corrected SN opening, switching to the SN control method is performed.

【0012】本発明者らは試験調査及び解析検討を行っ
た結果から、ST方式からSN方式への切換え時に、鋳
型内溶鋼レベルの変動が起こる原因を以下のように推定
した。SN制御による吐出流量QSNは一般に
[0012] The present inventors have estimated the causes of the fluctuations in the molten steel level in the mold when switching from the ST system to the SN system, based on the results of test investigations and analytical studies. The discharge flow rate Q SN by SN control is generally

【0013】[0013]

【式1】 (Equation 1)

【0014】で表される。ここで、k:係数、ρ:溶鋼
密度、d:ノズル径、g:重力加速度、h:溶鋼ヘッド
高さである。タンディッシュ14(以下、TDという)
のノズル内を溶鋼12が通過しているときの状態を図2
に示すが、ST15からSN16にかけてのノズル内
は、充満流になっていると考えられるので、仮にST開
度を今考えているST制御範囲内(図1のA)で徐々に
上昇させてSNによる自動制御を行う場合を考えると、
この時のSN開度はST開度の変化による流量変化が少
ないために、STがない場合と同様の開度となると考え
られる。すなわち吐出流量は、ストッパーの位置に関係
なく(1)式に従うと考えられるので、ST方式からS
N方式への制御切換えを行う場合に、SN制御に切り換
えた時点でのSN開度が、その時の吐出流量(ノズル内
通過流量)から(1)式により逆算されるノズル径、す
なわちSN開度(以下、理論SN開度という)と異なっ
ていると、鋳型内のレベル変動が起こると考えられる。
## EQU1 ## Here, k: coefficient, ρ: molten steel density, d: nozzle diameter, g: gravitational acceleration, h: molten steel head height. Tundish 14 (hereinafter referred to as TD)
FIG. 2 shows a state where molten steel 12 is passing through the nozzle of FIG.
However, since it is considered that the inside of the nozzle from ST15 to SN16 has a full flow, it is assumed that the ST opening is gradually increased within the ST control range (A in FIG. 1) which is now considered and the SN opening is gradually increased. Considering the case of automatic control by
At this time, the SN opening is considered to have the same opening as that without ST because the flow rate change due to the change in the ST opening is small. That is, since the discharge flow rate is considered to follow the equation (1) regardless of the position of the stopper, the ST method shifts to S
When the control is switched to the N method, the SN opening at the time of switching to the SN control is the nozzle diameter, which is calculated back from the discharge flow rate (passing flow rate in the nozzle) at that time by equation (1), that is, the SN opening degree (Hereinafter referred to as the theoretical SN opening degree), it is considered that the level in the template fluctuates.

【0015】具体的には、ST方式からSN方式への制
御切換えを行う場合に、SN制御に切り換えた時点で検
出器により検出した実際のSN開度が、理論SN開度よ
りも大きい場合は、必要以上の溶鋼量が鋳型内に注入さ
れるので鋳型内溶鋼レベルは上昇し、逆に理論SN開度
よりも小さい場合は、SN開度の絞りすぎの影響により
鋳型内溶鋼レベルは下降する。したがって、この場合の
ST制御からSN制御への切換えのタイミングは、理論
SN開度まで絞り込んだときにST制御に切換えるよう
にすればよい。
Specifically, when the control is switched from the ST system to the SN system, when the actual SN opening detected by the detector at the time of switching to the SN control is larger than the theoretical SN opening, Since the amount of molten steel more than necessary is injected into the mold, the level of molten steel in the mold rises. Conversely, when the molten steel level is smaller than the theoretical SN opening, the level of molten steel in the mold falls due to the influence of excessively narrowing of the SN opening. . Therefore, the timing of switching from ST control to SN control in this case may be switched to ST control when the aperture is narrowed down to the theoretical SN opening.

【0016】以上の制御切換えは、鋳造開始後一定鋳造
速度になってからの切換え時のように、ノズル内に介在
物付着がほとんど見られない段階で適用できるのであっ
て、鋳造開始後ノズル内を数10トン以上の溶鋼量が通
過した後に制御切換えを行う場合は、ノズル内に介在物
10の付着が発生しているので(図3参照)、図1に示
したSN制御流量特性と、SN開度の関係が成り立たな
くなる。そのため、切換え時の実際のSN開度を理論S
N開度とすると、理論SN開度は実際のノズル径よりも
小さくなっているので、溶鋼の供給量が不足し、鋳型内
溶鋼レベルは下降する。
The above-mentioned control switching can be applied at a stage where almost no inclusions are found in the nozzle, such as when switching after a constant casting speed is reached after the start of casting, and after the start of casting, the inside of the nozzle is changed. When the control switching is performed after the molten steel amount of several tens tons or more has passed, the inclusion of the inclusion 10 has occurred in the nozzle (see FIG. 3), so that the SN control flow rate characteristic shown in FIG. The relationship of the SN opening does not hold. Therefore, the actual SN opening at the time of switching is
If the opening degree is N, the theoretical SN opening degree is smaller than the actual nozzle diameter, so that the supply amount of molten steel is insufficient, and the molten steel level in the mold is lowered.

【0017】一方ST制御の流量特性は、前述したよう
にSTのセット誤差やST予熱時の曲がり等によってば
らつきはあるものゝ、吐出流量QSTは次のように表され
る。 QST=f(A) ・・・(2) A=πlsin (α/2)・(ltan (α/2)+D +R(l−cos (α/2))) ・・・(3) ここで、A:STとノズル間の開孔面積、l:ST開
度、α:STヘッドの角度、D:ノズル径、R:全閉時
にノズル上部とSTが接触している部分(円)の半径 ST制御時の吐出流量QSTは、ST開度1とノズル径D
に対して、(2)、(3)式のような関係があるので、
鋳造開始後ノズル内を数十トン以上の溶鋼量が通過した
後、ノズル内に介在物の付着が発生している状態でST
方式からSN方式へ制御切換えを行う場合は、切換え開
始前のST開度と吐出流量からその時のノズル径を逆算
する、すなわちノズル狭窄によりノズル径がどれくらい
狭くなっているかを計算する。この場合に補正されたノ
ズル径を補正ノズル径と呼ぶことにする。この補正ノズ
ル径に対してSN開度と吐出流量との関係を(1)式に
より計算すれば、切換え時の吐出流量の場合にSN単独
で制御したときのSN開度がわかる。そしてこのSN開
度が、ST制御からSN制御に切り換えるときに鋳型内
溶鋼のレベルを変動を起こさないための切換え時のSN
開度となり、このときのSN開度を補正理論SN開度と
呼ぶことにする。
On the other hand, as described above, the flow rate characteristics of the ST control vary depending on the ST setting error, bending at the time of ST preheating, and the like. However, the discharge flow rate Q ST is expressed as follows. Q ST = f (A) (2) A = πl sin (α / 2) · (l tan (α / 2) + D + R (1- cos (α / 2))) (3) Here, A: opening area between ST and nozzle, l: ST opening, α: angle of ST head, D: nozzle diameter, R: part where ST is in contact with the upper part of nozzle when fully closed (circle) The discharge flow rate Q ST at the time of ST control is represented by ST opening degree 1 and nozzle diameter D
Since there is a relationship as shown in equations (2) and (3),
After the start of casting, the molten steel amount of several tens tons or more has passed through the nozzle, and then ST
When the control is switched from the method to the SN method, the nozzle diameter at that time is back calculated from the ST opening and the discharge flow rate before the start of the switching, that is, how much the nozzle diameter is reduced due to nozzle narrowing is calculated. The nozzle diameter corrected in this case is referred to as a corrected nozzle diameter. By calculating the relationship between the SN opening degree and the discharge flow rate with respect to the corrected nozzle diameter by the equation (1), it is possible to know the SN opening degree when the SN is independently controlled in the case of the discharge flow rate at the time of switching. Then, the SN opening degree is set so that the level of the molten steel in the mold does not fluctuate when switching from the ST control to the SN control.
The SN opening at this time is referred to as a corrected theoretical SN opening.

【0018】以上をまとめると、ST方式からSN方式
への制御切換えを行う場合に、STによるレベル制御を
行った状態でSNの開度を段階的に変化させる方法にお
ける切換えのタイミングは、鋳造開始直後はSN開度を
理論SN開度まで絞ってから切換え、鋳造開始後はその
ときのノズル狭窄の状態を推測し、SN開度を補正理論
SN開度まで絞ってから切り換える。
In summary, when performing control switching from the ST system to the SN system, the timing of the switching in the method of changing the SN opening stepwise in a state where the level control by the ST is performed is based on the casting start. Immediately after, the SN opening is narrowed down to the theoretical SN opening and then switched. After the casting is started, the state of the nozzle narrowing at that time is estimated, and the SN opening is narrowed down to the corrected theoretical SN opening and then switched.

【0019】図4は、本発明方法の実施に用いる連続鋳
造設備を示すもので、取鍋11内の溶鋼12がロングノ
ズル13を通じてTD14に注入された後、制御装置1
9、23からの制御信号によって駆動するST15また
はSN16により溶鋼流量を調整して鋳型17内に注入
される。ST15による鋳型内の溶鋼レベルの制御は次
のようにして行われる。
FIG. 4 shows a continuous casting facility used for carrying out the method of the present invention. After molten steel 12 in a ladle 11 is injected into a TD 14 through a long nozzle 13, a control device 1
The molten steel flow rate is adjusted by ST15 or SN16 driven by control signals from 9 and 23, and the molten steel is injected into the mold 17. The control of the molten steel level in the mold by ST15 is performed as follows.

【0020】レベルセンサー18により検出された鋳型
内の溶鋼レベルを、変換器20を介して制御装置19に
予め入力しておいた鋳型内の溶鋼レベル設定値と比較
し、偏差がある場合は、ST開度調節器21に出力し、
ST15のST開度検出器24によって検出されたST
開度との偏差に応じて調節器21はシリンダー22を駆
動し、ST開度を調整して鋳型内の溶鋼レベルを制御す
る。
The molten steel level in the mold detected by the level sensor 18 is compared with a set value of the molten steel level in the mold previously input to the control device 19 via the converter 20, and if there is a deviation, Output to the ST opening adjuster 21,
ST detected by ST opening detector 24 in ST15
The controller 21 drives the cylinder 22 in accordance with the deviation from the opening to adjust the ST opening to control the level of molten steel in the mold.

【0021】SN16による鋳型内の溶鋼レベルの制御
も同様に、レベルセンサー18により検出された鋳型内
の溶鋼レベル値を変換器20を介して制御装置23に予
め入力しておいた鋳型内の溶鋼レベル設定値と比較し、
偏差がある場合はSN開度調節器25に出力し、SN1
6のSN開度検出器27によって検出されたSN開度と
の偏差に応じて調節器25はシリンダー26を駆動し、
SN開度を調整して溶鋼レベルを制御する。以上のよう
に、ST方式とSN方式の両方式での鋳型内溶鋼レベル
の制御が行われ、鋳造条件に応じてそのいづれか一方が
選択される。
Similarly, the control of the molten steel level in the mold by the SN 16 is performed by inputting the molten steel level value in the mold detected by the level sensor 18 into the control device 23 via the converter 20 in advance. Compare with the level setting value,
If there is a deviation, the deviation is output to the SN opening controller 25, and SN1
The controller 25 drives the cylinder 26 according to the deviation from the SN opening detected by the SN opening detector 27 of No. 6;
The molten steel level is controlled by adjusting the SN opening. As described above, the molten steel level in the mold is controlled by both the ST method and the SN method, and one of them is selected according to the casting conditions.

【0022】次に上記設備を用いて連続鋳造中にST方
式からSN方式へ、或いはその逆の制御方式へ切り換え
る際の切換え方法の一例を図5のタイムチャートにより
説明する。STが全閉、SNが全開の状態から図4の取
鍋よりTD内に溶鋼を注入し、TD重量が設定重量に達
したとき鋳造を開始する。TD内への溶鋼の注入は段階
的に増加し、これに伴い鋳造速度も段階的に増加する。
そして鋳型内の溶鋼レベルが目標レベルに達すると、S
T方式により鋳型内の溶鋼レベル制御が行われる。
Next, an example of a switching method when switching from the ST method to the SN method or the reverse control method during continuous casting using the above equipment will be described with reference to a time chart of FIG. From the state where ST is fully closed and SN is fully open, molten steel is poured into the TD from the ladle in FIG. 4 and casting is started when the TD weight reaches the set weight. The injection of molten steel into the TD gradually increases, and the casting speed also gradually increases.
When the molten steel level in the mold reaches the target level, S
The molten steel level control in the mold is performed by the T method.

【0023】鋳造開始直後、鋳造速度が設定鋳造速度V
cに達して安定し、重量検出器によって検出されるTD
重量が設定重量W2 に達し、STの開度変動が小さくな
った後、ST方式からSN方式による制御方式への切換
えが開始され、SN開度を図示するように、βn 、β
n-1 、βn-2 %/sec と段階的に絞り込む。そして、図
1のSN開度とSN制御流量特性の関係を用いて、切換
え開始前の吐出流量(ノズル内溶鋼通過量)から、理論
SN開度を演算器によって逆算し、その理論SN開度ま
で絞り込んだ時点でST制御に換える。
Immediately after the start of casting, the casting speed is equal to the set casting speed V.
c, which is stable and is detected by the weight detector
Weight reached the set weight W 2, after the opening degree variation of ST is reduced, switching of the control method by SN method from the ST method is initiated, as shown the SN opening, beta n, beta
N-1 and β n-2 % / sec. Then, using the relationship between the SN opening degree and the SN control flow rate characteristic in FIG. 1, the theoretical SN opening degree is back-calculated by a calculator from the discharge flow rate before the start of switching (the amount of molten steel passing through the nozzle), and the theoretical SN opening degree At the point when the aperture is narrowed down, the control is switched to ST control.

【0024】鋳造開始後、数10トン鋳造した後の切換
え方法は、鋳造速度が設定鋳造速度Vcに達して安定し
ており、重量検出器によって検出されるTD重量が設定
重量W2 に達しているところで、STの開度変動が小さ
くなって設定時間経過後、ST方式からSN方式による
制御方式への切換えが開始され、SN開度を図示するよ
うにβn 、βn-1 、βn-2 %/sec と段階的に絞り込
む。演算器により、先ず式(2)、(3)を用いて切換
え開始前のST開度と、吐出流量からその時のノズル径
(補正ノズル径)を逆算し、次にこの補正ノズル径に対
してSN開度と吐出流量との関係を計算し、切換え時の
吐出流量の場合にSN単独で制御したときのSN開度
(補正理論SN開度)を計算する。そして、その補正理
論SN開度まで絞り込んだ時点でST制御に切換える。
After the start of casting, the method of switching after casting several tens of tons is such that the casting speed reaches the set casting speed Vc and is stable, and the TD weight detected by the weight detector reaches the set weight W 2. in the place where, after opening variation becomes smaller set time ST, the switching of the control method by SN method from the ST method is started, β n, β n-1 as shown the SN opening, beta n Narrow down gradually to -2 % / sec. The arithmetic unit first calculates the nozzle diameter (corrected nozzle diameter) at that time from the ST opening before switching and the discharge flow rate using equations (2) and (3). The relationship between the SN opening and the discharge flow rate is calculated, and in the case of the discharge flow rate at the time of switching, the SN opening (correction theoretical SN opening) when SN is controlled alone is calculated. Then, when the aperture is narrowed down to the correction theoretical SN opening, the control is switched to the ST control.

【0025】本方法によれば、鋳造開始直後であって
も、また鋳造開始後数10トン鋳造したのちであって
も、鋳型内溶鋼の湯面レベルを変動させることなく、S
T方式からSN方式への制御切換えを行うことができ
る。 実施例1 図4に示す連続鋳造設備を用い、鋳造開始後、SN開度
を全開(100%)にし、鋳型内溶鋼レベルの制御をS
T方式により自動で行った状態でSN方式への切換えを
以下の条件にて行った。
According to the present method, immediately after the start of casting, or after casting several tens tons after the start of casting, the molten steel level in the mold is maintained without changing the metal surface level.
Control switching from the T system to the SN system can be performed. Example 1 Using the continuous casting equipment shown in FIG. 4, after the start of casting, the SN opening was fully opened (100%), and the level of molten steel in the mold was controlled to S.
The switching to the SN system was performed under the following conditions while the system was automatically performed by the T system.

【0026】 鋳型厚み 200mm 鋳造幅 965mm 切換え時の鋳造速度 0.7m /min ノズル径 50mm TD内溶鋼ヘッド高さ 1000mm SN方式へ切換え時の吐出流量は0.96Ton/min で、
開度検出器27によって検出されたSN開度移動量は全
閉の状態から21mmであり、(1)式より計算した上記
吐出流量での理論SN開度は68%となる。したがって
SNは全開の状態から32%移動させるとよいことにな
る。SN方式への切換え開始は、鋳造速度及びTD重量
が設定値W2 に達して10秒経過した後自動にて行っ
た。切換えの手順としては、切換え開始後、SN開度の
変化率を第1段階にて75秒間0.4%/sec 、第2段
階にて33秒間0.06%/sec として絞り込み、SN
方式に切換えた。切換え後、ST開度の変化率を第1段
階にて33秒間0.06%/sec 、第2段階にて75秒
間0.4%/sec で全開まで上昇させた。実施した時の
タイムチャートを図6に示す。
Mold thickness 200 mm Cast width 965 mm Casting speed at the time of switching 0.7 m / min Nozzle diameter 50 mm TD molten steel head height 1000 mm The discharge flow rate at the time of switching to the SN method is 0.96 Ton / min.
The SN opening movement amount detected by the opening detector 27 is 21 mm from the fully closed state, and the theoretical SN opening at the above-mentioned discharge flow rate calculated from the equation (1) is 68%. Therefore, the SN should be shifted by 32% from the fully opened state. Switching the start of the SN method were carried out by the automatic after casting speed and TD weight has passed 10 seconds to reach the set value W 2. As the switching procedure, after the switching is started, the change rate of the SN opening is narrowed down to 0.4% / sec for 75 seconds in the first stage and 0.06% / sec for 33 seconds in the second stage.
Switched to the system. After the switching, the rate of change of the ST opening was raised to 0.06% / sec for 33 seconds in the first stage, and to 0.4% / sec for 75 seconds in the second stage, until it was fully opened. FIG. 6 shows a time chart at the time of implementation.

【0027】実施例2 鋳造開始後、200Ton を既に鋳造した後に、SN開度
を全開(100%)にし、鋳型内溶鋼レベルの制御をS
T方式により行った状態で、SN方式への切換えを以下
の条件にて行った。 鋳型厚み 200mm 鋳造幅 925mm 切換え時の鋳造速度 0.7m /min ノズル径 50mm TD内溶鋼ヘッド高さ 1000mm SN方式へ切換え時の吐出流量は0.92Ton/min であ
り、また開度検出器24によって検出された自動制御中
のSTの全閉からの移動量は15mmであったが、本来吐
出流量が0.92Ton/min の時は、STの全閉からの移
動量はSTの流量特性から考えると、10mmとなるはず
であり、これは本設備のST流量特性からすれば、ノズ
ル径が50mmから40mmに変更したことに相当する。つ
まり、ノズル内に介在物が付着したことにより、溶鋼通
過面積が減少したことを意味する。ノズル径が40mmの
場合式(1)より求めたSN移動量は、全閉時から22
mmとなり、本設備においては理論SN開度は82%とな
る。したがってSNは全開の状態から18%移動させる
とよいことになる。SN方式への切換えは、鋳造速度及
びTD重量が設定値に達して10秒経過した後自動にて
行った。切換えの手順としては、SN開度の変化率を第
1段階にて42秒間0.4%/sec 、第2段階にて20
秒間0.06%/sec として絞り込み、SN方式に切換
えた。切換え後、ST開度の変化率を第1段階にて20
秒間0.06%/sec 、第2段階にて42秒間0.4%
/sec で全開まで上昇させた。実施したときのタイムチ
ャートを図7に示す。
Example 2 After the start of casting, after 200 Ton was already cast, the SN opening was fully opened (100%) and the level of molten steel in the mold was controlled by S.
The switching to the SN method was performed under the following conditions while the T method was used. Mold thickness 200mm Casting width 925mm Casting speed when switching 0.7m / min Nozzle diameter 50mm TD molten steel head height 1000mm Discharge flow rate when switching to SN system is 0.92 Ton / min. The detected movement amount of the ST from the fully closed state during the automatic control was 15 mm, but when the discharge flow rate is 0.92 Ton / min, the movement amount of the ST from the fully closed state is considered from the flow rate characteristics of the ST. And 10 mm, which is equivalent to a change in the nozzle diameter from 50 mm to 40 mm according to the ST flow characteristics of the present equipment. That is, it means that the molten steel passage area is reduced due to the inclusion of the inclusion in the nozzle. When the nozzle diameter is 40 mm, the SN movement amount obtained from Expression (1) is 22
mm, and the theoretical SN opening is 82% in this facility. Therefore, the SN should be moved by 18% from the fully opened state. Switching to the SN system was performed automatically after 10 seconds had elapsed after the casting speed and the TD weight reached the set values. As a switching procedure, the change rate of the SN opening is set to 0.4% / sec for 42 seconds in the first stage and 20% in the second stage.
The aperture was narrowed down to 0.06% / sec, and switched to the SN system. After the switching, the change rate of the ST opening is set to 20 in the first stage.
0.06% / sec for second, 0.4% for 42 second in second stage
/ Sec to fully open. FIG. 7 shows a time chart when the operation is performed.

【0028】[0028]

【発明の効果】本発明は以上のように構成され、次のよ
うな効果を奏する。請求項1記載の制御方法によれば、
ST方式からSN方式へSN開度を理論SN開度まで絞
ってから切換えるようにしたことにより切換え時の鋳型
内の溶鋼レベルの変動が防止され、SN方式への制御切
換えをスムースに行うことができる。
The present invention is configured as described above and has the following effects. According to the control method of the first aspect,
By switching from the ST method to the SN method after narrowing the SN opening to the theoretical SN opening, fluctuations in the molten steel level in the mold at the time of switching are prevented, and control switching to the SN method can be performed smoothly. it can.

【0029】請求項2記載の制御方法によれば、SN開
度を鋳造開始後のノズルの狭窄の程度を加味した補正S
N開度まで絞ってから切換えるようにしたことにより、
切換え時の切換え時の鋳型内の溶鋼レベルの変動が防止
され、SN方式への制御切換えをスムースに行うことが
できる。請求項3記載の制御方法によれば、一定の吐出
流量になるまではSN開度を理論SN開度まで絞ってか
ら、一定の吐出流量に達してからは補正SN開度まで絞
ってから切換えるようにしたことにより、切換え時の切
換え時の鋳型内の溶鋼レベルの変動が防止され、SN方
式への制御切換えをスムースに行うことができる。
According to the control method of the present invention, the SN opening is corrected by taking into account the degree of narrowing of the nozzle after the start of casting.
By switching after narrowing to N opening,
Fluctuation in the molten steel level in the mold at the time of switching can be prevented, and control switching to the SN system can be performed smoothly. According to the control method of the third aspect, the SN opening is reduced to the theoretical SN opening until a constant discharge flow rate is reached, and after reaching the constant discharge flow rate, the SN opening is reduced to the corrected SN opening degree before switching. By doing so, a change in the molten steel level in the mold at the time of switching at the time of switching is prevented, and control switching to the SN system can be performed smoothly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ST開度及びSN開度と溶鋼吐出量との関係を
示す図
FIG. 1 is a diagram showing the relationship between ST opening and SN opening and molten steel discharge amount.

【図2】SNプレート近傍の溶鋼流動を示す図FIG. 2 is a diagram showing the flow of molten steel in the vicinity of an SN plate.

【図3】ノズル近傍の閉塞状況を示す図FIG. 3 is a diagram showing a closed state near a nozzle;

【図4】本発明方法で用いる溶鋼レベル制御装置の模式
FIG. 4 is a schematic view of a molten steel level control device used in the method of the present invention.

【図5】本発明方法によるタイムチャートFIG. 5 is a time chart according to the method of the present invention.

【図6】ST方式よりSN方式への切換え時におけるタ
イムチャート
FIG. 6 is a time chart when switching from the ST method to the SN method.

【図7】ST方式よりSN方式への切換え時におけるタ
イムチャート
FIG. 7 is a time chart when switching from the ST method to the SN method.

【符号の説明】[Explanation of symbols]

11・・取鍋 12・・溶鋼 13・・ロングノズル 14・・タンディ
ッシュTD 15・・ストッパー 16・・SN 17・・鋳型 18・・湯面レベ
ルセンサー 19、23・・制御装置 20・・変換器 21・・ST開度調節器 22、26・・シ
リンダー 24・・ST開度検出器 25・・SN開度
調節器 27・・SN開度検出器
11. Ladle 12, molten steel 13, long nozzle 14, tundish TD 15, stopper 16, SN 17, mold 18, molten metal level sensor 19, 23, control device 20, conversion Unit 21 ST opening adjuster 22, 26 Cylinder 24 ST opening detector 25 SN opening adjuster 27 SN opening detector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B22D 41/22 B22D 41/22 (56)参考文献 特開 平7−88607(JP,A) 特開 平6−15426(JP,A) 特開 平4−138859(JP,A) 特開 平3−142051(JP,A) 特開 昭60−102252(JP,A) 特開 昭56−141953(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22D 11/18 B22D 37/00 B22D 41/16 B22D 41/22──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI B22D 41/22 B22D 41/22 (56) References JP-A-7-88607 (JP, A) JP-A-6-15426 (JP) JP-A-4-138859 (JP, A) JP-A-3-142051 (JP, A) JP-A-60-102252 (JP, A) JP-A-56-141953 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) B22D 11/18 B22D 37/00 B22D 41/16 B22D 41/22

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】STを昇降させてST開度を自動調整する
ST制御方式と、SN開度を自動調整するSN制御方式
とを鋳造条件に応じて使い分け、ST方式からSN方式
への制御切換え時に、STによるレベル制御を行った状
態でSNの開度を段階的に変化させる方法において、鋳
造開始から一定鋳造速度になったのちにSN開度が切換
え時点のノズルの吐出流量から算出したSN開度まで絞
り込まれたときにSN制御方式に切り換えることを特徴
とする連続鋳造における鋳型内溶鋼レベルの制御方法。
1. An ST control method for automatically adjusting an ST opening by raising and lowering an ST and an SN control method for automatically adjusting an SN opening are selectively used according to casting conditions, and control is switched from the ST method to the SN method. Sometimes, in a method in which the opening degree of the SN is changed stepwise while the level control by the ST is performed, the SN calculated from the discharge flow rate of the nozzle at the time when the SN opening degree is switched after the casting speed becomes constant after the start of casting. A method for controlling the level of molten steel in a mold in continuous casting, characterized by switching to an SN control method when the aperture is narrowed down to an opening.
【請求項2】STを昇降させてST開度を自動調整する
ST制御方式と、SN開度を自動調整するSN制御方式
とを鋳造条件に応じて使い分け、ST方式からSN方式
への制御切換え時に、STによるレベル制御を行った状
態でSNの開度を段階的に変化させる方法において、鋳
造開始から一定の吐出流量に達したのちに、切換え時点
の吐出流量から算出したノズル径より補正SN開度を算
出し、SN開度が補正SN開度まで絞り込まれたときに
SN制御方式に切り換えることを特徴とする連続鋳造に
おける鋳型内溶鋼レベルの制御方法。
2. An ST control method for automatically adjusting the ST opening by raising and lowering the ST and an SN control method for automatically adjusting the SN opening depending on casting conditions, and control switching from the ST method to the SN method. Sometimes, in a method in which the opening degree of SN is changed stepwise while the level control by ST is performed, after a certain discharge flow rate is reached from the start of casting, the correction SN is calculated from the nozzle diameter calculated from the discharge flow rate at the time of switching. A method for controlling the level of molten steel in a mold in continuous casting, comprising calculating an opening and switching to an SN control method when the SN opening is narrowed down to a corrected SN opening.
【請求項3】STを昇降させてST開度を自動調整する
ST制御方式と、SN開度を自動調整するSN制御方式
とを鋳造条件に応じて使い分け、ST方式からSN方式
への制御切換え時に、STによるレベル制御を行った状
態でSNの開度を段階的に変化させる方法において、鋳
造開始後、一定の鋳造速度になって一定の吐出流量に達
するまでの間は、SN開度が切換え時点の吐出流量から
算出したSN開度まで絞り込まれたときにSN制御方式
に切換え、一定の吐出流量に達したのちは、切換え時点
の吐出流量から算出したノズル径より補正SN開度を算
出し、SN開度が補正SN開度まで絞り込まれたときに
SN制御方式に切換えることを特徴とする連続鋳造にお
ける鋳型内溶鋼レベルの制御方法。
3. An ST control method for automatically adjusting the ST opening by raising and lowering the ST and an SN control method for automatically adjusting the SN opening depending on casting conditions, and control switching from the ST method to the SN method. Sometimes, in a method in which the opening degree of SN is changed stepwise while the level control by ST is performed, after the start of casting, the SN opening degree becomes constant at a constant casting speed and reaches a constant discharge flow rate. When the aperture is narrowed down to the SN opening calculated from the discharge flow rate at the time of switching, the mode is switched to the SN control method. After reaching a certain discharge flow rate, the corrected SN opening is calculated from the nozzle diameter calculated from the discharge flow rate at the time of switching. A method for controlling the level of molten steel in a mold in continuous casting, wherein the SN control method is switched when the SN opening is narrowed down to the corrected SN opening.
JP6066596A 1996-03-18 1996-03-18 Control method of molten steel level in mold in continuous casting Expired - Lifetime JP2863485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6066596A JP2863485B2 (en) 1996-03-18 1996-03-18 Control method of molten steel level in mold in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6066596A JP2863485B2 (en) 1996-03-18 1996-03-18 Control method of molten steel level in mold in continuous casting

Publications (2)

Publication Number Publication Date
JPH09248662A JPH09248662A (en) 1997-09-22
JP2863485B2 true JP2863485B2 (en) 1999-03-03

Family

ID=13148863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6066596A Expired - Lifetime JP2863485B2 (en) 1996-03-18 1996-03-18 Control method of molten steel level in mold in continuous casting

Country Status (1)

Country Link
JP (1) JP2863485B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5842751B2 (en) * 2012-07-03 2016-01-13 新日鐵住金株式会社 Mold level control method and control device in mold for continuous casting machine

Also Published As

Publication number Publication date
JPH09248662A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
JP2540032B2 (en) Method for starting a continuous casting machine with multiple slabs
JPH0712530B2 (en) Method of casting molten metal
JPH1058120A (en) Method for automatically pouring molten metal and casting system
US4771821A (en) Method for controlling early casting stage in continuous casting process
JP2863485B2 (en) Control method of molten steel level in mold in continuous casting
JPS6321586B2 (en)
JP2960225B2 (en) Auto start controller for continuous casting equipment
JP3298523B2 (en) Metal surface level control method for continuous casting
JP2898822B2 (en) Control method of molten steel level in mold in continuous casting
JP2935882B2 (en) Control method of molten steel level in mold in continuous casting
JP2856305B2 (en) Control method of molten steel level in mold in continuous casting
JPS6260189B2 (en)
JPS5978763A (en) Controlling method of molten steel level in casting mold in continuous casting
JPH0751264B2 (en) Casting control device and control method for continuous casting machine
JP2874567B2 (en) Level control method for start-up of continuous casting with multiple molds
JP3102140B2 (en) Automatic casting start method for continuous casting
JP2625596B2 (en) Method for Preventing Fluctuation in Mold Level in Continuous Forging of Continuously Cast Slab
JPH0523868B2 (en)
JP3425753B2 (en) Continuous casting method and method of controlling molten steel level in mold at early stage of casting
JPS6254562A (en) Method for controlling casting in initial period of continuous casting
JPH05285617A (en) Method for controlling molten metal surface level in continuous casting equipment
JPH05245608A (en) Method for controlling stopper in continuous casting
JPH01170568A (en) Method for controlling molten metal surface level
JPS6380947A (en) Starting method for pouring molten steel into tundish in continuous casting
JPS6316218B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981201