JPH0773777B2 - Control method in continuous casting of multi-layer steel - Google Patents

Control method in continuous casting of multi-layer steel

Info

Publication number
JPH0773777B2
JPH0773777B2 JP3729890A JP3729890A JPH0773777B2 JP H0773777 B2 JPH0773777 B2 JP H0773777B2 JP 3729890 A JP3729890 A JP 3729890A JP 3729890 A JP3729890 A JP 3729890A JP H0773777 B2 JPH0773777 B2 JP H0773777B2
Authority
JP
Japan
Prior art keywords
level
layer
injection amount
outer layer
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3729890A
Other languages
Japanese (ja)
Other versions
JPH03243262A (en
Inventor
尚 大平
啓八郎 田中
洋一 永沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3729890A priority Critical patent/JPH0773777B2/en
Publication of JPH03243262A publication Critical patent/JPH03243262A/en
Publication of JPH0773777B2 publication Critical patent/JPH0773777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は複層鋼の連続鋳造操業において、鋳片品質向上
と操業安定のため、外層凝固レベルである1次メニスカ
スレベル、および内層凝固レベルである2次メニスカス
レベルを設定値へ安定させ、さらにモールドの湯面レベ
ルを制御する技術に関する。
Description: TECHNICAL FIELD The present invention relates to a primary meniscus level, which is an outer layer solidification level, and an inner layer solidification level, in order to improve slab quality and stabilize operation in continuous casting operation of multi-layer steel. The present invention relates to a technique for stabilizing the secondary meniscus level to a set value and controlling the molten metal level of the mold.

従来の技術 従来、複層鋼の連続鋳造操業における湯面レベル制御
は、人手によるストッパ開閉により行っていた。
2. Description of the Related Art Conventionally, in the continuous casting operation of multi-layer steel, the molten metal level control has been performed by manually opening and closing a stopper.

このため湯面レベル変動や注入比変動による、外層凝固
レベルである1次メニスカスレベルや、内層凝固レベル
である2次メニスカスレベル変動のために起こる、内外
層溶鋼混合による遷移層の形成と、内外層鋳造成分拡散
や鋳片性状悪化およびノズル詰まり等、品質管理、操業
管理上問題があった。
Therefore, the transition layer formation due to the mixed molten steel in the inner and outer layers, which occurs due to the fluctuation of the primary meniscus level which is the solidification level of the outer layer and the secondary meniscus level which is the solidification level of the inner layer due to the fluctuation of the melt surface level and the fluctuation of the injection ratio, There was a problem in quality control and operation control, such as layer casting component diffusion, deterioration of cast slab property, and nozzle clogging.

発明が解決しようとする課題 本発明の目的は複層鋼連続鋳造操業において、内外層溶
鋼の混合を抑制するための直流磁界が印加されたレベル
に内外層溶鋼の境界面を安定させ、内外層の混合抑制効
果を最大に発揮させつつ、モールド湯面レベルを設定値
へ制御し、内外層境界の明瞭で高品質な鋳片を安定して
鋳造する制御方法を提案することにある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention An object of the present invention is to stabilize a boundary surface of molten steel in the inner and outer layers at a level to which a DC magnetic field for suppressing the mixing of molten steel in the inner and outer layers is applied in a continuous casting operation of multi-layer steel, Another object of the present invention is to propose a control method for maximizing the mixing suppression effect of No. 1, while controlling the mold molten metal surface level to a set value, and stably casting a high quality slab with clear inner and outer layer boundaries.

課題を解決するための手段 本発明による方法では、前記課題を解決するための手段
として、内外層の注入量計測制御によるモールド湯面レ
ベル制御方法を提案する。
Means for Solving the Problem In the method according to the present invention, as a means for solving the above-mentioned problems, a mold level control method by the injection amount measurement control of the inner and outer layers is proposed.

すなわち内層、外層の注入量比を常に一定に保ちつつ、
内層、外層の注入量の和(全注入量)の操作によりモー
ルド湯面レベルを制御する。
That is, while always maintaining the injection ratio of the inner layer and the outer layer constant,
The mold level is controlled by the operation of the sum of the injection amounts of the inner layer and the outer layer (total injection amount).

または内層注入量を外層厚みと引き抜き速度より決定さ
れる注入量を制御しつつ、湯面レベル制御は外層注入量
操作により行う。
Alternatively, the molten metal level control is performed by controlling the injection amount of the outer layer while controlling the injection amount of the inner layer which is determined by the thickness of the outer layer and the drawing speed.

作用 複層鋼の連続鋳造プロセスにおいて、外層凝固レベルで
ある1次メニスカスレベル、内層凝固レベルである2次
メニスカスレベルおよびモールド湯面レベルは、内外層
溶鋼注入比、鋳片引き抜き速度、溶鋼の凝固速度、直流
磁界印加レベルにより決定される。
Action In the continuous casting process of multi-layer steel, the primary meniscus level, which is the outer layer solidification level, the second meniscus level, which is the inner layer solidification level, and the mold level are the molten steel injection ratio of the inner and outer layers, the slab drawing speed, and the solidification of molten steel. Determined by speed and DC magnetic field application level.

この複層鋼連続鋳造操業において、鋳片の品質は上記メ
ニスカスレベルの変動により大きく左右される。
In the continuous casting operation of the multi-layer steel, the quality of the slab is greatly influenced by the fluctuation of the meniscus level.

すなわち内外層溶鋼の接触している境界面が混合抑制の
ため直流磁界を印加しているレベルから外れると、直流
磁界印加による溶鋼混合抑制の効果が減じられ、内外層
溶鋼の成分混合が進み、目標とする溶鋼成分での鋳造は
不可能となる。また、鋳造操業中の湯面レベル変動は、
鋳片性状に悪影響を与える事が知られている。
That is, when the boundary surface in contact with the molten steel in the inner and outer layers deviates from the level at which a DC magnetic field is applied to suppress mixing, the effect of suppressing molten steel mixing due to the application of a DC magnetic field is diminished, and the component mixing of the molten steel in the inner and outer layers proceeds, Casting with the target molten steel composition becomes impossible. Also, the fluctuation of the molten metal level during the casting operation is
It is known that the slab properties are adversely affected.

以上の事により外層凝固レベルである1次メニスカスレ
ベル、内層凝固レベルである2次メニスカスレベルおよ
びモールド湯面レベルの設定値への安定は、品質管理上
重要な課題である。
From the above, stability of the primary meniscus level, which is the outer layer solidification level, the secondary meniscus level, which is the inner layer solidification level, and the mold surface level to the set values is an important issue in quality control.

そこで、本発明者らは外層凝固レベルである1次メニス
カスレベル、または内層凝固レベルである2次メニスカ
スレベルの計測による、フィードバック制御を前提とし
て、外層凝固レベルである1次メニスカスレベルおよび
内層凝固レベルである2次メニスカスレベルの可観測性
の検討を行った結果以下の知見を得た。
Therefore, the present inventors presuppose feedback control by measuring the primary meniscus level which is the outer layer solidification level or the second meniscus level which is the inner layer solidification level, and the primary meniscus level and the inner layer solidification level which are the outer layer solidification levels, on the premise of feedback control. As a result of examining the observability of the secondary meniscus level, the following knowledge was obtained.

外層凝固レベルである1次メニスカスレベルおよび内層
凝固レベルである2次メニスカスレベルは不可観測であ
る。また、現在の計測技術では、溶鋼湯面下のメニスカ
スレベルを直接計測することは不可能である。
The primary meniscus level, which is the outer layer solidification level, and the second meniscus level, which is the inner layer solidification level, are unobservable. Further, it is impossible to directly measure the meniscus level below the surface of the molten steel with the current measurement technology.

以上の事より、外層凝固レベルである1次メニスカスレ
ベル、または内層凝固レベルである2次メニスカスレベ
ルのフィードバック制御を前提とした制御系の設計は不
可能である。
From the above, it is impossible to design a control system based on the feedback control of the primary meniscus level which is the outer layer solidification level or the secondary meniscus level which is the inner layer solidification level.

これより計測制御可能な溶鋼注入量操作による湯面レベ
ル制御方法を検討し、内層、外層の注入量比一定でかつ
内層、外層の注入量の和(全注入量)の操作によるモー
ルド湯面レベル制御における、外層凝固レベルである1
次メニスカスレベルおよび内層凝固レベルである2次メ
ニスカスレベルの安定性を、数値計算によるシュミレー
ションにより検討した結果、湯面レベルが変動する外乱
を加えた場合でも、本制御法では外層凝固レベルである
1次メニスカスレベル、および内層凝固レベルである2
次メニスカスレベルは、設定値に収束することが確認さ
れた。
Based on this, we investigated a molten metal level control method by measuring molten steel pouring amount operation, and the mold level surface by operating the sum of the pouring amount of the inner layer and the outer layer (total pouring amount) with a constant pouring amount ratio of the inner layer and the outer layer. Outer layer coagulation level in control 1
The stability of the secondary meniscus level and the secondary meniscus level, which is the inner layer solidification level, was examined by simulation by numerical calculation. As a result, even when the fluctuation of the molten metal level was added, the outer layer solidification level was 1 in this control method. Next meniscus level and inner layer solidification level 2
It was confirmed that the next meniscus level converges to the set value.

このため複層鋼の連続鋳造における制御方法として、内
層溶鋼注入量および外層溶鋼注入量の比を一定値に保ち
つつ、内層、外層の注入量の和(全注入量)の操作によ
るモールド湯面レベルの制御、または内層注入量を設定
値に保ちつつ外層注入量操作によるモールド湯面レベル
を制御する方法を適用すると、外層凝固レベルである1
次メニスカスレベルおよび内層凝固レベルである2次メ
ニスカスレベルは設定値に収束させることが可能とな
り、内外層の明瞭に分離された複層鋼を連続、安定して
鋳造することが可能となる。
Therefore, as a control method in the continuous casting of multi-layer steel, the mold level by controlling the sum of the injection amounts of the inner layer and the outer layer (total injection amount) while maintaining the ratio of the inner layer molten steel injection amount and the outer layer molten steel injection amount to a constant value When the level control or the method of controlling the mold surface level by operating the outer layer injection amount while maintaining the inner layer injection amount at the set value, the outer layer solidification level is 1
The secondary meniscus level and the secondary meniscus level, which is the solidification level of the inner layer, can be made to converge to the set values, and it becomes possible to continuously and stably cast the multi-layer steel in which the inner and outer layers are clearly separated.

実施例 以下図面を参照しながら本発明の実施例について説明す
る。
Embodiments Embodiments of the present invention will be described below with reference to the drawings.

第1図は複層鋳片連続鋳造設備の制御系に本発明の制御
方法を適用した処理フローを示したものである。
FIG. 1 shows a processing flow in which the control method of the present invention is applied to a control system of a multi-layer cast slab continuous casting facility.

目標とする外層の凝固厚および鋳片の引き抜き速度よ
り、湯面レベル、内層溶鋼および外層溶鋼の注入比が決
定される。
The level of molten metal, the injection ratio of the molten steel for the inner layer and the molten steel for the outer layer are determined by the target solidified thickness of the outer layer and the drawing speed of the cast slab.

湯面レベル計で測定したモールド湯面レベルと目標湯面
レベルの偏差により、湯面レベルをPID制御により目標
とする全注入量を決定する。この目標全注入量を操業条
件として設定されている内層、外層注入比に従い、内
層、外層の目標注入量に分割する。
The deviation between the mold level measured by the melt level meter and the target level is used to determine the target total injection amount by PID control. This target total injection amount is divided into the target injection amounts of the inner layer and the outer layer according to the inner layer / outer layer injection ratio set as the operating condition.

内層、外層の目標注入量と、内層、外層で各々適応推定
した注入量の偏差から、PID制御により目標とする注入
量を算出し、ストッパ開度を決定する。
The target injection amount is calculated by PID control from the difference between the target injection amount of the inner layer and the outer layer and the injection amount adaptively estimated for the inner layer and the outer layer, and the stopper opening is determined.

流量計測制御方法は以下の手順で行う。作動トランスに
より計測したストッパ開度と、羽口、ストッパ形状より
溶鋼がノズルへ注入する面積S(mm2)を幾何学的に算
出する。
The flow measurement control method is as follows. The stopper opening measured by the operating transformer and the area S (mm 2 ) where molten steel is injected into the nozzle are geometrically calculated from the tuyere and stopper shapes.

またタンディッシュに取り付けたロードセル出力より、
タンディッシュ内の溶鋼重量を計測し、溶鋼密度および
タンディッシュ内形状から溶鋼ヘッドh(mm)を算出す
る。
Also, from the load cell output attached to the tundish,
The molten steel weight in the tundish is measured, and the molten steel head h (mm) is calculated from the molten steel density and the internal shape of the tundish.

ノズル形状や溶鋼粘性等によるノズル流量係数Cの設定
は、操業開始時は過去の実験値および操業実績での値を
初期操業条件として設定する。
For setting the nozzle flow rate coefficient C based on the nozzle shape, molten steel viscosity, etc., at the start of operation, past experimental values and values in operation results are set as initial operation conditions.

この時、羽口付近での溶鋼流速V(mm/sec)は、タンデ
ィッシュ内溶鋼ヘッドh、ノズル流量係数Cより(1)
式で表わされる。
At this time, the molten steel flow velocity V (mm / sec) near the tuyere is (1) from the molten steel head h in the tundish and the nozzle flow coefficient C.
It is represented by a formula.

ノズルより注入される溶鋼流量Q(mm3/sec)は(2)
式で算出できる。
The molten steel flow rate Q (mm 3 / sec) injected from the nozzle is (2)
It can be calculated by a formula.

Q=S・V ・・・(2) 流量係数Cは、適当なサンプリング時間(120sec)毎に
モードセル変化から求められる流量実績により、逐次形
最小2乗法により同定を行い、次のサンプリング時間に
おける流量推定制御での流量係数として制御系に取入
れ、流量推定フィードバック制御を行う。
Q = S · V (2) The flow rate coefficient C is identified by the recursive least squares method based on the flow rate actuality obtained from the mode cell change at every appropriate sampling time (120 sec), and the next sampling time It is taken into the control system as a flow rate coefficient in flow rate estimation control, and flow rate estimation feedback control is performed.

発明の効果 以上、述べたように本発明によれば複層鋼の連続鋳造に
おいて、内外層境界が明瞭で品質の優れた鋳片を安定し
て製造することが可能となる。
EFFECTS OF THE INVENTION As described above, according to the present invention, in continuous casting of multi-layer steel, it is possible to stably produce a slab with clear inner and outer layer boundaries and excellent quality.

この制御方法の期待される効果は、複層鋼連続鋳造操業
自動化による操業安定と運転要員の合理化のみならず、
鋳片品質の高級化および高品質な複層鋼の産業分野への
適用範囲拡大による効果を考えると計り知れない程大き
な効果が期待できる。
The expected effects of this control method are not only operational stability and rationalization of operating personnel by automation of continuous operation of multi-layer steel, but also
Considering the effects of higher quality of slab and expansion of the application range of high-quality double-layer steel in the industrial field, an enormous effect can be expected.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法に従った複層鋼連続鋳造湯面レベル
制御の処理フローの1例を示す図である。 第2図は複層鋼の連続鋳造操業の状態図である。 dr……内外層目標凝固厚、vr……目標引き抜き速度(mm
/sec)、hr……目標湯面レベル(mm)、qAr……目標内
層溶鋼注入量(mm3/sec)、qBr……目標外層溶鋼注入量
(mm3/sec)、qA……内層注入量(mm3/sec)、qB……外
層注入量(mm3/sec)、 h……モールド湯面レベル(mm)、1……レードル(内
層)、2レードル(外層)、3……ロードセル、4……
タンディッシュ(内層)、5……タンディッシュ(外
層)、6……モールド、7……電磁ブレーキ。
FIG. 1 is a diagram showing an example of a processing flow of molten steel level control for continuous casting of multi-layer steel according to the method of the present invention. FIG. 2 is a state diagram of a continuous casting operation of multi-layer steel. dr …… Target solidification thickness of inner and outer layers, vr …… Target drawing speed (mm
/ sec), hr …… Target level (mm), qAr …… Target inner layer molten steel injection rate (mm 3 / sec), qBr …… Target outer layer molten steel injection rate (mm 3 / sec), qA …… Inner layer injection Amount (mm 3 / sec), qB …… Outer layer injection amount (mm 3 / sec), h …… Mold level (mm), 1 …… Ladle (inner layer), 2 Ladle (outer layer), 3 …… Load cell, 4 ……
Tundish (inner layer), 5 ... Tundish (outer layer), 6 ... Mold, 7 ... Electromagnetic brake.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複層鋼の連続鋳造操業において、内層溶鋼
注入量および外層溶鋼注入量の比を一定値に保ちつつ、
前記内層溶鋼注入量と前記外層溶鋼注入量との和(全注
入量)の操作によりモールド湯面レベルを制御する、ま
たは内層注入量を設定値に保ちつつ、外層注入量の操作
によりモールド湯面レベルを制御することにより、外層
凝固レベルである1次メニスカスレベルおよび内層凝固
レベルである2次メニスカスレベルおよびモールド湯面
レベルを設定値に安定させることを特徴とする複層鋼連
続鋳造における制御方法。
1. In a continuous casting operation of multi-layer steel, while maintaining a constant ratio of the inner layer molten steel injection amount and the outer layer molten steel injection amount,
The level of the mold surface is controlled by operating the sum of the inner layer molten steel injection amount and the outer layer molten steel injection amount (total injection amount), or by controlling the outer layer injection amount while maintaining the inner layer injection amount at a set value. By controlling the level, the primary meniscus level which is the outer layer solidification level, the secondary meniscus level which is the inner layer solidification level, and the mold surface level are stabilized at set values, which is a control method in continuous casting of multilayer steel. .
JP3729890A 1990-02-20 1990-02-20 Control method in continuous casting of multi-layer steel Expired - Lifetime JPH0773777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3729890A JPH0773777B2 (en) 1990-02-20 1990-02-20 Control method in continuous casting of multi-layer steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3729890A JPH0773777B2 (en) 1990-02-20 1990-02-20 Control method in continuous casting of multi-layer steel

Publications (2)

Publication Number Publication Date
JPH03243262A JPH03243262A (en) 1991-10-30
JPH0773777B2 true JPH0773777B2 (en) 1995-08-09

Family

ID=12493799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3729890A Expired - Lifetime JPH0773777B2 (en) 1990-02-20 1990-02-20 Control method in continuous casting of multi-layer steel

Country Status (1)

Country Link
JP (1) JPH0773777B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318029A (en) * 1992-05-14 1993-12-03 Nippon Steel Corp Method for continuously casting double layer steel stabilizing double layer ratio
TW202015829A (en) 2018-06-08 2020-05-01 日商日本製鐵股份有限公司 Method, device, and program for controlling continuous casting process for multi layered slab

Also Published As

Publication number Publication date
JPH03243262A (en) 1991-10-30

Similar Documents

Publication Publication Date Title
RU2433885C2 (en) Method of continuous casting of billet with small cross section
US5598885A (en) Method for the continuous casting of high-carbon steels
KR100312807B1 (en) METHOD AND APPARATUS FOR ADJUSTING LIQUEFIED METAL LEVELS IN A CONTINUOUS CASTING MOLD
CN112423911A (en) Control device, method and program for continuous casting
JPH0773777B2 (en) Control method in continuous casting of multi-layer steel
US4220191A (en) Method of continuously casting steel
SUZUKI et al. Hot model experiments on electromagnetic stirring at about crater end of continuously cast bloom
JP3214374B2 (en) Continuous casting of steel
JP2633764B2 (en) Method for controlling molten steel flow in continuous casting mold
CN112188940B (en) Method and apparatus for controlling continuous casting process of multilayer cast plate, and recording medium
JPH01271045A (en) Production of lead free cutting steel by continuous casting method
JPH07178525A (en) Method for controlling pouring quantity of molten steel for surface layer in continuous casting of double layered steel plate
JPH04105759A (en) Method for controlling molten steel surface level in continuous casting for complex cast billet
JPS6045026B2 (en) Mold content steel level control method
RU2775264C1 (en) Method for controlling continuous casting machine, control device for continuous casting machine and casting manufacturing method
CN113423521B (en) Control method for continuous casting machine, control device for continuous casting machine, and method for producing cast piece
JP2916830B2 (en) Flow control method of molten metal in continuous casting
TWI743686B (en) Control method of continuous casting machine, control device of continuous casting machine, and manufacturing method of cast piece
JPH02303663A (en) Method for controlling molten steel surface level in mold
JPH0341884Y2 (en)
JP2019209366A (en) Method and apparatus for controlling bilayer-billet continuous-casting process, and program
JP2607335B2 (en) Flow control device for molten steel in continuous casting mold
KR0122342B1 (en) Method of measuring solid fraction of continuous casting strip shell
JP2607333B2 (en) Flow control device for molten steel in continuous casting mold
JPH06297095A (en) Method for continuously casting duplex layer cast slab