JPH03239306A - Fe-al-ni-co-based magnet powder for resin magnet use - Google Patents

Fe-al-ni-co-based magnet powder for resin magnet use

Info

Publication number
JPH03239306A
JPH03239306A JP2036965A JP3696590A JPH03239306A JP H03239306 A JPH03239306 A JP H03239306A JP 2036965 A JP2036965 A JP 2036965A JP 3696590 A JP3696590 A JP 3696590A JP H03239306 A JPH03239306 A JP H03239306A
Authority
JP
Japan
Prior art keywords
magnet
coercive force
powder
resin
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2036965A
Other languages
Japanese (ja)
Other versions
JP2665812B2 (en
Inventor
Takao Mori
隆夫 森
Hiroshi Oyama
浩 大山
Takahisa Hirooka
広岡 隆久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2036965A priority Critical patent/JP2665812B2/en
Publication of JPH03239306A publication Critical patent/JPH03239306A/en
Application granted granted Critical
Publication of JP2665812B2 publication Critical patent/JP2665812B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a magnet powder, for resin magnet use, whose magnetic characteristic and temperature characteristic are good by a method wherein an isotropic Fe-Al-Ni-Co-based magnet having a specific composition is pulverized to a specific grain size. CONSTITUTION:This magnet powder is constituted of a powder which is composed of Formula I, Fe as a residual part and unavoidable impurities, which is isotropic and whose average particle size is 20 to 100mum. When Al in Formula I is less than 6.8wt.%, the phase of a low coercive force having a face-centered cubic structure is precipitated, and the coercive force of a magnet is lowered; when it exceeds 7.7wt.%, a residual flux density is lowered. When Ni is less than 17.5wt.%, the coercive force is lowered sharply; when it exceeds 18.5wt.%, the residual flux density is lowered. When Co is less than 24.5wt.%, both the coercive force and the residual flux density are lowered; when it exceeds 25.5wt.%, the phase of the low coercive force is precipitated easily. Ti and Nb are added in order to enhance the coercive force. Si is added in order to improve a casting property. Thereby, a good magnetic characteristic and a good temperature characteristic can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、種々の形状に成形できる樹脂磁石に用いる
Fe−Al−Ni−Co系磁石粉末に係り、特定組成の
Fe−Al−Ni−Co系等方性磁石合金を平均粒径2
0〜1.OOpmの粉末となすことにより、温度特性、
保磁力等の磁石特性がFe−Al−Ni−Co系鋳造磁
石と同等で、粉末取扱い並びに樹脂磁石製造が容易な樹
脂磁石用Fe−Al−Ni−Co系磁石粉末に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to Fe-Al-Ni-Co based magnet powder used in resin magnets that can be molded into various shapes. Isotropic magnet alloy with average grain size 2
0-1. By making OOpm powder, temperature characteristics,
The present invention relates to Fe-Al-Ni-Co magnet powder for resin magnets, which has magnetic properties such as coercive force equivalent to those of Fe-Al-Ni-Co cast magnets, and which is easy to handle and produce resin magnets.

背景技術 樹脂磁石は、所要の組成、量の磁石合金粉末を樹脂と混
合して、種々形状に成形できるため、広く用いられてお
り、例えば、音響機器、OA機器、計測機器などの電子
部品の磁気回路に用いられる。
BACKGROUND ART Resin magnets are widely used because they can be molded into various shapes by mixing magnet alloy powder in the desired composition and amount with resin. Used in magnetic circuits.

かかる樹脂磁石は、 ■薄肉や複雑な形状のものができる ■ワレ・カケが生じ難く、加工が容易 の特徴がある。Such a resin magnet is ■Thin walls and complex shapes can be made. ■ Hard to crack or chip, easy to process It has the characteristics of

従来、樹脂磁石の磁石粉末として、フェライト磁石粉末
と希土類磁石粉末があり、まず、フェライト磁石では ■MO・6Fe203 (M =Ba、Sr等)化合物
を主成分として、安価であるが磁気特性が低い ■Brの温度特性はα=−o、is%/”Cであり、温
度特性は特に悪く、キュリー温度も低いため、基本的に
精密な電子機器などの用途には不向きである。
Conventionally, there are ferrite magnet powder and rare earth magnet powder as magnet powder for resin magnets. First, ferrite magnets are mainly composed of MO.6Fe203 (M = Ba, Sr, etc.) compounds and are inexpensive but have poor magnetic properties. (2) The temperature characteristics of Br are α=-o, is%/''C, and the temperature characteristics are particularly poor and the Curie temperature is low, so it is basically unsuitable for applications such as precision electronic equipment.

また、希土類磁石粉末では ■RCo5、R2Co17化合物、またはR2Fe14
B化合物を主成分とする粉末を用いて作威される。
In addition, for rare earth magnet powder, ■RCo5, R2Co17 compound, or R2Fe14
It is produced using a powder whose main component is Compound B.

RCo5またはR2Co1゜化合物を用いた樹脂磁石で
は、磁気特性はフェライト磁石に比して格段に高いが、
原材料費が高価であり、また酸化しやすいために製造が
難しく、実際の使用状態においても使用中に温度が上昇
するような用途では酸化が進行して磁気特性が劣化する
という問題がある。
Resin magnets using RCo5 or R2Co1° compounds have much higher magnetic properties than ferrite magnets, but
It is difficult to manufacture because raw materials are expensive and it is easily oxidized, and there is a problem that oxidation progresses and the magnetic properties deteriorate in applications where the temperature rises during actual use.

■超急冷法によるR2Fe14B化合物を主成分とする
磁石も提案されているが、温度特性はBrの温度特性α
=−0,13%/”Cであり、フェライト磁石と同様に
悪く、電子機器などの温度が変化するような用途には不
適である。
■Magnets whose main component is R2Fe14B compound produced by ultra-quenching method have also been proposed, but the temperature characteristics are the temperature characteristics α of Br.
= -0.13%/''C, which is as bad as a ferrite magnet, and is unsuitable for applications where the temperature changes, such as in electronic equipment.

従来技術の問題点 上記磁石は、磁性化合物の持つ結晶磁気異方性を利用し
た単磁区微粒子型の永久磁石であるため、特に樹脂磁石
に用いられる粉末は単磁区粒子径の大きさでなければな
らない。従って、フェライト磁石、RCo5、RFeB
磁石は、1〜数pm、ピニング型のR2Co17でも〜
10pmである。
Problems with the prior art The above magnets are single-domain fine-particle permanent magnets that utilize the crystal magnetic anisotropy of magnetic compounds, so the powder used in resin magnets must have a single-domain particle diameter. No. Therefore, ferrite magnet, RCo5, RFeB
The magnet is 1 to several pm, even pinning type R2Co17 ~
It is 10pm.

特に、微粒子の希土類磁石微粉末は酸化し易く、製造の
途中で特性が変化し、取扱いが困難である。
In particular, fine particles of rare earth magnet powder are easily oxidized, their properties change during production, and they are difficult to handle.

また、樹脂磁石とした後も、酸化が進行して時間が経過
するにつれて磁石特性が劣化することがある。さらに、
磁気特性が粉末の粒径に依存するため、微粉末の状態で
粒度を揃えることが必要である。
Further, even after a resin magnet is formed, oxidation may progress and the magnetic properties may deteriorate over time. moreover,
Since the magnetic properties depend on the particle size of the powder, it is necessary to make the particle size uniform in the fine powder state.

一方、ブラウン管等の電子ビーム集束用磁気回路は、電
子銃より発射された電子ビームを所要方向に偏向させる
ために磁気回路に種々形状の環状永久磁石を有するが、
温度変化に対する磁気特性の安定性の観点から、通常、
鋳造Fe−Al−Ni−Co系磁石が使用されてきた。
On the other hand, a magnetic circuit for electron beam focusing such as a cathode ray tube has annular permanent magnets of various shapes in the magnetic circuit in order to deflect the electron beam emitted from the electron gun in a desired direction.
From the perspective of stability of magnetic properties against temperature changes,
Cast Fe-Al-Ni-Co magnets have been used.

Fe−Al−Ni−Co系磁石には、A15〜14wt
%、Ni12−24wt%、Co 2〜40wt%、C
ul−8wt%を必須と3− し、10%未満のTi、5%未満のNbを含有するもの
、さらにまた鋳造性、加工性、結晶の粗大化、磁気特性
の改善のために、BSC,Si、 P、 S、 V、C
r。
For Fe-Al-Ni-Co magnets, A15~14wt
%, Ni12-24wt%, Co 2-40wt%, C
UL-8 wt% is essential, and contains less than 10% Ti and less than 5% Nb, and also BSC, for improving castability, workability, coarsening of crystals, and magnetic properties. Si, P, S, V, C
r.

胞、Zn1Zr、 Mo、 W、 Hf、 Ta、希土
類元素等を各2%未満含有するものなどがあり、それぞ
れの組成比率や適当な製造方法を選ぶことによって、等
方性、異方性、高保磁力・高エネルギー積などさまざま
な特徴をもった数種の材質が鋳造および焼結法によって
得られている。
There are materials containing less than 2% each of Zn, Zr, Mo, W, Hf, Ta, rare earth elements, etc., and by selecting the respective composition ratios and appropriate manufacturing methods, it is possible to achieve isotropy, anisotropy, and high stability. Several materials with various characteristics such as magnetic force and high energy product have been obtained by casting and sintering methods.

近年、電子ビーム集束用磁気回路は、回路技術の改良か
らさほど高磁束を発生させる磁石を必要としなくなって
きたが、磁石形状が複雑になり鋳造Fe−Al−Ni−
Co系磁石では、加工に手間を要するため、樹脂磁石が
検討されるも従来の樹脂磁石で(よ前述の温度特性から
問題を生じる。
In recent years, magnetic circuits for electron beam focusing no longer require magnets that generate very high magnetic flux due to improvements in circuit technology, but the magnet shape has become complicated and cast Fe-Al-Ni-
Since Co-based magnets require time and effort to process, resin magnets have been considered, but conventional resin magnets (which cause problems due to the temperature characteristics mentioned above).

そこで、Fe−Al−Ni−Co系磁石の粉末化も考え
られるが、一般に、Fe−Al−Ni−Co系磁石は微
粉末にすると、磁石特性、特に保磁力が低下するという
問題点がある。
Therefore, pulverization of Fe-Al-Ni-Co magnets is considered, but in general, when Fe-Al-Ni-Co magnets are pulverized, the magnetic properties, especially the coercive force, deteriorate. .

4− これはFe−Al−Ni−Co系磁石が熱処理によって
数百〜数千pmの大きさの強磁性相と非磁性相とが分離
する、いわゆるスピノダル分解による析出硬化型である
ため、析出相に歪みが入ることなどによると考えられる
。特に、樹脂磁石は薄肉や異形のものが要求されること
が多く、保磁力の高いことが必要である。
4- This is because Fe-Al-Ni-Co magnets are precipitation hardened by so-called spinodal decomposition, in which a ferromagnetic phase and a non-magnetic phase with a size of several hundred to several thousand pm are separated by heat treatment. This is thought to be due to distortion in the phase. In particular, resin magnets are often required to be thin or irregularly shaped, and need to have high coercive force.

発明の目的 この発明は、例えば、前記の電子ビーム集束用磁気回路
に最適なアルニコ系樹脂磁石の提供を目的とし、また、
温度特性、保磁力等の磁石特性がアルニコ系鋳造磁石と
同等で、粉末取扱い並びに樹脂磁石製造が容易な樹脂磁
石用Fe−Al−Ni−Co系磁石粉末提供を目的とし
ている。
Purpose of the Invention The present invention aims, for example, to provide an alnico resin magnet that is most suitable for the above-mentioned electron beam focusing magnetic circuit, and
The object of the present invention is to provide Fe-Al-Ni-Co magnet powder for resin magnets, which has magnetic properties such as temperature characteristics and coercive force that are equivalent to those of Alnico cast magnets, and which is easy to handle and produce resin magnets.

発明の概要 この発明は、温度特性、保磁力等の磁石特性がアルニコ
系鋳造磁石と同等のアルニコ系樹脂磁石を目的に、組成
並びに組織について種々のFe−Al−Ni−Co系磁
石の磁石粉末を作威し検討した結果、特定組成の等方性
Fe−Al−Ni−Co系磁石を、所要の粒度に粉砕す
ると、良好な磁気特性及び温度特性を有する樹脂磁石用
の磁石粉末が得られることを知見し、この発明を完成し
た。
Summary of the Invention The present invention aims to produce an alnico resin magnet having magnetic properties such as temperature characteristics and coercive force equivalent to those of an alnico cast magnet, and uses magnetic powders of Fe-Al-Ni-Co magnets having various compositions and structures. As a result of our investigation, we found that if an isotropic Fe-Al-Ni-Co magnet with a specific composition is pulverized to the required particle size, a magnet powder for resin magnets with good magnetic and temperature characteristics can be obtained. After discovering this, he completed this invention.

すなわち、この発明は、 AI  6.8〜7.7wt%、   Ni  17.
5〜18.5wt%、Co  24.5〜25.5wt
%、  Cu  2.7〜3.3wt%、Ti  3.
8〜4.2wt%、   Nb  1.8〜2.2wt
%、Si  O,2wt%以下、 残部Feと不可避的不純物とからなり、等方性を有し、
平均粒径が20〜1100pの粉末からなることを特徴
とする樹脂磁石用Fe−Al−Ni−Co系磁石粉末。
That is, in this invention, AI 6.8 to 7.7 wt%, Ni 17.
5-18.5wt%, Co 24.5-25.5wt
%, Cu 2.7-3.3wt%, Ti 3.
8-4.2wt%, Nb 1.8-2.2wt
%, SiO, 2wt% or less, the balance consists of Fe and unavoidable impurities, has isotropy,
Fe-Al-Ni-Co based magnet powder for resin magnets, characterized by comprising powder having an average particle size of 20 to 1100p.

発明の構成 この発明は、例えば、前記組成の磁石合金を溶製し、所
定の熱処理、すなわち溶体化処理、時効処理を施した等
方性永久磁石を、平均粒径が20〜1100pの粉末と
なるように粉砕することにより、良好な磁気特性及び温
度特性を有し、樹脂磁石として最適なFe−Al−Ni
−Co系磁石粉末が得られることを特徴としている。
Structure of the Invention The present invention provides an isotropic permanent magnet obtained by melting a magnet alloy having the above composition and subjecting it to predetermined heat treatment, that is, solution treatment and aging treatment, to a powder having an average particle size of 20 to 1100p. By pulverizing Fe-Al-Ni, it has good magnetic properties and temperature characteristics, making it ideal as a resin magnet.
-Co-based magnet powder is obtained.

この発明において、Ah Ni、 Go、 Cuは、本
Fe−Al−Ni−Co系磁石の中心組成であり、各々
、A1 6.8−7.7w+、%、 Ni  17.5〜18.5wt%、 Co  24.5〜25.5wt%、 Cu  2.7〜3.3wt%、 の範囲内においてのみ、良好な磁気特性が得られる。
In this invention, Ah Ni, Go, and Cu are the central compositions of the present Fe-Al-Ni-Co magnet, and each contains A1 6.8-7.7w+% and Ni 17.5-18.5wt%. , Co 24.5 to 25.5 wt%, Cu 2.7 to 3.3 wt%, Good magnetic properties can be obtained only within the ranges.

詳述すると、AIは、6.8wt%未満では、面心立方
構造を有する低保磁力の相が析出し、磁石の保磁力を低
下させ、また、7.7wt%を越えると、残留磁束密度
を低下させるため、6.8〜7.7wt%の範囲とする
Specifically, if AI is less than 6.8 wt%, a low coercive force phase with a face-centered cubic structure will precipitate, reducing the coercive force of the magnet, and if it exceeds 7.7 wt%, the residual magnetic flux density will decrease. In order to reduce the

Niは、17.5wt%未満では、保磁力が急激に低下
し、18.5wt%を越えると、残留磁束密度を低下さ
せるとともに、熱処理の許容条件が厳しくなり量産に適
さなくなるため、エフ、5〜18.5wt%の範囲とす
る。
If Ni is less than 17.5 wt%, the coercive force will decrease rapidly, and if it exceeds 18.5 wt%, the residual magnetic flux density will decrease and the allowable conditions for heat treatment will become strict, making it unsuitable for mass production. The range is 18.5 wt%.

coは、24.5wt%未満では、保磁力、残留磁束密
度ともに低下し、25.5wt%を越えると、低保磁カ
フ− 相が析出し易くなり、これを避けるために高温での溶体
化処理が必要となり、量産に適さなくなるため、24.
5〜25.5wt%の範囲とする。
If co is less than 24.5 wt%, both coercive force and residual magnetic flux density will decrease, and if it exceeds 25.5 wt%, a low coercive cuff phase will tend to precipitate.To avoid this, solution treatment at high temperature is required. 24. Processing is required, making it unsuitable for mass production.
The range is 5 to 25.5 wt%.

Cuは、2.7帆%未満では、保磁力が顕著に低下し、
また、3.3wt%を越えると、残留磁束密度を低下さ
せるため、2.7〜3.3wt%の範囲とする。
When Cu is less than 2.7%, the coercive force decreases significantly,
Moreover, if it exceeds 3.3 wt%, the residual magnetic flux density decreases, so the range is set to 2.7 to 3.3 wt%.

Ti、 Nbは、保磁力を向上させるため添加するが、
かかる効果を得るには、Ti 3.8wt%以上、Nb
が1.8wt%以上必要であり、また、添加量の増加に
伴って保磁力が向上するが、各々、Tiが4.2wt%
、Nbが2.2wt%を越えると、異相の析出により熱
処理が困難となって良好な磁気特性が得られなくなるた
め、Ti  3.8〜4.2wt%、Nb  1.8〜
2.2wt%の範囲とする。
Ti and Nb are added to improve coercive force, but
To obtain such an effect, 3.8wt% or more of Ti, Nb
1.8wt% or more of Ti is required, and the coercive force improves with an increase in the amount of Ti added.
If Nb exceeds 2.2 wt%, heat treatment becomes difficult due to the precipitation of different phases, making it impossible to obtain good magnetic properties.
The range is 2.2 wt%.

特に、Tiは、その添加により磁石を硬く脆くするため
、AI、Ni、 Co、 Cuが前記範囲内において、
樹脂磁石用粉末として最適の性状を得るのに、当該範囲
が不可欠となる。
In particular, since addition of Ti makes the magnet hard and brittle, within the above range of AI, Ni, Co, and Cu,
This range is essential to obtain optimal properties as a powder for resin magnets.

Siは、鋳造性の改善のために添加する元素であるが、
この発明においては鋳造性はそれほど重要8− でなく、また、大量の添加は磁気特性を低下させるため
、0.2wt%以下の含有とする。
Si is an element added to improve castability, but
In this invention, castability is not so important8- and addition of a large amount deteriorates magnetic properties, so the content is set at 0.2 wt% or less.

Feは、Fe−Al−Ni−Co系の基幹をなすが、前
記元素含有の残余を占める。
Fe forms the backbone of the Fe-Al-Ni-Co system and occupies the remainder of the element content.

鋳造Fe−Al−Ni−Co系磁石の熱処理は、通常、
2段階以上でなされる。高温で行われる熱処理は、溶体
化処理として1200〜1300℃でなされ、低温での
時効処理は、700〜550℃で行われる。
Heat treatment of cast Fe-Al-Ni-Co magnets is usually carried out by
It is done in two or more stages. The heat treatment performed at high temperature is performed at 1200 to 1300°C as solution treatment, and the aging treatment at low temperature is performed at 700 to 550°C.

Fe−Al−N1−Co系磁石は、時効処理温度よりも
キュリー温度の方が高く(〜850℃)、時効処理の途
中で磁化された場合は、通常は熱消磁することができな
い。
The Curie temperature of a Fe-Al-N1-Co magnet is higher than the aging treatment temperature (~850° C.), and if it is magnetized during the aging treatment, it cannot normally be thermally demagnetized.

従って、時効処理後に十分に脱磁したのちに粉砕する。Therefore, after aging treatment, it is sufficiently demagnetized and then pulverized.

それでもまだ磁化が残存することによって凝集した粉は
、所要目のメツシュなどを用いる分級にて取り除かれる
Powder that has agglomerated due to residual magnetization is removed by classification using a mesh of a required size.

この発明で用いられるFe−Al−Ni−Co系磁石合
金は、その出発点として、鋳造法で得られたものでもよ
く、従来のフェライトや希土類磁石の如く数pmに微粉
砕をする必要は全くないため、粉砕はショークラッシャ
ーなどの公知の粉砕方法を適宜選定するとよい。
The Fe-Al-Ni-Co magnet alloy used in this invention may be obtained by a casting method as a starting point, and there is no need to pulverize it to a few pm like conventional ferrite or rare earth magnets. Therefore, it is advisable to appropriately select a known pulverization method such as a show crusher for pulverization.

この発明において、粉末粒径の平均値を20〜1100
pと定めたのは、樹脂磁石の磁気特性の低下を防ぐため
と磁気特性の均一性の確保のためである。すなわち、平
均粒径が20pm未満であると、Fe−Al−Ni−C
o系磁石の保磁力の発生の機構となるミクロ組織を破壊
してしまい保磁力の低下を招来し、1100pを越える
と、樹脂磁石とした場合に樹脂中で磁石粉末が均等に分
散しなくなり、磁石中で磁気特性が不均一な部分が生じ
ることとなるためである。
In this invention, the average value of the powder particle size is 20 to 1100.
The reason for setting p is to prevent deterioration of the magnetic properties of the resin magnet and to ensure uniformity of the magnetic properties. That is, if the average particle size is less than 20 pm, Fe-Al-Ni-C
It destroys the microstructure that is the mechanism for generating coercive force in o-based magnets, leading to a decrease in coercive force. This is because there will be areas in the magnet where the magnetic properties are non-uniform.

この発明による磁石粉末を用いて樹脂磁石を製造する方
法どしては、粉末と混合、成形、固化などに用いるバイ
ンダーの種類あるいは製品の種類などにより適宜選択し
て樹脂磁石を作製することができ、バインダー量は所要
の磁石特性を得るために体積構成比において50%以下
である。成形方法としては、通常のプレス底形のほかに
射出成形や押出し成形、静水圧成形を採用することもで
きる。
In the method of manufacturing a resin magnet using the magnet powder according to the present invention, the resin magnet can be manufactured by appropriately selecting the type of binder used for mixing, molding, solidifying, etc. with the powder, or the type of product. The amount of binder is 50% or less in terms of volume composition in order to obtain the required magnetic properties. As a molding method, in addition to the usual press bottom molding, injection molding, extrusion molding, and isostatic pressing can also be adopted.

バインダーとして用いる合成樹脂は、熱硬化性、熱可塑
性のいずれの性質を有するものも利用できるが、熱的に
安定な樹脂が好ましく、例えば、ポリアミド、ポリイミ
ド、フェノール4fiJ脂、弗素樹脂、けい素樹脂、エ
ポキシ樹脂などを適宜選定できる。また、該合金粉末を
均一に分散混合させて磁石特性を発現させるために、バ
インダーとして合金粉末を併用することもできる。
The synthetic resin used as the binder can be either thermosetting or thermoplastic, but thermally stable resins are preferred, such as polyamide, polyimide, phenol 4fiJ resin, fluororesin, silicone resin. , epoxy resin, etc. can be selected as appropriate. Further, in order to uniformly disperse and mix the alloy powder to exhibit magnetic properties, an alloy powder can also be used as a binder.

発明の効果 この発明によるFe−Al−Ni−Co系磁石粉末を用
いた樹脂磁石は、温度特性、保磁力等の磁石特性が鋳造
Fe−Al−Ni−Co系磁石と同等で、粉末取扱い並
びに樹脂磁石製造が容易であり、特に、ビデオプロジェ
クタ−、ハイビジョンTV用などの電子ビーム集束用磁
気回路に最適なアルニコ系樹脂磁石を提供できる。
Effects of the Invention The resin magnet using the Fe-Al-Ni-Co magnet powder according to the present invention has magnetic properties such as temperature characteristics and coercive force that are equivalent to cast Fe-Al-Ni-Co magnets, making it easier to handle powder and The resin magnet is easy to manufacture, and it is possible to provide an alnico resin magnet that is particularly suitable for an electron beam focusing magnetic circuit for video projectors, high-definition TVs, and the like.

実施例 AI 7.0wt%、Ni 17.8wt%、1l− Co 25.0wt%、Cu 3.0wt%、Ti 4
.0wt%、Nb 1.8wt%、Si20.2wt%
、 Fe残部からなる組成のFe−Al−Ni−Co系磁石
合金を鋳造し、該合金に、1250℃、0.5時間の溶
体化処理、650℃、3時間の時効処理の各熱処理を施
し、Br=6.7kGSHc=10000e、 (BH
)max=2.3MGOeの等方性永久磁石合金を得た
Example AI 7.0wt%, Ni 17.8wt%, 1l-Co 25.0wt%, Cu 3.0wt%, Ti4
.. 0wt%, Nb 1.8wt%, Si20.2wt%
A Fe-Al-Ni-Co magnet alloy having a composition consisting of the remainder of Fe was cast, and the alloy was subjected to heat treatment of solution treatment at 1250°C for 0.5 hours and aging treatment at 650°C for 3 hours. , Br=6.7kGSHc=10000e, (BH
) An isotropic permanent magnet alloy with max=2.3MGOe was obtained.

」二記の磁石合金をショークラッシャーによって粉砕し
、粉末の粒径分布を測定したところ、100メツシユ(
149pm)以上 0wt%、145メツシユ(105
pm)以上 0.9wt%、200メツシユ(74pm
)以上 35.3wt%、20pm以上 64.7wt
%であった。
When the magnetic alloy described in ``2'' was crushed using a show crusher and the particle size distribution of the powder was measured, it was found that 100 mesh (
149pm) or more 0wt%, 145 mesh (105
pm) or more 0.9wt%, 200 mesh (74pm)
) or more 35.3wt%, 20pm or more 64.7wt
%Met.

この粒径分布から粒径の加重平均値を算出すると64p
mであった。
Calculating the weighted average value of particle size from this particle size distribution is 64p
It was m.

得られた磁石合金粉末を、充填率が重量比率が50%の
割合で残りをエポキシ樹脂を用いて樹脂磁石を作成し、
室温付近の0〜60℃でBrの温度特性12− を測定したところ、−0,02%/”Cの温度特性が得
られた。
A resin magnet was created by using the obtained magnet alloy powder at a filling rate of 50% by weight and the remainder using epoxy resin.
When the temperature characteristic 12- of Br was measured at 0 to 60°C near room temperature, a temperature characteristic of -0.02%/''C was obtained.

Claims (1)

【特許請求の範囲】 1 Al6.8〜7.7wt%、Ni17.5〜18.5w
t%、Co24.5〜25.5wt%、Cu2.7〜3
.3wt%、Ti3.8〜4.2wt%、Nb1.8〜
2.2wt%、Si0.2wt%以下、 残部Feと不可避的不純物とからなり、等方性を有し、
平均粒径が20〜100μmの粉末からなることを特徴
とする樹脂磁石用Fe−Al−Ni−Co系磁石粉末。
[Claims] 1 Al6.8-7.7wt%, Ni17.5-18.5w
t%, Co24.5-25.5wt%, Cu2.7-3
.. 3wt%, Ti3.8~4.2wt%, Nb1.8~
2.2 wt%, Si 0.2 wt% or less, the balance consists of Fe and unavoidable impurities, has isotropy,
Fe-Al-Ni-Co based magnet powder for resin magnets, characterized by comprising powder having an average particle size of 20 to 100 μm.
JP2036965A 1990-02-16 1990-02-16 Fe-Al-Ni-Co magnet powder for resin magnets Expired - Lifetime JP2665812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2036965A JP2665812B2 (en) 1990-02-16 1990-02-16 Fe-Al-Ni-Co magnet powder for resin magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2036965A JP2665812B2 (en) 1990-02-16 1990-02-16 Fe-Al-Ni-Co magnet powder for resin magnets

Publications (2)

Publication Number Publication Date
JPH03239306A true JPH03239306A (en) 1991-10-24
JP2665812B2 JP2665812B2 (en) 1997-10-22

Family

ID=12484449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2036965A Expired - Lifetime JP2665812B2 (en) 1990-02-16 1990-02-16 Fe-Al-Ni-Co magnet powder for resin magnets

Country Status (1)

Country Link
JP (1) JP2665812B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220504A (en) * 1987-03-10 1988-09-13 Toyama Pref Gov Resin-bonded type magnetic-substance composition and manufacture of molded form thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220504A (en) * 1987-03-10 1988-09-13 Toyama Pref Gov Resin-bonded type magnetic-substance composition and manufacture of molded form thereof

Also Published As

Publication number Publication date
JP2665812B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP5681839B2 (en) Magnetic material and method for manufacturing magnetic material
JP2893265B2 (en) Rare earth permanent magnet alloy and its manufacturing method
JPH10106875A (en) Manufacturing method of rare-earth magnet
JP2794496B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP2000114016A (en) Permanent magnet and manufacture thereof
JP2739525B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JPS62177101A (en) Production of permanent magnet material
JP2016066675A (en) Rare earth isotropic bond magnet
JPH08181009A (en) Permanent magnet and its manufacturing method
JPH0474426B2 (en)
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
JP3275055B2 (en) Rare earth bonded magnet
JP2665812B2 (en) Fe-Al-Ni-Co magnet powder for resin magnets
JPH06112026A (en) Permanent magnet with excellent thermal stability and corrosion-resisting property and manufacture thereof
JPS5945745B2 (en) Permanent magnet material and its manufacturing method
JP2740901B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JPS6373502A (en) Manufacture of rare earth magnet
JPS62177146A (en) Manufacture of permanent magnet material
JP2753430B2 (en) Bonded magnet
JPH0696926A (en) Resin-bonded rare-earth-cobalt magnet
JPH0562815A (en) Permanent magnet and manufacturing method thereof
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JPS58180005A (en) Manufacture of rare-earth intermetallic compound magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 13