JPH03240271A - Manufacture of gto thyristor provided with insulated gate - Google Patents

Manufacture of gto thyristor provided with insulated gate

Info

Publication number
JPH03240271A
JPH03240271A JP3614290A JP3614290A JPH03240271A JP H03240271 A JPH03240271 A JP H03240271A JP 3614290 A JP3614290 A JP 3614290A JP 3614290 A JP3614290 A JP 3614290A JP H03240271 A JPH03240271 A JP H03240271A
Authority
JP
Japan
Prior art keywords
base layer
type
layer
forming
emitter layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3614290A
Other languages
Japanese (ja)
Other versions
JP2825303B2 (en
Inventor
Masaki Atsuta
昌己 熱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3614290A priority Critical patent/JP2825303B2/en
Publication of JPH03240271A publication Critical patent/JPH03240271A/en
Application granted granted Critical
Publication of JP2825303B2 publication Critical patent/JP2825303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Abstract

PURPOSE:To form a deep base layer of P-type without increasing the channel length, and enhance turn-off capability, by forming diffusion windows for a P-type base layer and an N-type emitter layer, at different positions, without influence of mask alignment deviation. CONSTITUTION:By one time photolithography process, diffusion windows for forming a P-type base layer 6 and an N-type emitter layer 7 are formed at different positions, without influence of mask alignment deviation. The diffusion window of the N-type emitter layer 9 in the vicinity of a gate 4, is used as a mask, and impurities for forming the P-type base layer 6 are introduced for doping; after the mask of the diffusion window of the N-type emitter layer 9 in the vicinity of the gate 41 is eliminated, impurities for forming the N-type emitter layer 7 are introduced for doping. As the result, a deep base layer of P-type is formed and the sheet resistance of the P-type base layer can be decreased without increasing the channel length.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、絶縁ゲート付きGTOサイリスタの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method of manufacturing a GTO thyristor with an insulated gate.

(従来の技術) 従来の一般的な絶縁ゲート付きGTOサイリスタの構造
を第2図に示す。尚、以下、第1導電型をp型、第2導
電型をn型として説明する。従来の技術ではチャネル形
成部に於てはゲート電極4□をマスクとして同一の拡散
窓より不純物をドープし、Pベース層6とnエミツタ層
9を形成した。
(Prior Art) The structure of a conventional general GTO thyristor with an insulated gate is shown in FIG. Note that the following description will be made assuming that the first conductivity type is the p type and the second conductivity type is the n type. In the conventional technique, impurities were doped through the same diffusion window using the gate electrode 4□ as a mask to form the P base layer 6 and the N emitter layer 9 in the channel forming portion.

このような製造方法では絶縁ゲート付きGTOサイリス
タの電流ターンオフ能力を高めるために深いpベース層
の内部に浅いnエミツタ層を形成すると、チャネル15
の長さが大きくなりチャネル抵抗が増大してターンオン
能力が低下するという欠点があった。
In this manufacturing method, if a shallow n emitter layer is formed inside a deep p base layer in order to improve the current turn-off ability of the GTO thyristor with an insulated gate, the channel 15
The disadvantage is that the length increases, channel resistance increases, and turn-on ability decreases.

絶縁ゲート付きGTOサイリスタに於いては、一般のG
TOサイリスタと同様にpベース層の不純物量を増やし
て、Pベース層のシート抵抗を低下させると、ターンオ
フ時に、より大きな電流をベース電極から引出すことが
出来るので、より大きなターンオフ能力が得られる。た
だし、pベース層の拡散深さを変えずに、Pベース層の
不純物量を増やすと、pベース層とnエミツタ層の接合
に於けるPベース層の不純物濃度が高くなり、pベース
層とnエミツタ層の接合耐圧が低下し、ターンオフ時に
ベース電極に高いターンオフ電圧を印加することが出来
なくなりターンオフ能力が低下してしまうので、pベー
ス層とnエミツタ層の接合に於けるpベース層の不純物
濃度が高くならないように、深いpベース層を形威して
、接合耐圧を低下させない必要がある。
In the GTO thyristor with insulated gate, the general G
As with the TO thyristor, by increasing the amount of impurities in the p-base layer to lower the sheet resistance of the p-base layer, a larger current can be drawn from the base electrode at turn-off, resulting in a greater turn-off ability. However, if the amount of impurities in the P base layer is increased without changing the diffusion depth of the P base layer, the impurity concentration of the P base layer at the junction between the P base layer and the N emitter layer will increase, and the concentration of impurities in the P base layer will increase. The junction breakdown voltage of the n-emitter layer decreases, making it impossible to apply a high turn-off voltage to the base electrode during turn-off, resulting in a decrease in turn-off ability. It is necessary to form a deep p base layer so that the impurity concentration does not become high and the junction breakdown voltage does not decrease.

(発明が解決しようとする課題) 絶縁ゲート付きGTOサイリスタに於いては、ターンオ
ン時に、チャネルを流れる電流量が小さくなると、ター
ンオン能力が低下してしまう6従って、従来の製造方法
では絶縁ゲート付きGTOサイリスタの電流ターンオフ
能力を高めるために、深いpベース層6の内部に浅いn
エミツタ層9を形成すると、チャネル15の長さが長く
なりチャネル抵抗が増大するとターンオン能力が低下す
るという欠点があった。
(Problem to be Solved by the Invention) In a GTO thyristor with an insulated gate, when the amount of current flowing through the channel becomes small during turn-on, the turn-on ability decreases6. Therefore, in the conventional manufacturing method, the GTO thyristor with an insulated gate In order to enhance the current turn-off ability of the thyristor, a shallow n layer is formed inside the deep p base layer 6.
Forming the emitter layer 9 has the drawback that the length of the channel 15 becomes longer, and as the channel resistance increases, the turn-on ability decreases.

本発明は従来の欠点をなくした絶縁ゲート付きGTOサ
イリスタの製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a GTO thyristor with an insulated gate, which eliminates the conventional drawbacks.

〔発明の構成〕[Structure of the invention]

(11題を解決するための手段) 本発明は一回のフォトリソグラフィー工程により、それ
ぞれ異なる位置にpベース層6とnエミツタ層7を形成
する為の拡散窓をマスク合せのずれの影響なしに形成し
、ゲート41付近のnエミツタ層9の拡散窓をマスクし
てpベース層6形成の為の不純物をドープし、ゲート4
□付近のnエミツタ層9の拡散窓のマスクを除去した後
に、nエミツタ層7を形成する為の不純物をドープする
ことを特徴とする。
(Means for Solving Problem 11) The present invention enables diffusion windows for forming the P base layer 6 and the N emitter layer 7 at different positions to be formed in a single photolithography process without being affected by misalignment of masks. The diffusion window of the n emitter layer 9 near the gate 41 is masked and impurities for forming the p base layer 6 are doped.
The feature is that after removing the mask of the diffusion window of the n-emitter layer 9 near □, impurities for forming the n-emitter layer 7 are doped.

(作 用) 本発明の製造方法によれば、マスク合せのずれの影響な
しに、それぞれ異なる位置にPベース層6とnエミツタ
層9の拡散窓を精度良く形成することが出来るので、チ
ャネル長を長くすることなしに、深いpベース層を形威
してpベース層のシート抵抗を低下させることが出来る
ので、ターンオン特性を低下させることなくターンオフ
特性を向上させた絶縁ゲート付きGTOサイリスタを実
現することが出来る。
(Function) According to the manufacturing method of the present invention, the diffusion windows of the P base layer 6 and the N emitter layer 9 can be formed in different positions with high accuracy without being affected by misalignment of masks, so that the channel length can be reduced. Since it is possible to reduce the sheet resistance of the p base layer by forming a deep p base layer without increasing the length, it is possible to realize a GTO thyristor with an insulated gate that improves the turn-off characteristics without degrading the turn-on characteristics. You can.

(実施例) 以下、図面を参照して本発明の一実施例を説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の実施例の絶縁ゲート付きGTOサイリ
スタの製造方法を示す図である。(a)はnエミツタ層
1の上にnベース層2を有する基板のnベース層2の上
にゲート絶縁膜3としてシリコン酸化膜が形威されてお
り、(b)ではゲート絶縁膜3を介してゲート電極材料
膜として多結晶シリコン膜4を堆積し、多結晶シリコン
膜を選択エツチングしてゲート電極41とこれに隣接し
た島状に残る第1のマスク剤42を形成し、ゲート電極
41と第1のマスク材42の間を覆う第2のマスク材5
としてフォトレジスト膜が形成され、第1のマスク剤4
□、第2のマスク剤5およびゲート電極41をマスクと
して不純物をドープしてnベース層2内にPベース層6
が形威され、(c)では第2のマスク材42にかからな
いように第3のマスク材7でゲート電極41をマスクし
、第2のマスク材4□を除去する。(d)ではゲート電
極41と第4のマスク材8をマスクとして不純物をドー
プしてPベース層6内にnエミツタ層9を形威し、(e
)に於いて絶縁膜層10とアノード電極11とカソード
電極12とベース電極13を形成して絶縁ゲート付きG
TOサイリスタを製造する。
FIG. 1 is a diagram showing a method of manufacturing a GTO thyristor with an insulated gate according to an embodiment of the present invention. In (a), a silicon oxide film is formed as a gate insulating film 3 on the n base layer 2 of a substrate having an n base layer 2 on the n emitter layer 1, and in (b), a silicon oxide film is formed as a gate insulating film 3. A polycrystalline silicon film 4 is deposited as a gate electrode material film through the film, and the polycrystalline silicon film is selectively etched to form a gate electrode 41 and a first masking agent 42 remaining in an island shape adjacent to the gate electrode 41. and the first mask material 42
A photoresist film is formed as a first masking agent 4.
□, a P base layer 6 is doped in the N base layer 2 by doping impurities using the second masking agent 5 and the gate electrode 41 as a mask.
In (c), the gate electrode 41 is masked with the third mask material 7 so as not to cover the second mask material 42, and the second mask material 4□ is removed. In (d), an n emitter layer 9 is formed in the p base layer 6 by doping impurities using the gate electrode 41 and the fourth mask material 8 as masks, and (e
), an insulating film layer 10, an anode electrode 11, a cathode electrode 12, and a base electrode 13 are formed to form a G with an insulated gate.
Manufacture TO thyristors.

なお、本発明の方法は本実施例のP型とn型を入替えた
絶縁ゲート付きGTOサイリスタや、その法の種々の絶
縁ゲート型半導体装置に応用することが可能である。
Note that the method of the present invention can be applied to the GTO thyristor with an insulated gate in which the P type and n type are exchanged according to this embodiment, and various insulated gate type semiconductor devices using the method.

〔発明の効果〕〔Effect of the invention〕

本発明の製造方法を用いれば、マスク合せのずれの影響
なしにそれぞれ異なる位置にpベース層とnエミツタ層
の拡散窓を精度良く形成することが出来るので、チャネ
ル長を大きくすることなく、深いpベース層を形成する
ことができる。これによりターンオフ能力を低下させる
ことなくターンオフ能力を向上させた絶縁ゲート付きG
TOサイリスタを実現することができる。
By using the manufacturing method of the present invention, it is possible to form diffusion windows in the P base layer and the N emitter layer with high precision at different positions without being affected by misalignment of masks. A p base layer can be formed. G with insulated gate improves turn-off ability without reducing turn-off ability.
A TO thyristor can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の第Iの実施例による絶
縁ゲート付きGTOサイリスタの製造工程断面図、第2
図は従来例の絶縁ゲート付きGTOサイリスタの断面図
である。 工・・・P型エミッタ層、2・・・n型ベース層、3・
・・ゲート絶縁膜、 41・・・ゲート電極、42・・
・第1のマスク材、5・・・第2のマスク材、6・・・
P型ベース層、  7・・・第3のマスク材、8・・・
第4のマスク材、9・・・n型エミツタ層、10・・・
シリコン酸化膜、11・・・アノード電極、12・・・
カソード電極、 13・・・短いチャネル、15・・・
長いチャネル。
1(a) to 1(e) are cross-sectional views of the manufacturing process of a GTO thyristor with an insulated gate according to the first embodiment of the present invention;
The figure is a sectional view of a conventional GTO thyristor with an insulated gate. Engineering: P-type emitter layer, 2: N-type base layer, 3:
...Gate insulating film, 41...Gate electrode, 42...
- First mask material, 5... Second mask material, 6...
P-type base layer, 7... third mask material, 8...
Fourth mask material, 9... n-type emitter layer, 10...
Silicon oxide film, 11... Anode electrode, 12...
cathode electrode, 13... short channel, 15...
long channel.

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型の第1エミッタ層上に第2導電型の第
1ベース層を有する基板の第1ベース層上にゲート絶縁
膜を介してゲート電極材料膜を堆積する工程と、前記ゲ
ート電極材料膜を選択エッチングしてゲート電極とこれ
に隣接した島状に残る第1のマスク剤を形成する工程と
、前記ゲート電極と第1のマスク材の間を覆う第2のマ
スク材を形成する工程と、前記第1、第2のマスク剤お
よびゲート電極をマスクとして不純物をドープして前記
第1ベース層内に第1導電型の第2のベース層を形成す
る工程と、前記ゲート電極をマスクとし前記第2ベース
層内に第2導電型の第2エミッタ層を形成する工程とを
備えたことを特徴とする絶縁ゲート付きGTOサイリス
タの製造方法。
(1) Depositing a gate electrode material film on a first base layer of a substrate having a first base layer of a second conductivity type on a first emitter layer of a first conductivity type, with a gate insulating film interposed therebetween; a step of selectively etching a gate electrode material film to form a first masking agent remaining in an island shape adjacent to the gate electrode; and a second masking material covering between the gate electrode and the first masking material. forming a second base layer of a first conductivity type in the first base layer by doping impurities using the first and second masking agents and the gate electrode as masks; A method for manufacturing a GTO thyristor with an insulated gate, comprising the step of forming a second emitter layer of a second conductivity type in the second base layer using an electrode as a mask.
(2)前記第2エミッタ層を形成する不純物ドーピング
は、前記第1および第2のマスク材を除去した後に行う
ことを特徴とする請求項1記載の絶縁ゲート付きGTO
サイリスタの製造方法。
(2) The GTO with an insulated gate according to claim 1, wherein impurity doping for forming the second emitter layer is performed after removing the first and second mask materials.
Method of manufacturing thyristors.
JP3614290A 1990-02-19 1990-02-19 Manufacturing method of GTO thyristor with insulated gate Expired - Fee Related JP2825303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3614290A JP2825303B2 (en) 1990-02-19 1990-02-19 Manufacturing method of GTO thyristor with insulated gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3614290A JP2825303B2 (en) 1990-02-19 1990-02-19 Manufacturing method of GTO thyristor with insulated gate

Publications (2)

Publication Number Publication Date
JPH03240271A true JPH03240271A (en) 1991-10-25
JP2825303B2 JP2825303B2 (en) 1998-11-18

Family

ID=12461544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3614290A Expired - Fee Related JP2825303B2 (en) 1990-02-19 1990-02-19 Manufacturing method of GTO thyristor with insulated gate

Country Status (1)

Country Link
JP (1) JP2825303B2 (en)

Also Published As

Publication number Publication date
JP2825303B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
JPH07105496B2 (en) Insulated gate bipolar transistor
JPH08264764A (en) Semiconductor device
US4631568A (en) Bipolar transistor construction
JP3113426B2 (en) Insulated gate semiconductor device and method of manufacturing the same
JP7051520B2 (en) Manufacturing method of semiconductor device and semiconductor device
US4713355A (en) Bipolar transistor construction
JPH1041499A (en) Dmos fet of high breakdown voltage
JP2825303B2 (en) Manufacturing method of GTO thyristor with insulated gate
US4458259A (en) Etched-source static induction transistor
JP2528559B2 (en) Method for manufacturing lateral bipolar transistor
JPH0669093B2 (en) Method for manufacturing semiconductor device
JPS62147769A (en) Gto thyristor
JPS62133763A (en) Mos transistor
JPS6258678A (en) Transistor
JP2726481B2 (en) Method for manufacturing MOS type semiconductor device
JP2829026B2 (en) Self-extinguishing semiconductor device
JPS61214470A (en) Semiconductor device
JP2686125B2 (en) Static induction type switching element and method of manufacturing the same
JPH0136711B2 (en)
JPS6031268Y2 (en) Planar thyristor
JPS5924546B2 (en) Field effect semiconductor switching device
JPH05283674A (en) Semiconductor device for lightning surge protection and manufacture thereof
JPH05326930A (en) Gate-turnoff thyristor
JPH04180678A (en) Gate turn-off thyristor
JPS63296374A (en) Mos-type semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees