JPH03238173A - One-side submerged arc welding method - Google Patents

One-side submerged arc welding method

Info

Publication number
JPH03238173A
JPH03238173A JP3188990A JP3188990A JPH03238173A JP H03238173 A JPH03238173 A JP H03238173A JP 3188990 A JP3188990 A JP 3188990A JP 3188990 A JP3188990 A JP 3188990A JP H03238173 A JPH03238173 A JP H03238173A
Authority
JP
Japan
Prior art keywords
welding
wire
electrode
diameter
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3188990A
Other languages
Japanese (ja)
Inventor
Shigeo Oyama
繁男 大山
Ikuo Asada
浅田 育雄
Nobuyuki Ohama
大浜 展之
Ryuichi Motomatsu
元松 隆一
Yukiyoshi Kitamura
北村 征義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3188990A priority Critical patent/JPH03238173A/en
Publication of JPH03238173A publication Critical patent/JPH03238173A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To form a fine bead by arranging two welding wires having the specified diameter in parallel with a weld line to form one electrode, using this as a first electrode and making a root gap specified times the size of the wire diameter. CONSTITUTION:Square groove multiple electrode one-side submerged arc welding is performed by using a small diameter welding wire 1 and a large diameter welding wire 2. The two welding wires having 1.0-3.5mmphi diameter (d) are then arranged in parallel with the weld line. The same welding power source, a wire feed machine 3 of a wire feed mechanism and a feed roller 4 for the twin wires are then held commonly for these wires to form the one electrode. This is used as the first electrode and the root gap is made to 1.2-1.5 times the size of the wire 1 diameter. consequently, square grooves welding can be easily performed at high speed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はI開先多電極片面サブマージアーク溶接法に係
わり、特に板厚20mm以下の片面1層溶接において、
高速でしかも溶接欠陥発生の無い良好なビードを得る片
面溶接法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to an I-groove multi-electrode single-sided submerged arc welding method, particularly in single-sided single-layer welding of a plate thickness of 20 mm or less.
The present invention relates to a single-sided welding method that is fast and produces a good bead without welding defects.

(従来の技術) 従来、フラックス銅バッキングあるいはガラステープ+
固型剤を裏当材として用いた片面サブマージアーク溶接
法は、その高能率性が認められ、特に造船の分野で広く
用いられてきたが、更なる能率の向上が望まれている。
(Conventional technology) Conventionally, flux copper backing or glass tape +
Single-sided submerged arc welding using a solidifying agent as a backing material has been recognized for its high efficiency and has been widely used, particularly in the field of shipbuilding, but further improvements in efficiency are desired.

この要求を満たすため解決しなければならない問題とし
て、開先形状がある。即ち、片面溶接では、V、Y、U
開先を用いて施工するのが通例であり、そのためにわざ
わざ開先加工を施す必要がある。被溶接物端面を垂直切
りし、突合わせる■開先片面溶接を用いれば、開先加工
工程が省略化されるばかりでなく、溶着断面積を小さく
することが可能となり、施工能率を著しく向上させるこ
とができる。
A problem that must be solved in order to meet this requirement is the shape of the groove. That is, in single-sided welding, V, Y, U
It is customary to perform construction using a bevel, and therefore it is necessary to take the trouble to process the beveling. Cutting the end face of the workpiece vertically and butting it together ■Using single-sided groove welding not only omits the groove processing process but also makes it possible to reduce the weld cross-sectional area, significantly improving construction efficiency. be able to.

しかしながら、従来の1開先片面溶接では、大径ワイヤ
を用いるため電流密度は小さく、また、アークは被溶接
物上方で発生し、表面熱源となるため深い溶込みは得ら
れず裏ビードが出にくく、安定した裏ビーが得られない
。また、裏ビードを出すため溶接電流を高電流にすると
表ビードの余盛が過多になり、さらに裏ビードが出たと
しても高電流によるアークプラズマ気流の増大によって
アンダーカット、スラグ巻込み等の溶接欠陥が発生し易
く、かつビード形状が梨型ビードになり耐割れ性が劣る
However, in conventional one-groove single-sided welding, the current density is low because a large diameter wire is used, and the arc is generated above the workpiece and becomes a surface heat source, so deep penetration cannot be achieved and a back bead appears. It is difficult to obtain a stable back bead. In addition, if the welding current is set to a high current to produce a back bead, excess buildup of the front bead will occur, and even if a back bead appears, the arc plasma air flow will increase due to the high current, resulting in undercuts, slag entrainment, etc. Defects are likely to occur, and the bead shape becomes a pear-shaped bead, resulting in poor cracking resistance.

これらの問題点の改善を目的として、種々の施工方法が
試みられてきた。特開昭50−84133号公報では、
■型開光の下向多電極溶接において後行の電極位置を溶
接線上からずらし、第1電極は高電流◆低電圧、後行電
極は低電流・高電圧の条件で溶接を行う方法が提案され
ている。
Various construction methods have been tried to improve these problems. In Japanese Patent Application Laid-open No. 50-84133,
■In downward multi-electrode welding using open-type beams, a method has been proposed in which the position of the trailing electrode is shifted from the welding line, and the first electrode performs welding under high current and low voltage conditions, and the trailing electrode performs welding under the conditions of low current and high voltage. ing.

即ち、第1電極を高電流・低電圧として深い溶込みを得
、後行電極を溶接線よりずらすことにより、先行電極に
よりできた余盛高さを横に広げて低くし、融合線が梨型
となるのを防ぐ方法である。
That is, by using the first electrode at high current and low voltage to obtain deep penetration, and by shifting the trailing electrode from the weld line, the height of the excess buildup created by the leading electrode is spread laterally and lowered, and the fusion line is straightened. This is a way to prevent it from becoming a mold.

しかしながら、溶接電流を高電流にすると、裏ビードと
余盛のバランスの取れたビード形状が得られる適正条件
範囲が極端に狭くなるばかりでなく、後行の電極位置を
溶接線上からずらすため、適正な電極位置にしなければ
2段ビードになる問題が発生する等実用的とは良い難い
However, when the welding current is set to a high current, not only does the range of suitable conditions for obtaining a well-balanced bead shape between the back bead and extra metal become extremely narrow, but also the position of the trailing electrode is shifted from the welding line, making it difficult to If the electrodes are not placed in the correct position, the problem of two-step beads may occur, which is not practical.

また、特開昭53−127348号公報ではI開先に適
当な間隙を設け、先行電極の溶融先端を被溶接物の表面
より下部に潜行させ、かつ先行電極は高電流・低電圧の
条件で溶接を行う方法が提案されている。即ち、間隙を
設けたI開先を用い、先行電極の溶接条件を高電流・低
電圧とすることによりアーク発生位置を被溶接物の表面
より下部にし、溶込みを得る方法が提案されている。
Furthermore, in JP-A-53-127348, an appropriate gap is provided in the I groove so that the melting tip of the leading electrode is submerged below the surface of the workpiece, and the leading electrode is operated under high current and low voltage conditions. A method of welding has been proposed. That is, a method has been proposed that uses an I groove with a gap and sets the welding conditions of the leading electrode to high current and low voltage so that the arc generation position is below the surface of the workpiece to achieve penetration. .

しかしながら、この方法も先行電極溶接電流を高電流に
するため、裏ビードと余盛のバランスの取れたビード形
状が得られる適正条件範囲が極端に狭くなるばかりでな
く、先行電極の電圧が極端に低いため、良好なビード外
観を得る条件は極端に狭くなり、実用性の面で大きな問
題となる。
However, this method also uses a high leading electrode welding current, which not only extremely narrows the range of suitable conditions for obtaining a bead shape with a good balance between the back bead and the extra welding, but also causes the leading electrode voltage to become extremely high. Because of this, the conditions for obtaining a good bead appearance are extremely narrow, which poses a big problem in terms of practicality.

(発明が解決しようとする課題) 本発明はI開先多電極片面サブマージアーク溶接に関し
、特に板厚20恥以下の片面1層溶接において、1.0
m/m1n以上で高速溶接する際に、ハンピングビード
やアンダーカット等の欠陥が生じず、良好なビード形状
を得ることができるサブマージアーク溶接法を提供する
ことを目的とするものである。
(Problems to be Solved by the Invention) The present invention relates to I-groove multi-electrode single-sided submerged arc welding, and particularly in single-sided, single-layer welding with a plate thickness of 20 mm or less.
The object of the present invention is to provide a submerged arc welding method that does not produce defects such as humping beads or undercuts and can obtain a good bead shape when performing high-speed welding at m/m1n or more.

(課題を解決するための手段) 本発明が要旨とするところは、■開先多電極片面サブマ
ージアーク溶接法において、ワイヤ径dが1.0〜3.
5mmφである溶接ワイヤ2本を溶接線と並行に配置し
、かつ同一の溶接電源とワイヤ送給機構を共有させて1
つの電極とし、これを少なくとも第1電極に用い、開先
間隙をワイヤ径の1.2倍〜1.5倍とすることを特徴
とする片面サブマージアーク溶接法にある。
(Means for Solving the Problems) The gist of the present invention is as follows: (1) In the groove multi-electrode single-sided submerged arc welding method, the wire diameter d is 1.0 to 3.
Two welding wires with a diameter of 5 mm are placed parallel to the welding line, and the same welding power source and wire feeding mechanism are shared.
The single-sided submerged arc welding method is characterized in that the two electrodes are used as at least the first electrode, and the groove gap is set to 1.2 to 1.5 times the wire diameter.

(作  用) 以下本発明の作用について詳細に説明する。(for production) The operation of the present invention will be explained in detail below.

第1図は本発明の一例である3電極サブマージアーク溶
接法を模式化した側面図であり、溶接部は理解を容易に
するため一部を断面図としている。
FIG. 1 is a side view schematically showing a three-electrode submerged arc welding method, which is an example of the present invention, and a part of the welded part is shown in a cross-sectional view for easy understanding.

図中1は第1電極を構成する1、B〜3.5關φの細径
ワイヤであり、高速回転のワイヤ送給機3に直結された
ツインワイヤ送給ローラ4によって高速送給され、ツイ
ンワイヤ用の電極チップ5によって所定のワイヤ間隔7
を保持させながら並列アーク8を発生させる。
In the figure, 1 is a small diameter wire of 1, B to 3.5 mm φ that constitutes the first electrode, and is fed at high speed by a twin wire feed roller 4 directly connected to a high-speed rotating wire feeder 3. The predetermined wire spacing 7 is determined by the electrode tip 5 for twin wires.
A parallel arc 8 is generated while maintaining the parallel arc 8.

このツインワイヤの間隔は安定かつソフトな溶接アーク
を形成させるに際して影響し、この間隔が小さすぎると
集中性の高い不安定なアークとなり、良好な裏ビード形
成が得られなくなる。一方、この間隔が大きすぎるとそ
れぞれが独立した溶接アークとなるため、裏ビード形成
が幅狭の凸状傾向となり好ましくない。
The distance between the twin wires affects the formation of a stable and soft welding arc, and if this distance is too small, the arc becomes highly concentrated and unstable, making it impossible to form a good back bead. On the other hand, if this interval is too large, each becomes an independent welding arc, which is undesirable because the back bead formation tends to be narrow and convex.

適切な間隔は溶接条件によって異なるが、ワイヤ径をd
mmとするとワイヤ中心間の距離にして2d〜5dが適
切である。一方、第2電極および第3電極で使用される
溶接ワイヤ2は、従来法と同様の1本の大径ワイヤを使
用する。なお、この場合第2、第3電極に第1電極と同
様な細径ワイヤ2本による並列アーク方式にしても差し
支えない。
Appropriate spacing varies depending on welding conditions, but the wire diameter is d
If mm, the appropriate distance between the wire centers is 2d to 5d. On the other hand, the welding wire 2 used for the second electrode and the third electrode is a single large diameter wire similar to the conventional method. In this case, a parallel arc method may be used in which the second and third electrodes are made of two small diameter wires similar to those of the first electrode.

本発明者らはアーク現象につき種々検討した結果、以下
の知見を得た。単位アーク当りのプラズマ気流の強さは
、その溶接電流に比例すると考えられ、並列アークによ
ってアークプラズマ気流がソフトになる。
As a result of various studies on arc phenomena, the present inventors obtained the following knowledge. The strength of the plasma airflow per unit arc is considered to be proportional to the welding current, and parallel arcs soften the arc plasma airflow.

これは、単位電極に投与された電流がそれぞれの溶接ワ
イヤに分流して並列アークが点弧するため、集中性の低
いプラズマ気流となり、全体としてのアークプラズマ気
流が大径ワイヤに比し小さくなるためであり、アークが
ソフトになることにより裏ビードを形成するに際し、凸
状傾向となり難く、アンダーカット等の欠陥の無い良好
な裏ビード形状を得ることができる。
This is because the current applied to the unit electrode is divided into each welding wire and parallel arcs are ignited, resulting in a less concentrated plasma airflow and the overall arc plasma airflow is smaller than that for large diameter wires. This is because the arc becomes soft, so when forming a back bead, it is less likely to have a convex tendency, and a good back bead shape without defects such as undercuts can be obtained.

また、細径ワイヤを2本使用するため、同一溶接電流値
で比較した場合、ワイヤ溶融効率が大径に比べ高く十分
な溶着量が得られるため、高速化が可能となるばかりで
なく、同一溶着量を得るのにより低い電流値ですむこと
になり、アークプラズマ気流をより低く抑制できる効果
もある。
In addition, since two small-diameter wires are used, when compared at the same welding current value, the wire melting efficiency is higher than that of a large-diameter wire, and a sufficient amount of welding can be obtained. A lower current value is required to obtain a sufficient amount of welding, which also has the effect of suppressing arc plasma airflow to a lower level.

ツインワイヤの径を1.0〜3.5mmとしたのは、1
.0mm未満ではワイヤ突出し部分でのジュール熱効果
が著しく、溶接チップと母材間でワイヤのヒユーズ現象
が発生し、アーク長が一定せず溶接電圧変動が大きくな
り、安定した溶接か維持できない。また、ワイヤか細す
ぎてツインワイヤを高速送給する上において、ワイヤの
全屈など送給不良を起こし易く、安定な溶接が困難にな
る。
The reason why the diameter of the twin wire is 1.0 to 3.5 mm is 1.
.. If it is less than 0 mm, the Joule heat effect at the protruding part of the wire will be significant, a wire fuse phenomenon will occur between the welding tip and the base metal, the arc length will not be constant, the welding voltage will fluctuate greatly, and stable welding cannot be maintained. In addition, when the twin wire is fed at high speed because the wire is too thin, feeding defects such as full bending of the wire are likely to occur, making stable welding difficult.

一方、3.5m■超ではワイヤが太いため各ワイヤでの
電流密度が小さくなり、安定した並列アークの維持が困
難となるばかりでなく、ワイヤ溶融効率も低くなり、同
一溶接電流における高溶着量確保の効果が失われる。
On the other hand, if the wire exceeds 3.5 m, the current density in each wire becomes small because the wire is thick, which not only makes it difficult to maintain a stable parallel arc, but also reduces the wire melting efficiency, resulting in a high amount of welding at the same welding current. The effect of securing is lost.

上記のような効果の得られる方法を、第1電極に用いる
ことにより良好な裏ビード形状が得られる。
A good back bead shape can be obtained by using the method that provides the above-mentioned effects for the first electrode.

第2図は本発明の開先形状を示す正面図である。FIG. 2 is a front view showing the groove shape of the present invention.

第1電極のワイヤ1は■開先の左右の被溶接物12−1
. 12−2間に設けられたワイヤ径の1.2倍〜1.
5倍の間隔を有す間隙中にあり、アークはこの間隙中、
被溶接物の表面より下部で発生する。
The wire 1 of the first electrode is ■Workpieces 12-1 on the left and right sides of the groove
.. 1.2 times to 1.2 times the diameter of the wire provided between 12-2.
The arc is located in a gap with 5 times the spacing, and the arc is in this gap,
Occurs below the surface of the workpiece.

開先に間隙を有し、かつ第1電極のアークはこの間隙中
、被溶接物の表面より下部で発生させることにより深い
溶込みが得られる。この場合、開先に設けた間隙をワイ
ヤ径の1.2倍〜1.5倍としたのは、1.2倍未満で
は間隙か狭くなり、アークが被溶接物上方で発生し深い
溶込みが得られなくなる。
By having a gap in the groove and generating the arc of the first electrode below the surface of the workpiece in this gap, deep penetration can be obtained. In this case, the gap provided in the groove is set to 1.2 to 1.5 times the wire diameter, because if it is less than 1.2 times, the gap will become narrow and the arc will occur above the workpiece, resulting in deep penetration. will not be obtained.

一方、1.5倍超では間隙の幅が広くなりすぎ、間隙を
挟んだ被溶接物の一方でアークが発生する片側溶融にな
るばかりでなく、アークがふらつく等不安定になり、良
好な裏ビードが得られない。
On the other hand, if it exceeds 1.5 times, the width of the gap becomes too wide, which not only causes one-sided melting where an arc occurs on the other side of the workpiece across the gap, but also causes instability such as fluctuation of the arc, resulting in poor backing. I can't get a bead.

なお、スタートに際しては間隙にスチールウール、カッ
トワイヤ等を挿入し、スタートさせるものとする。
In addition, when starting, steel wool, cut wire, etc. shall be inserted into the gap and then started.

本発明溶接法はI開先片面サブマージアーク溶接法であ
り、溶接材料として表側フラックス、バッキングフラッ
クスおよび電極ワイヤを必要とするが、これら溶接材料
に関しては、目的に応じた溶接金属が得られればその組
成については特に限定されるものではない。即ち、表側
フラックスとしては、S 102 、  A D 20
 s 1M g O。
The welding method of the present invention is an I-groove single-sided submerged arc welding method, which requires front side flux, backing flux, and electrode wire as welding materials. The composition is not particularly limited. That is, as the front side flux, S 102 and A D 20
s 1 M g O.

MnO,TiO等の金属酸化物、Ca F 2等の金属
弗化物、Ca COM g COa等の金属炭3′ 酸塩、St、Mn等の脱酸剤、Ni、Mo等の合金剤あ
るいは鉄粉を適宜配合してつくられたフラックスを用い
ればよく、その形態もメルト型、ボンド型のいずれかの
フラックスでもよい。バッキングフラックスに関しても
同様である。
Metal oxides such as MnO and TiO, metal fluorides such as CaF2, metal carbonates such as CaCOMgCOa, deoxidizers such as St and Mn, alloying agents such as Ni and Mo, or iron powder. It is sufficient to use a flux made by suitably blending the following, and the form thereof may be either a melt type or a bond type flux. The same applies to backing flux.

電極ワイヤに関しては、目標性能に合わせて選択される
ものであるが、Mn:0.3〜3.2%、MO二〇、1
5〜0.75%の一種または二種以上を含有するワイヤ
が強度を確保する上で好ましい。
Regarding the electrode wire, it is selected according to the target performance, but Mn: 0.3 to 3.2%, MO20, 1
A wire containing 5 to 0.75% of one or more types is preferable in order to ensure strength.

(実 施 例) 第1表に示す鋼板を用いて、第2表に示すワイヤ、第3
表に示す表側フラックスおよび第4表に示すバッキング
フラックスを用いて、■開先片面サブマージアーク溶接
を行った。
(Example) Using the steel plates shown in Table 1, wires shown in Table 2,
Using the front side flux shown in the table and the backing flux shown in Table 4, submerged arc welding was performed on one side of the groove.

第3表および第4表に示すフラックスは、原料粉を水ガ
ラスで造粒した後焼成したボンドフラックスであり、フ
ラックス粒度は12X100メツシユである。また、第
4表の裏フラックスは銅当金併用型の裏フラックスであ
り、フェノール樹脂はアルコールを溶媒として溶解し、
粘液とした後フラックス粒子に被覆した。
The flux shown in Tables 3 and 4 is a bonded flux obtained by granulating raw material powder with water glass and then firing it, and the flux particle size is 12×100 mesh. In addition, the back flux shown in Table 4 is a back flux that is combined with a copper dome, and the phenol resin is dissolved in alcohol as a solvent.
After making it into a mucilage, it was coated on flux particles.

 0 第5表に溶接条件および結果を示す。0 Table 5 shows welding conditions and results.

第 表 第 表 第 表 (wt、%) S102CaOCaF2丁102102M12O3鉄粉
 合金 その他第 表 その他二C02゜ Fed。
Table 1 Table 1 (wt, %) S102CaOCaF2 102102M12O3 Iron powder Alloy Others Table Other 2C02°Fed.

N a 20゜ K2Oなど 1 本発明を用いた1〜5ではいずれも良好な溶接部を得る
ことができた。
N a 20° K2O, etc. 1 Good welds could be obtained in all cases 1 to 5 using the present invention.

これに対して比較例6では、本発明例2と同条件である
が、大径ワイヤを用いたことにより溶込みが不十分で裏
ビードが十分に出す、かつ表ビードの余盛りが大きくな
った。比較例7は大径ワイヤを用いて十分な溶込みを得
ようと、第1電極を高電流・低電圧にしたところ裏ビー
ドが凸になり、アンダーカットが発生した。比較例8は
本発明例4と同条件であるが、開先間隙が狭いため被溶
接物上方でアークが発生し、裏ビードが出す、表ビード
の余盛りが大きくなった。比較例9は本発明例5と同条
件であるが、開先間隙が広いため開先内の片側のみにア
ークが発生し、片よりビードとなった。
On the other hand, in Comparative Example 6, the conditions were the same as in Invention Example 2, but due to the use of a large diameter wire, penetration was insufficient and the back bead was sufficiently exposed, and the surface bead had a large excess. Ta. In Comparative Example 7, when a large diameter wire was used and the first electrode was set to high current and low voltage in order to obtain sufficient penetration, the back bead became convex and an undercut occurred. Comparative Example 8 was under the same conditions as Inventive Example 4, but because the groove gap was narrow, an arc was generated above the workpiece, and the back bead produced a large excess on the front bead. Comparative Example 9 was under the same conditions as Inventive Example 5, but because the groove gap was wide, arcing occurred only on one side of the groove, resulting in a bead rather than a piece.

(発明の効果) 本発明は以上のように構成され、従来多電極片面サブマ
ージアーク溶接法において困難であった、I開先の高速
溶接が容易になり、良好なビードを形成することができ
、工業的価値は大きい。
(Effects of the Invention) The present invention is configured as described above, and it is possible to easily perform high-speed welding of an I-groove, which was difficult in the conventional multi-electrode single-sided submerged arc welding method, and to form a good bead. It has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の模式化した部分断面側面図、第2
図は本発明の開先形状を示す正面図である。 1:細径溶接ワイヤ   2:太径溶接ワイヤ3:ワイ
ヤ送給機 4;ツインワイヤ用送給ローラ 5:ツインワイヤ用電極チップ 6:大径ワイヤ用電極チップ 7:ツインワイヤのワイヤ間隔 8:並列アーク     9;従来アーク10:溶接フ
ラックス   11;裏フラックス12、12−]、、
 ]12−2:被溶接物13:銅当金      1.
4.15ニスラグ16:裏スラグ      17.1
8:溶融プール19.20:溶接金属    21:エ
アーホースW:溶接方向 代 理 人  弁理士  茶野木 立 夫3 4 5
Fig. 1 is a schematic partial cross-sectional side view of the method of the present invention;
The figure is a front view showing the groove shape of the present invention. 1: Small diameter welding wire 2: Large diameter welding wire 3: Wire feeder 4; Feed roller for twin wires 5: Electrode tip for twin wires 6: Electrode tip for large diameter wires 7: Wire spacing of twin wires 8: Parallel arc 9; Conventional arc 10: Welding flux 11; Back flux 12, 12-],,
]12-2: Object to be welded 13: Copper dowel 1.
4.15 Varnish slag 16: Back slag 17.1
8: Molten pool 19. 20: Weld metal 21: Air hose W: Welding direction Agent Patent attorney Tatsuo Chanoki 3 4 5

Claims (1)

【特許請求の範囲】[Claims] I開先多電極片面サブマージアーク溶接法において、ワ
イヤ径dが1.0〜3.5mmφである溶接ワイヤ2本
を溶接線と並行に配置し、かつ同一の溶接電源とワイヤ
送給機構を共有させて1つの電極とし、これを少なくと
も第1電極に用い、開先間隙をワイヤ径の1.2倍〜1
.5倍とすることを特徴とする片面サブマージアーク溶
接法。
In the I-bevel multi-electrode single-sided submerged arc welding method, two welding wires with a wire diameter d of 1.0 to 3.5 mmφ are arranged in parallel to the welding line, and the same welding power source and wire feeding mechanism are shared. This is used as at least the first electrode, and the groove gap is set to 1.2 times to 1 times the wire diameter.
.. A single-sided submerged arc welding method characterized by a 5x welding process.
JP3188990A 1990-02-13 1990-02-13 One-side submerged arc welding method Pending JPH03238173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3188990A JPH03238173A (en) 1990-02-13 1990-02-13 One-side submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3188990A JPH03238173A (en) 1990-02-13 1990-02-13 One-side submerged arc welding method

Publications (1)

Publication Number Publication Date
JPH03238173A true JPH03238173A (en) 1991-10-23

Family

ID=12343601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3188990A Pending JPH03238173A (en) 1990-02-13 1990-02-13 One-side submerged arc welding method

Country Status (1)

Country Link
JP (1) JPH03238173A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029931A (en) * 2008-07-31 2010-02-12 Jfe Steel Corp Multi-electrode submerged arc welding method
JP2011167745A (en) * 2010-02-22 2011-09-01 Kobe Steel Ltd Arc starting method of multi-electrode one-side welding equipment and multi-electrode one-side welding equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029931A (en) * 2008-07-31 2010-02-12 Jfe Steel Corp Multi-electrode submerged arc welding method
JP2011167745A (en) * 2010-02-22 2011-09-01 Kobe Steel Ltd Arc starting method of multi-electrode one-side welding equipment and multi-electrode one-side welding equipment

Similar Documents

Publication Publication Date Title
US6723954B2 (en) Straight polarity metal cored wire
EP2402106A1 (en) Complex method of welding incombination of gas-shield ark welding with submerged ark welding
JP4538518B2 (en) Gas shield arc brazing method for steel sheet
JPS6072678A (en) High-speed arc welding method
JP6383319B2 (en) Multi-electrode single-sided single layer submerged arc welding method
JP2860060B2 (en) Single-sided submerged arc welding method
JPH03238173A (en) One-side submerged arc welding method
CA1071715A (en) Method of high speed gas shielded arc welding
JP4707949B2 (en) Multi-electrode single-sided submerged arc welding method
JP2581485B2 (en) Termination method for multi-electrode single-sided submerged arc welding
JP2005319507A (en) Multiple electrodes one side submerged arc welding method
JPH08276273A (en) Butt welding method for clad steel
JP3820179B2 (en) Titanium alloy welding wire for MIG welding and welding method
JP2978350B2 (en) Multi-electrode single-sided submerged arc welding
JP7448086B2 (en) Single-sided submerged arc welding method and welded joint manufacturing method
JPH0484676A (en) One-side submerged arc welding method at high speed
JPH05185234A (en) Termination processing method for multiple electrode one-side submerged arc welding process
JP3102821B2 (en) Single-sided gas shielded arc welding method for in-plane tack joints
US3610868A (en) Submerged-welding method
JPS6335352B2 (en)
JPH0852573A (en) Method for starting multi-electrode, one side submerged arc welding
JPH05293658A (en) Multiple electrode one side submerged arc welding method
JP3574038B2 (en) High-speed MAG welding method
JP2749968B2 (en) High current density welding method
JPS60118386A (en) Submerged arc welding method