JPH1041499A - Dmos fet of high breakdown voltage - Google Patents

Dmos fet of high breakdown voltage

Info

Publication number
JPH1041499A
JPH1041499A JP8189229A JP18922996A JPH1041499A JP H1041499 A JPH1041499 A JP H1041499A JP 8189229 A JP8189229 A JP 8189229A JP 18922996 A JP18922996 A JP 18922996A JP H1041499 A JPH1041499 A JP H1041499A
Authority
JP
Japan
Prior art keywords
layer
drift
source
type
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8189229A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hamamatsu
伸到 浜松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP8189229A priority Critical patent/JPH1041499A/en
Publication of JPH1041499A publication Critical patent/JPH1041499A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent an electric field from concentrating locally on the edge or bent part of a DMOS FET so as to enhance it in breakdown voltage by a method wherein regions doped with impurities and other regions doped with no impurities are alternately provided to a drift channel layer located in the edge and bent part of the belt-like lateral DMOS FET. SOLUTION: N-type drift channels 6b to 6m are formed on a source layer 3 side in a P-type substrate 1 adjacent to a P-type base layer 2, and a drain layer 7 is formed in the drift channels 6b to 6m. A source.gate region and a drain region are a long way separated from each other by the presence of the drift channels 6b to 6m. Regions doped with impurities and other regions doped with no impurities are alternately arranged in a bent part where an electronic field concentrates so as to lessen the bent part in average impurity concentration. By this setup, a depletion layer is easily extended through all the drift channels 6b to 6m, so that the concentration of an electric field is relaxed to protect a DMOSFET of this constitution against deterioration in breakdown voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体の各層が帯
状に形成された横型高耐圧DMOS FET(以下DM
OS FETと言う)の端部及び折り曲げ部での耐圧の
向上に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lateral high withstand voltage DMOS FET (hereinafter referred to as DM) in which each layer of a semiconductor is formed in a band shape.
(Referred to as an OS FET) at the end portion and at the bent portion.

【0002】[0002]

【従来の技術】図4は従来のn型DMOS FETの基
本的な構造を示す断面図である。p型基板1の中にp型
ベース層2が形成されている。この中にソース層3(n
型拡散層)及びコンタクトP+層4(p型拡散層)が形
成され、これらソース層3とコンタクトP+層4に共通
にソース電極5が接続されている。また、p型基板1の
中にp型ベース層2に接してソース層3側にドリフト・
チャンネル6a(n型拡散層)が形成されており、この
ドリフト・チャンネル6a内にドレイン層7(n型拡散
層)が形成されている。このドレイン層7にはドレイン
電極8が接続されている。一方、ソース層3及びp型ベ
ース層2に対向してLOCOS9(絶縁膜)で隔てられ
たゲート電極10が形成されている。このLOCOS9
はシリコン酸化膜でありLOCOSプロセスにより形成
される。上記の加工工程は既に知られたプロセスにより
すすめることができる。
2. Description of the Related Art FIG. 4 is a sectional view showing a basic structure of a conventional n-type DMOS FET. A p-type base layer 2 is formed in a p-type substrate 1. The source layer 3 (n
A source diffusion layer) and a contact P + layer 4 (p-type diffusion layer) are formed, and a source electrode 5 is commonly connected to the source layer 3 and the contact P + layer 4. In the p-type substrate 1, there is a drift in contact with the p-type base layer 2 and the source layer 3 side.
A channel 6a (n-type diffusion layer) is formed, and a drain layer 7 (n-type diffusion layer) is formed in the drift channel 6a. The drain electrode 7 is connected to the drain layer 7. On the other hand, a gate electrode 10 is formed facing the source layer 3 and the p-type base layer 2 and separated by a LOCOS 9 (insulating film). This LOCOS9
Is a silicon oxide film formed by a LOCOS process. The above processing steps can be performed by a known process.

【0003】上記のn型DMOS FETが通常のMO
S FETと大きく違る点は、ソース電極5とドレイ
ン電極8の間がドリフト・チャンネル6aの存在により
大きく離れていること(通常のMOS FETにはドリ
フト・チャンネル6aが無い)、ゲート電極10に対
向したチャンネルがp型ベースでできている点にある。
ここに述べたn型DMOS FETが高耐圧を吸収でき
るのは、ドリフト・チャンネル長(図4のLD)を充分
長く取ってあるため、高電圧印加時にp形ベース2とド
リフト・チャンネル6aのpn接合点を起点としてドリ
フト・チャンネル6a内に空乏層が広がり、電界の集中
が緩和されるからである。尚、以下の説明の便宜上ソー
ス層とゲート電極のある領域をソース・ゲート領域、ド
レイン層及びドレイン電極のある領域をドレイン領域、
ドレイン層とドリフトチャンネルがある領域をドレイン
・ドリフト領域と大まかに区分して呼ぶ。
The above-mentioned n-type DMOS FET is an ordinary MO
The difference from the SFET is that the source electrode 5 and the drain electrode 8 are largely separated by the presence of the drift channel 6a (the normal MOSFET does not have the drift channel 6a). The point is that the opposing channels are formed on a p-type base.
Here in n-type DMOS FET mentioned can absorb a high breakdown voltage, a drift channel length because you have taken enough long (L D in FIG. 4), the p-type base 2 and the drift channels 6a at the time of high voltage application This is because the depletion layer spreads in the drift channel 6a starting from the pn junction and the concentration of the electric field is reduced. For convenience of the following description, a region having a source layer and a gate electrode is a source / gate region, and a region having a drain layer and a drain electrode is a drain region.
The region where the drain layer and the drift channel are located is roughly classified as a drain drift region.

【0004】次に図4を参照して動作の説明をする。ド
レイン電極8とソース電極5の間に高電圧が印加されて
いるときにゲート電極10に電圧を印加すると、この電
極に対向するp型ベース層2の表面が反転してn型のチ
ャンネルができる。この状態では、ドレイン電極8−ド
リフト・チャンネル6a−n型反転層(p型ベース層2
の表面にできた反転層)−ソース電極5と電流が流れ
る。この状態をDMOS FETのon状態と言い、ド
レイン電極8とソース電極5の間の抵抗をon抵抗と呼
ぶ。消費電力の低減や発熱を抑えるためにこのon抵抗
を低くする必要がある。そのために、ドリフト.チャ
ンネル長LDを短くする、ドリフト・チャンネルの濃
度を濃くする、等の方法がとられる。しかし、ドリフ
ト.チャンネル長LDを短くすると高耐圧化の妨げにな
り、ドリフト・チャンネルの濃度を上げるほど空乏層は
伸び難く耐圧が下がる。そこで、高耐圧化とon抵抗の
低減のためにDMOS FETの構造を、ドリフト・
チャンネル長LDを大きくとって高耐圧吸収構造にす
る、ドリフト・チャンネル幅を広げてon抵抗を低減
させる、等の方法をとる。次にその形状パターンの例を
示す。
Next, the operation will be described with reference to FIG. When a voltage is applied to the gate electrode 10 while a high voltage is applied between the drain electrode 8 and the source electrode 5, the surface of the p-type base layer 2 facing this electrode is inverted to form an n-type channel. . In this state, the drain electrode 8-drift channel 6a-n-type inversion layer (p-type base layer 2
Current flows through the inversion layer formed on the surface of the source electrode 5) -source electrode 5. This state is called the on state of the DMOS FET, and the resistance between the drain electrode 8 and the source electrode 5 is called the on resistance. It is necessary to reduce the on-resistance in order to reduce power consumption and heat generation. Therefore, drift. Methods such as shortening the channel length L D and increasing the concentration of the drift channel are adopted. However, drift. Shortening the channel length L D hinders high breakdown voltage, and increasing the concentration of the drift channel makes the depletion layer harder to extend and lowers the breakdown voltage. In order to increase the breakdown voltage and reduce the on-resistance, the structure of the DMOS FET has been
Methods such as increasing the channel length L D to provide a high breakdown voltage absorbing structure, and increasing the drift channel width to reduce the on-resistance are adopted. Next, an example of the shape pattern will be described.

【0005】図5は従来のn型DMOS FETの各層
の配列パターンを円形にした平面図である。X−Yで表
示した部分の断面は図4のX、Yにそれぞれ一致する。
図4の符号と同じで、ソース・ゲート領域51にはソー
ス層3、ソース電極5及びゲート電極10があり、ドレ
イン領域52にはドレイン層7及びドレイン電極8があ
り、ドレイン・ドリフト領域53にはドレイン層7とド
リフト・チャンネル6bがある。これらはおおよその配
列パターンを示したものであって細部を示したものでは
ない。図6はn型DMOS FETの各層の配列パター
ンをトラック形にした平面図である。その他は図5の説
明と同じである。図7はn型DMOS FETの各層の
配列パターンを櫛形にした平面図である。小円で描いた
端部71、72を折り曲げ部と呼んでいる。折り曲げ部
71の外側が図4のソース・ゲート側(Y側)、内側が
ドレイン側(X側)にそれぞれ対応する。折り曲げ部7
2では内側がソース・ゲート側(Y側)に外側がドレイ
ン側(X側)にそれぞれ対応する。製品化にあたっては
小さい面積の中で各層を広く確保するために配列パター
ンを櫛形にすることが多い。しかし、図7に示す折り曲
げ部分71、72では他の部分より電界が集中しやすく
耐圧低下の原因になるという問題がある。その他は図5
の説明と同じである。
FIG. 5 is a plan view in which the arrangement pattern of each layer of the conventional n-type DMOS FET is circular. The cross section of the portion indicated by XY corresponds to X and Y in FIG. 4, respectively.
4, the source / gate region 51 has the source layer 3, the source electrode 5 and the gate electrode 10, the drain region 52 has the drain layer 7 and the drain electrode 8, and the drain / drift region 53 has the same. Have a drain layer 7 and a drift channel 6b. These show approximate arrangement patterns and do not show details. FIG. 6 is a plan view in which the arrangement pattern of each layer of the n-type DMOS FET has a track shape. Others are the same as the description of FIG. FIG. 7 is a plan view showing the arrangement pattern of each layer of the n-type DMOS FET in a comb shape. The ends 71 and 72 drawn by small circles are called bent portions. The outer side of the bent portion 71 corresponds to the source / gate side (Y side) and the inner side corresponds to the drain side (X side) in FIG. Bending part 7
In 2, the inside corresponds to the source / gate side (Y side), and the outside corresponds to the drain side (X side). In commercialization, the arrangement pattern is often comb-shaped in order to secure each layer widely in a small area. However, the bent portions 71 and 72 shown in FIG. 7 have a problem that the electric field tends to concentrate more than the other portions, which causes a decrease in withstand voltage. Others are Fig.5
It is the same as the description.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
のように折り曲げ部分や端部で起きやすい電界の集中を
抑えて高耐圧のDMOS FETを実現することにあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to realize a high breakdown voltage DMOS FET by suppressing the concentration of an electric field which tends to occur at a bent portion or an end as described above.

【0007】[0007]

【課題を解決するための手段】本発明の高耐圧DMOS
FETは、半導体基板の一つの面にソース層とコンタ
クト層とを含んだPベース層と、このPベース層に隣接
し所定の耐電圧が得られるよう一定の幅をもったドリフ
トチャンネル層と、このドリフトチャンネル層に接する
よう配置したドレイン層とを含み、帯状に形成した横型
DMOS FETにおいて、前記帯状に形成した横型D
MOS FETの端部や折り曲げ部にある前記ドリフト
・チャンネル層に不純物を注入する領域と注入しない領
域とを交互に設けることにより端部や折り曲げ部の局部
的な電界の集中を防止して耐圧を大きくすることを特徴
とする。また、小型化するために櫛形に形成すると折り
曲げ部の内側に電界が集中して耐圧がさがる。そこで折
り曲げ部の外側にあるドリフト・チャンネル層に、不純
物を注入する領域と注入しない領域とを交互に配置する
と共に、不純物を注入しない領域の形状を適当に選ぶこ
とにより折り曲げ部の局部的な電界の集中を緩和する。
SUMMARY OF THE INVENTION A high breakdown voltage DMOS of the present invention
The FET has a P base layer including a source layer and a contact layer on one surface of a semiconductor substrate, a drift channel layer adjacent to the P base layer and having a certain width so as to obtain a predetermined withstand voltage, A lateral DMOS FET including a drain layer disposed in contact with the drift channel layer and having a band shape.
By alternately providing a region into which impurities are implanted and a region into which impurities are not implanted into the drift channel layer at the end or bent portion of the MOS FET, local electric field concentration at the end or bent portion is prevented, and the breakdown voltage is reduced. It is characterized in that it is increased. Further, when the antenna is formed in a comb shape for miniaturization, the electric field is concentrated inside the bent portion, and the withstand voltage decreases. Therefore, the region into which impurities are implanted and the region into which impurities are not implanted are alternately arranged in the drift channel layer outside the bent portion, and the shape of the region into which impurities are not implanted is appropriately selected, so that the local electric field of the bent portion is obtained. Alleviate concentration.

【0008】[0008]

【発明の実施の形態】以下図面を用いて本発明を説明す
る。図1は本発明の実施の一形態を示したn型DMOS
FETの構造断面図である。p型基板1の中にp型ベ
ース層2が形成されている。この中にソース層3(n型
拡散層)及びコンタクトP+層4(p型拡散層)が形成
され、これらソース層3とコンタクトP+層4に共通に
ソース電極5が接続されている。また、p型基板1の中
にp型ベース層2に接してソース層3側にn型ドリフト
・チャンネル6b〜6m(n型拡散層)が形成されてお
り、このn型ドリフト・チャンネル6b〜6m内にドレ
イン層7(n型拡散層)が形成されている。このドレイ
ン層7にはドレイン電極8が接続されている。一方、ソ
ース層3及びp型ベース層2に対向してLOCOS9
(絶縁膜)で隔てられたゲート電極10が形成されてい
る。このLOCOS9はLOCOSプロセスにより形成
されたシリコン酸化膜である。上記の加工工程は既に知
られたプロセスによることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is an n-type DMOS showing an embodiment of the present invention.
FIG. 3 is a sectional view of the structure of the FET. A p-type base layer 2 is formed in a p-type substrate 1. A source layer 3 (n-type diffusion layer) and a contact P + layer 4 (p-type diffusion layer) are formed therein, and a source electrode 5 is commonly connected to the source layer 3 and the contact P + layer 4. In the p-type substrate 1, n-type drift channels 6b to 6m (n-type diffusion layers) are formed on the source layer 3 side in contact with the p-type base layer 2, and the n-type drift channels 6b to 6m are formed. A drain layer 7 (n-type diffusion layer) is formed within 6 m. The drain electrode 7 is connected to the drain layer 7. On the other hand, LOCOS 9 faces the source layer 3 and the p-type base layer 2.
Gate electrodes 10 separated by (insulating film) are formed. This LOCOS 9 is a silicon oxide film formed by the LOCOS process. The processing steps described above can be based on known processes.

【0009】本発明の横型高耐圧MOS FETの特徴
は、図4で示した従来のn形DMOS FETと比べ
て、ソース・ゲート領域51とドレイン領域52の間に
あるn型ドリフト・チャンネル6b〜6m(n型拡散
層)の構造が、折り曲げ部のみで異なっている点にあ
る。即ち、ソース・ゲート領域51とドレイン領域52
の間の距離がドリフト・チャンネル6b〜6mの存在に
より大きく離れていることに加えて、図7の71、72
で示したように折り曲げ部で電界が集中するところでは
不純物を注入する領域と注入しない領域を交互に設ける
ことで前記折り曲げ部の平均的な濃度をさげてゆく。こ
うすることにより空乏層がドリフトチャンネル6b〜6
m全体に伸びやすくなり、折り曲げ部内側の電界の集中
を緩和して耐圧の劣化を防ぐことができる。また、不純
物の濃度を折り曲げ部以外の直線部の最適不純物濃度と
同じとして一定とするならば、不純物を注入しない領域
の幅を広げるほど濃度を薄くしたのと同じ効果を得るこ
とができる。つまり不純物を注入しない領域の形状を適
当に選ぶことにより局所的な電界の集中を緩和すること
ができる。このような電界の集中を緩和する効果はシュ
ミレーションにより予め推定することができる。以上の
理由から図1はソース・ゲート領域51のpベース層2
側の電界の集中を緩和するようにドリフト・チャンネル
6b〜6mはpベース層2に近づくほど不純物を注入し
ない領域の幅を広げている。図1は図7の折り曲げ部7
2に対応して描いている。
The feature of the lateral high withstand voltage MOS FET of the present invention is that the n-type drift channel 6b to between the source / gate region 51 and the drain region 52 is different from the conventional n-type DMOS FET shown in FIG. The point is that the structure of 6 m (n-type diffusion layer) is different only in the bent portion. That is, the source / gate region 51 and the drain region 52
7 in addition to the fact that the distance between is significantly greater due to the presence of the drift channels 6b-6m.
As shown in the above, where the electric field is concentrated at the bent portion, the region into which impurities are implanted and the region into which impurities are not implanted are alternately provided to reduce the average concentration of the bent portion. By doing so, the depletion layer is changed to drift channels 6b-6
m, it is easy to extend over the entire area, and the concentration of the electric field inside the bent portion can be reduced to prevent the withstand voltage from deteriorating. In addition, if the impurity concentration is made constant and the same as the optimum impurity concentration of the linear portion other than the bent portion, the same effect can be obtained as the width of the region into which the impurity is not implanted becomes wider and the concentration becomes lower. That is, by appropriately selecting the shape of the region into which the impurity is not implanted, local concentration of the electric field can be reduced. The effect of reducing the concentration of the electric field can be estimated in advance by simulation. FIG. 1 shows the p base layer 2 of the source / gate region 51 for the above reasons.
Drift channels 6b to 6m are formed such that the width of the region into which impurities are not implanted increases toward p base layer 2 so as to reduce the concentration of the electric field on the side. FIG. 1 shows the bent portion 7 of FIG.
It is drawn corresponding to 2.

【0010】図2は本発明のn型DMOS FETの折
り曲げ部の平面図である。折り曲げ部の加工工程で使用
するホトレジストのマスクパターンを用いてドリフト・
チャンネル6b〜6mの形状を分かりやすく示したもの
である。21は図1のPベース層2の近傍を包括して示
している。図7であればソース・ゲート領域51側に対
応する。22は図1で示したドレイン層7及びドレイン
電極8の近傍を示す。図7であればドレイン領域52側
に対応する。図2のソース・ゲート領域21の端部イの
近傍に向かって電界が集中するのでソース・ゲート領域
21(内側)に向かうほどp型基板内の不純物を注入し
ない領域の幅を広げてゆく。上記の不純物を注入しない
領域を作る方法を次に説明する。ドリフト・チャンネル
6b〜6mを作るためにp型基板の中へn型不純物イオ
ンを打ち込む際、ホトレジストにより所定のマスクを設
けてイオンの通過を阻止することにより実現する。本図
はこのマスクパターンを示したものである。図ではイオ
ンを打ち込む部分は点を付してある。(ローハ)〜(オ
−ワ)はドリフト・チャンネル6b〜6m部分(図1)
にイオンを打ち込む幅である。実際にn型不純物イオン
を打ち込んでアニールして仕上げるとドリフトチャンネ
ルの幅は図1の6b〜6mようにかなり広がったものに
なる。このようにホトレジストのマスクを適宜作成して
直線部と折り曲げ部のドリフトチャンネルの平均濃度を
自由に変えることができる。また、ドリフトチャンネル
のイオン注入工程は1つのマスクを用いて1回で終了さ
せることができるので工程の短縮につながる。
FIG. 2 is a plan view of a bent portion of the n-type DMOS FET of the present invention. Using the photoresist mask pattern used in the bending process,
The shapes of the channels 6b to 6m are shown in an easily understandable manner. Reference numeral 21 indicates the vicinity of the P base layer 2 in FIG. 7 corresponds to the source / gate region 51 side. Reference numeral 22 denotes the vicinity of the drain layer 7 and the drain electrode 8 shown in FIG. 7 corresponds to the drain region 52 side. Since the electric field concentrates near the end A of the source / gate region 21 in FIG. 2, the width of the region into which impurities are not implanted in the p-type substrate increases toward the source / gate region 21 (inside). Next, a method for forming the above-described region into which impurities are not implanted will be described. When the n-type impurity ions are implanted into the p-type substrate to form the drift channels 6b to 6m, this is realized by providing a predetermined mask with a photoresist to prevent the passage of the ions. This figure shows this mask pattern. In the figure, the portions where ions are implanted are indicated by dots. (Loha) to (Ohwa) are the drift channels 6b to 6m (Fig. 1)
The width of the ion implantation. When the n-type impurity ions are actually implanted and finished by annealing, the width of the drift channel becomes considerably wide as shown in FIGS. As described above, by appropriately preparing a photoresist mask, the average concentration of the drift channel in the linear portion and the bent portion can be freely changed. In addition, the process of ion-implanting the drift channel can be completed in one process using one mask, which leads to shortening of the process.

【0011】以上のようにして折り曲げ部のドリフト・
チャンネルの平均濃度を変えた本発明のn型DMOS
FETの動作を次に説明する。図1のドレイン電極8と
ソース電極5の間に高電圧が印加されているときにゲー
ト電極10に電圧を印加すると、この電極に対向するp
型ベース層2の表面が反転してn型のチャンネルができ
る。この状態では、ドレイン電極8−ドリフト・チャン
ネル6m→6a−n型反転層(p型ベース層2の表面に
できた反転層)−ソース電極5の経路でゲート電圧に制
御された電流が流れる。これを図2で説明すると、ドレ
イン領域22から流れ出た電流はドリフト・チャンネル
6m→6b−ソースゲート領域21の方向に流れる。ド
リフト・チャンネルの平均濃度を半円形のように適宜変
えることにより、電流はソースゲート領域21のイなど
端部の一点にだけ集中して流れ込むことがなく端部へ分
散して流れ込むようになる。これは電界が端部の一点に
にだけ集中することを防止することであり局部的な耐圧
の低下を防止することになる。尚、図7の71部分では
図2のソース・ゲート領域21とドレイン領域22が入
れ代わった構造となっているが、端部の内側で電界が集
中しないようドリフト・チャンネルの平均濃度を変える
ことは先に説明した72部分と全く同様にすることがで
きる。図3は電界の局部的な集中を防止したことにより
DMOS FETが高耐圧化したことを示している。一
例を見ると、ドリフト・チャンネルの長さLDを50μ
mとした場合に、ドレイン電極とソース電極の間の耐圧
が従来は400Vであったのに比べて、本願発明のドリ
フト・チャンネル構造にすることで590Vまで上げる
ことができたことを示している。
As described above, the drift of the bent portion
N-type DMOS of the present invention having different average channel density
The operation of the FET will now be described. When a voltage is applied to the gate electrode 10 while a high voltage is applied between the drain electrode 8 and the source electrode 5 in FIG.
The surface of the mold base layer 2 is inverted to form an n-type channel. In this state, a current controlled by the gate voltage flows through the route of the drain electrode 8-the drift channel 6 m → 6 a-the n-type inversion layer (inversion layer formed on the surface of the p-type base layer 2)-the source electrode 5. Referring to FIG. 2, the current flowing from the drain region 22 flows in the direction of the drift channel 6m → 6b—the source gate region 21. By appropriately changing the average concentration of the drift channel into a semicircular shape, the current does not flow into one point such as the end of the source gate region 21 but concentrates and flows into the end. This is to prevent the electric field from being concentrated only at one point at the end, and to prevent a local decrease in withstand voltage. Although the source / gate region 21 and the drain region 22 in FIG. 2 are replaced with each other in a portion 71 in FIG. 7, it is necessary to change the average concentration of the drift channel so that the electric field is not concentrated inside the end portion. Can be exactly the same as the previously described 72 portion. FIG. 3 shows that the breakdown voltage of the DMOS FET has been increased by preventing the local concentration of the electric field. In one example, the length L D of the drift channel is 50 μm.
In the case of m, the withstand voltage between the drain electrode and the source electrode can be increased to 590 V by using the drift channel structure of the present invention, as compared with 400 V in the related art. .

【0012】[0012]

【発明の効果】高耐圧DMOS FETの製品化にあた
って小型化するために、半導体の各層の配列パターンを
櫛形にすることが多い。このため折り曲げ部分では他の
部分より電界が集中しやすく耐圧低下の原因になってい
たが、本発明の方法により電界の集中を抑えて高耐圧の
DMOS FETを実現することができた。
In commercializing high voltage DMOS FETs, the arrangement pattern of each semiconductor layer is often comb-shaped in order to reduce the size. For this reason, the electric field is more likely to be concentrated in the bent portion than in other portions, causing a decrease in withstand voltage. However, the method of the present invention has realized a DMOS FET with a high withstand voltage by suppressing the concentration of the electric field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態を示したn型DMOS
FETの構造断面図である。
FIG. 1 shows an n-type DMOS showing an embodiment of the present invention.
FIG. 3 is a sectional view of the structure of the FET.

【図2】本発明のn型DMOS FETの折り曲げ部を
含む平面図である。
FIG. 2 is a plan view including a bent portion of the n-type DMOS FET of the present invention.

【図3】本発明の構造と従来の構造との耐圧比較図であ
る。
FIG. 3 is a diagram showing a breakdown voltage comparison between the structure of the present invention and a conventional structure.

【図4】従来のn型DMOS FETの構造断面図であ
る。
FIG. 4 is a structural sectional view of a conventional n-type DMOS FET.

【図5】従来のn型DMOS FETの平面図である。FIG. 5 is a plan view of a conventional n-type DMOS FET.

【図6】各層の配列パターンがトラック形のn型DMO
S FETの平面図である。
FIG. 6 shows an n-type DMO in which the arrangement pattern of each layer is a track type.
It is a top view of SFET.

【図7】各層の配列パターンが櫛形のn型DMOS F
ETの平面図である。
FIG. 7 shows an n-type DMOS F in which the arrangement pattern of each layer is a comb shape.
It is a top view of ET.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 pベース層 3 ソース層 4 コンタクト層 5 ソース電極 6a、6b〜6m ドリフト・チャンネル 7 ドレイン層 8 ドレイン電極 9 酸化膜 10 ゲート電極 21 ソース・ゲート領域 22 ドレイン領域 71、72 電極のコーナ部分 Reference Signs List 1 semiconductor substrate 2 p base layer 3 source layer 4 contact layer 5 source electrode 6a, 6b to 6m drift channel 7 drain layer 8 drain electrode 9 oxide film 10 gate electrode 21 source / gate region 22 drain region 71, 72 electrode corner part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の一つの面にソース層とコンタ
クト層とを含んだPベース層と、このPベース層に隣接
し所定の耐電圧が得られるよう一定の幅をもったドリフ
トチャンネル層と、このドリフトチャンネル層に接する
よう配置したドレイン層と、前記ソース層からPベース
層にわたって絶縁膜を介して対向させたゲート電極とを
帯状に形成した横型DMOS FETにおいて、 前記帯状に形成した横型DMOS FETの端部や折り
曲げ部の外側にある前記ドリフト・チャンネル層に不純
物を注入する領域と注入しない領域とを交互に設けるこ
とにより端部や折り曲げ部の局部的な電界の集中を防止
して耐圧を大きくしたことを特徴とする高耐圧DMOS
FET。
1. A P-base layer including a source layer and a contact layer on one surface of a semiconductor substrate, and a drift channel layer adjacent to the P-base layer and having a predetermined width so as to obtain a predetermined withstand voltage. A drain layer disposed in contact with the drift channel layer, and a gate electrode opposed to the source layer from the P base layer via an insulating film in a band shape. By alternately providing a region into which impurities are implanted and a region into which impurities are not implanted into the drift channel layer outside the ends and bent portions of the DMOS FET, local electric field concentration at the ends and bent portions is prevented. High withstand voltage DMOS characterized by increased withstand voltage
FET.
JP8189229A 1996-07-18 1996-07-18 Dmos fet of high breakdown voltage Pending JPH1041499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8189229A JPH1041499A (en) 1996-07-18 1996-07-18 Dmos fet of high breakdown voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8189229A JPH1041499A (en) 1996-07-18 1996-07-18 Dmos fet of high breakdown voltage

Publications (1)

Publication Number Publication Date
JPH1041499A true JPH1041499A (en) 1998-02-13

Family

ID=16237758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8189229A Pending JPH1041499A (en) 1996-07-18 1996-07-18 Dmos fet of high breakdown voltage

Country Status (1)

Country Link
JP (1) JPH1041499A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102569A (en) * 1999-09-28 2001-04-13 Fuji Electric Co Ltd Semiconductor device
KR100393201B1 (en) * 2001-04-16 2003-07-31 페어차일드코리아반도체 주식회사 High voltage lateral DMOS transistor having low on-resistance and high breakdown voltage
KR100425435B1 (en) * 2002-02-08 2004-03-30 페어차일드코리아반도체 주식회사 Lateral DMOS transistor having RESURF structure and method for fabricating the same
JP2007294872A (en) * 2006-03-29 2007-11-08 Fuji Electric Device Technology Co Ltd High voltage resistant horizontal mosfet
JP2010016041A (en) * 2008-07-01 2010-01-21 Sharp Corp Semiconductor device
JP2010109343A (en) * 2008-09-30 2010-05-13 Sanken Electric Co Ltd Semiconductor device
JP2010109344A (en) * 2008-09-30 2010-05-13 Sanken Electric Co Ltd Semiconductor device
CN102694008A (en) * 2011-03-22 2012-09-26 立锜科技股份有限公司 High voltage component and method for manufacturing the same
CN116799040A (en) * 2023-08-28 2023-09-22 合肥晶合集成电路股份有限公司 Semiconductor device with reduced surface electric field and method of manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102569A (en) * 1999-09-28 2001-04-13 Fuji Electric Co Ltd Semiconductor device
KR100393201B1 (en) * 2001-04-16 2003-07-31 페어차일드코리아반도체 주식회사 High voltage lateral DMOS transistor having low on-resistance and high breakdown voltage
KR100425435B1 (en) * 2002-02-08 2004-03-30 페어차일드코리아반도체 주식회사 Lateral DMOS transistor having RESURF structure and method for fabricating the same
JP2007294872A (en) * 2006-03-29 2007-11-08 Fuji Electric Device Technology Co Ltd High voltage resistant horizontal mosfet
JP2010016041A (en) * 2008-07-01 2010-01-21 Sharp Corp Semiconductor device
JP2010109343A (en) * 2008-09-30 2010-05-13 Sanken Electric Co Ltd Semiconductor device
JP2010109344A (en) * 2008-09-30 2010-05-13 Sanken Electric Co Ltd Semiconductor device
CN102694008A (en) * 2011-03-22 2012-09-26 立锜科技股份有限公司 High voltage component and method for manufacturing the same
CN116799040A (en) * 2023-08-28 2023-09-22 合肥晶合集成电路股份有限公司 Semiconductor device with reduced surface electric field and method of manufacturing the same
CN116799040B (en) * 2023-08-28 2023-11-03 合肥晶合集成电路股份有限公司 Semiconductor device with reduced surface electric field and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2585331B2 (en) High breakdown voltage planar element
US5723890A (en) MOS type semiconductor device
JP4986408B2 (en) Semiconductor device and manufacturing method thereof
US20030057478A1 (en) Mos-gated power semiconductor device
JPH0330310B2 (en)
JPH08264764A (en) Semiconductor device
JP3826828B2 (en) Field effect transistor using silicon carbide semiconductor
JP2005520319A (en) Symmetrical trench metal oxide semiconductor field effect transistor device and method for manufacturing the same
JP2006303323A (en) Semiconductor device and its fabrication process
JPS6237965A (en) Longitudinal semiconductor device and manufacture thereof
JPH1041499A (en) Dmos fet of high breakdown voltage
JP6771433B2 (en) Semiconductor device
JP3489362B2 (en) Semiconductor device and manufacturing method thereof
JPH06163906A (en) Insulated gate semiconductor device and fabrication thereof
JP2723868B2 (en) Semiconductor device
JP2008227240A (en) Semiconductor device and manufacturing method thereof
JP4576805B2 (en) Insulated gate semiconductor device and manufacturing method thereof
JP3381490B2 (en) MOS type semiconductor device
JPS62133763A (en) Mos transistor
JPS6246568A (en) Manufacture of vertical type semiconductor device
JPH10270693A (en) Semiconductor device
JP4389452B2 (en) Insulated gate field effect transistor
JPS6216572A (en) Vertical type semiconductor device and manufacture thereof
CN118248738A (en) Lateral double-diffusion field effect transistor, manufacturing method, chip and circuit
JPH01207977A (en) Semiconductor device