JPH03237097A - Photo excited vapor growth method - Google Patents

Photo excited vapor growth method

Info

Publication number
JPH03237097A
JPH03237097A JP3257990A JP3257990A JPH03237097A JP H03237097 A JPH03237097 A JP H03237097A JP 3257990 A JP3257990 A JP 3257990A JP 3257990 A JP3257990 A JP 3257990A JP H03237097 A JPH03237097 A JP H03237097A
Authority
JP
Japan
Prior art keywords
substrate
zinc
thin film
vapor phase
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3257990A
Other languages
Japanese (ja)
Inventor
Yukihisa Fujita
恭久 藤田
Toshiyuki Terada
寺田 敏行
Satoshi Fujii
智 藤井
Toru Inai
徹 井内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3257990A priority Critical patent/JPH03237097A/en
Publication of JPH03237097A publication Critical patent/JPH03237097A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To control the intrusion of impurities and to obtain a thin film having good crystallinity at the time of growing the thin film of zinc sulfide or zinc selenide by irradiating the vicinity of a substrate with a laser beam, etc., and growing a thin film under specified conditions. CONSTITUTION:A specified amt. of raw gas (organozinc or organoselenium) is supplied to a reaction tube contg. a substrate with hydrogen as a carrier gas. In this case, the reaction tube is controlled to 1Torr to 1atm and the substrate to 15-400 deg.C. The vicinity of the substrate is then irradiated with a laser beam to decompose the raw gas. The substrate is further irradiated with a beam having photon energy higher than the band gap energy of the zinc sulfide or zinc selenide to grow the thin film of zinc sulfide or zinc selenide.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は7nS、Zn5e等の薄膜を、有機化合物と
結合した亜鉛、硫黄、セレンを原料とした光励起金属気
相成長法により低温で作製する方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] This invention produces thin films of 7nS, Zn5e, etc. at low temperatures by photoexcited metal vapor phase epitaxy using zinc, sulfur, and selenium combined with organic compounds as raw materials. It is about the method.

[従来の技術] 従来ZnS 、 Zn5eの薄膜を光励起気相成長法に
より作製する方法として、■第2図に示すように有機化
合物と結合しているZn 、 Seであるジメチル亜鉛
、ジメチルセレンを原料ガスとして反応管21内に導入
し、キセノンランプ25等のランプ光源またはエキシマ
・レーザの光をミラー26で折返して反応管21の窓2
4からサセプタ22上の基板23に照射してznsc 
(ZnS)の薄膜成長を行う方法かある。
[Prior art] Conventionally, as a method for producing thin films of ZnS and Zn5e by photoexcited vapor phase growth, dimethylzinc and dimethylselenium, which are Zn and Se bonded to organic compounds, are used as raw materials, as shown in Figure 2. The gas is introduced into the reaction tube 21, and the light from a lamp light source such as a xenon lamp 25 or an excimer laser is reflected by a mirror 26 to pass through the window 2 of the reaction tube 21.
4 to the substrate 23 on the susceptor 22 and znsc
There is a method of growing a thin film of (ZnS).

また■第3図に示すように有機亜鉛及び水素化物のS、
SeであるH2S 、 l12Seを原料ガスとして反
応管31内に導入し、例えばArFエキシマ・レーザ3
5を反応管31の窓からサセプタ32上の基板33に照
射して、ZnS、Zn5eの成長を行う方法等(例えば
雑誌”Journal of crystal Gro
wth ”93 (1988)P295−264参照)
か知られている。
Also, as shown in Figure 3, organic zinc and hydride S,
H2S and 112Se, which are Se, are introduced into the reaction tube 31 as source gases, and for example, the ArF excimer laser 3
5 to the substrate 33 on the susceptor 32 through the window of the reaction tube 31 to grow ZnS and Zn5e (for example, as described in the magazine "Journal of Crystal Gro
wth ”93 (1988) P295-264)
or known.

第4図はこれら従来の作製方法における成長温度−成長
速度の関係を示した図で、横軸に成長温度を、縦軸に成
長速度をとり、黒丸は光を照射した場合、白丸は光を照
射しない場合の成長過程を示している。
Figure 4 is a diagram showing the relationship between growth temperature and growth rate in these conventional manufacturing methods, with the horizontal axis representing the growth temperature and the vertical axis representing the growth rate. The growth process without irradiation is shown.

[発明か解決しようとする課題] 上記のような従来の方法においては、いずれも有機原料
の場合、第4図から明らかなように、基板温度を約20
0’C以にになるように昇温しなければ、ZnS 、 
Zn5e等の薄膜は成長しないという問題がある。
[Problem to be solved by the invention] In the conventional methods as described above, in the case of organic raw materials, as is clear from FIG.
If the temperature is not raised to below 0'C, ZnS,
There is a problem that thin films such as Zn5e do not grow.

また、有機化合物中のZnと水素化物(l12s。In addition, Zn and hydrides (l12s) in organic compounds.

1I2se)からのS、Seの場合、これら−に記者Z
nと、SもしくはSeか気相的に反応するために薄膜表
面が滑らかにいかず荒れることかあるか、この気相反応
を防止するためには原料ガスの反応管への供給方法か複
雑になるという問題かある。
In the case of S, Se from 1I2se), reporter Z to these
Because n reacts with S or Se in a gas phase, the surface of the thin film may not be smooth and may become rough.In order to prevent this gas phase reaction, the method of supplying the raw material gas to the reaction tube must be complicated. There is a problem with that.

この発明はかかる従来の問題に鑑みてなされたちのて簡
単な装置により、低温でZnS、2nSe等の薄膜を成
長させることかてきる光励起気相成長方法を提供するこ
とを目的とする。
The object of the present invention is to provide a photo-excited vapor phase growth method that allows thin films of ZnS, 2nSe, etc. to be grown at low temperatures using a simple apparatus that has been developed in view of the conventional problems.

[課題を解決するための手段] 上記の目的を達成するために、この発明は光励起気相成
長方法により硫化亜鉛もしくはセレン化亜鉛の薄膜を成
長させる方法において、内部に基板を有する反応管内に
、水素をキャリアガスとして所定量の原料ガスである有
機亜鉛と有機硫黄もしくは有機セレンを供給し、前記反
応管内の圧力を1torr乃至1気圧にし、かつ前記基
板を15℃乃至400℃に加熱保持し、さらに、この基
板近傍に、前記原料ガスを分解するレーザ光を照射し、
かつ前記基板に硫化亜鉛もしくはセレン化亜鉛のバンド
ギャップエネルギー以上の光子エネルギーを有する光を
照射して硫化亜鉛もしくはセレン化亜鉛の薄膜を成長さ
せるものであり、原料ガスを分解するレーザとして、有
機亜鉛と有機硫黄もしくは有機セレンを所定の強度で直
接分解することができるArFエキシマ・レーザを用い
るかまたは有機亜鉛と有機硫黄もしくは有機セレンを多
光子吸収により分解できるようにKrFもしくはXeC
1もしくはXeFの各エキシマ・レーザを光学系て絞っ
て照射するようにしてもよく、さらにバンドギャップエ
ネルギー塩−Lの光子エネルギーを有する光源として高
圧放電灯を用いるか、KrFもしくはXeClもしくは
XeFまたはHeCdの各レーザを用いることも可能で
あり、バンドギャップエネルギー以上の光子エネルギー
を有する光源として高圧放電灯を用いる場合には高圧放
電灯と、250nm以下の波長を遮蔽する光学系とを併
設して250nm以下の波長光を遮断するようにしても
よい。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a method for growing a thin film of zinc sulfide or zinc selenide by a photoexcited vapor phase growth method, in which a reaction tube having a substrate therein, Supplying a predetermined amount of organic zinc and organic sulfur or organic selenium as raw material gases using hydrogen as a carrier gas, setting the pressure in the reaction tube to 1 torr to 1 atmosphere, and heating and maintaining the substrate at 15° C. to 400° C., Furthermore, irradiating the vicinity of the substrate with a laser beam that decomposes the source gas,
In addition, a thin film of zinc sulfide or zinc selenide is grown by irradiating the substrate with light having a photon energy higher than the band gap energy of zinc sulfide or zinc selenide. Using an ArF excimer laser that can directly decompose organic sulfur and organic selenium at a predetermined intensity, or KrF or XeC that can decompose organic zinc and organic sulfur or organic selenium by multiphoton absorption.
Alternatively, each excimer laser of 1 or It is also possible to use each of the following lasers, and when using a high-pressure discharge lamp as a light source with photon energy higher than the band gap energy, it is possible to use a high-pressure discharge lamp and an optical system that blocks wavelengths of 250 nm or less. It may be possible to block light of the following wavelengths.

[作用] 上記の手段により、常温から表面状態のすぐれた薄膜を
形成することが可能であり、基板表面へのランプの光ま
たはレーザの照射により炭化水素なとの不純物の混入を
抑え、結晶性のよい薄膜か威長てきる。
[Function] By the above means, it is possible to form a thin film with excellent surface condition even at room temperature, and by irradiating the substrate surface with lamp light or laser, it is possible to suppress the contamination of impurities such as hydrocarbons and improve crystallinity. A thin film with good quality will give you strength.

[実施例] 第1図はこの発明の一実施例であるZnSの薄膜成長装
置の主要部の概略を説明する模式図て、同図(a)は−
側面図、同図(b)は同図(a)を90°回転した場合
の側面図である。
[Example] Fig. 1 is a schematic diagram illustrating the main parts of a ZnS thin film growth apparatus which is an embodiment of the present invention, and (a) of the same figure is a -
A side view of the same figure (b) is a side view when the same figure (a) is rotated by 90 degrees.

第1図において、lは反応管、2はこの反応管1内に配
置されたサセプタで、このサセプタ2上に基板3がある
。この反応管lの側面からジメチル亜鉛とジメチル硫黄
の原料ガスを供給し、原料ガス分解用の光源として波長
193□のArFエキシマ・レーザ発振器8からのレー
ザを、基板3上に平行になるようにシリンドリカルレン
ズ等の光学系9を透過して反応管lの窓5から照射して
、原料ガスを分解する。また、このArFエキシマ・レ
ーザは直接基板3に照射すると、原料ガスか分解して基
板の表面か荒れるのて、基板3には当てないように、基
板3の上面lOに平行に照射する。
In FIG. 1, 1 is a reaction tube, 2 is a susceptor placed in the reaction tube 1, and a substrate 3 is placed on the susceptor 2. The raw material gases of dimethylzinc and dimethylsulfur are supplied from the side of the reaction tube 1, and the laser from the ArF excimer laser oscillator 8 with a wavelength of 193□ is used as a light source for decomposing the raw material gas so that it is parallel to the substrate 3. The source gas is decomposed by passing through an optical system 9 such as a cylindrical lens and irradiating it from the window 5 of the reaction tube 1. Furthermore, if the ArF excimer laser is directly irradiated onto the substrate 3, the raw material gas will decompose and the surface of the substrate will become rough, so the ArF excimer laser is irradiated parallel to the upper surface 10 of the substrate 3 so as not to irradiate the substrate 3.

さらに、超高圧水銀灯6はZnSのバンドギャップエネ
ルギー以上の波長をもち、かつ、有機亜鉛、有機硫黄、
有機セレンの吸収か少ないようなものてあり、この光を
くラー7で折返して、反応管lの窓4から基板3へ照射
する。これは、半導体素子にバンドギャップエネルギー
以上の光を照射すると、半導体素子内のキャリアか励起
されて、表面の反応に変化が生じ、低温でも炭化水素な
どの不純物の混入を抑えて、薄膜を成長させることかて
きるからである。
Furthermore, the ultra-high pressure mercury lamp 6 has a wavelength higher than the bandgap energy of ZnS, and contains organic zinc, organic sulfur,
This light is reflected by a cooler 7 and irradiated onto the substrate 3 through the window 4 of the reaction tube 1. This is because when a semiconductor element is irradiated with light with a bandgap energy or higher, the carriers within the semiconductor element are excited, causing a change in surface reactions, which suppresses the incorporation of impurities such as hydrocarbons and allows thin films to grow even at low temperatures. This is because there are things that can be done.

この実施例においては、基板2は15℃から400’C
に加熱する。
In this example, the substrate 2 is heated between 15°C and 400°C.
Heat to.

また、実施例ではArFエキシマ・レーザな用いたか、
これにかえてKrF、XeGI、XeFの各エキシマ・
レーザでもかまわない。但し、この場合には、有機金属
の吸収がないか、光を2つ同時に送る2光子吸収によっ
てガスを分解する。
Also, in the example, an ArF excimer laser was used.
Instead of this, each excimer of KrF, XeGI, and XeF
A laser may also be used. However, in this case, there is no organic metal absorption or the gas is decomposed by two-photon absorption in which two lights are sent simultaneously.

さらに、バンドギャップ以上の波長をもつ光源として超
高圧水銀ランプにかえて、キセノンランプまたはKrF
、XeGI、XeFの各エキシマ・レーザなどを基板に
照射することができる。その際、これら光源のエネルギ
ーが250nm以下の波長の光か強い場合はこの光を遮
蔽するフィルタ等の光学系を併用すればよい。
Furthermore, instead of an ultra-high pressure mercury lamp as a light source with a wavelength longer than the band gap, a xenon lamp or a KrF
, XeGI, XeF excimer lasers, etc. can be irradiated onto the substrate. At this time, if the energy of these light sources is strong, such as light with a wavelength of 250 nm or less, an optical system such as a filter that blocks this light may be used in combination.

以−にの実施例においては、ZnSの薄膜成長を行う例
について述べたか、Zn5eの場合においても、原料ガ
スをジメチル硫黄に置き換えれば可能であることは勿論
である。
In the following embodiments, we have described an example in which a thin film of ZnS is grown, but it is of course possible to grow a thin film of ZnS by replacing the raw material gas with dimethyl sulfur even in the case of Zn5e.

[発明の効果] 以−L述べたように、この発明によれば、原料ガスへの
エキシマ・レーザの照射により15℃程度の低温から薄
膜を成長することかできる。そして、低温て威長ずれば
、ZnS 、 Zn5eに対するドーピングの制御が容
易になる。
[Effects of the Invention] As described above, according to the present invention, a thin film can be grown from a low temperature of about 15° C. by irradiating the source gas with an excimer laser. Furthermore, if the temperature is lowered and the temperature increases, it becomes easier to control the doping of ZnS and Zn5e.

また、基板表面へのランプの光またはレーザの照射によ
り、レーザて原料ガスを分解するたけに比較して炭化水
素等の不純物の混入を抑え、結晶性のよい薄膜を形成す
ることかできる。それによって表面状態のすぐれた薄膜
を低温で形成することができる。
In addition, by irradiating the substrate surface with lamp light or laser, it is possible to suppress the incorporation of impurities such as hydrocarbons and form a thin film with good crystallinity compared to simply decomposing the source gas using a laser. Thereby, a thin film with an excellent surface condition can be formed at a low temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例であるZnSの薄膜成長装
置の主要部の概略を説明する模式図で、同図(a)は−
側面図、同図(b)は同図(a)を90’回転した場合
の側面図、第2図、第3図は従来のZn5eの薄膜を成
長させる気相成長装置の概略を示す模式図、第4図はこ
れら従来の作製方法における成長温度−成長速度の関係
を示した図である。 図中。 1.21.31:反応管 2、22.32:サセプタ 3、23.33+基板 4、5.24.34:窓 6:超高圧水銀灯 7.26 ミラー 8.35:ArFエキシマ・レーザ 9:光学系    10;基板の上面
FIG. 1 is a schematic diagram illustrating the main parts of a ZnS thin film growth apparatus which is an embodiment of the present invention.
Side view, Figure (b) is a side view when Figure (a) is rotated by 90', Figures 2 and 3 are schematic diagrams showing the outline of a conventional vapor phase growth apparatus for growing Zn5e thin films. , FIG. 4 is a diagram showing the relationship between growth temperature and growth rate in these conventional manufacturing methods. In the figure. 1.21.31: Reaction tube 2, 22.32: Susceptor 3, 23.33 + substrate 4, 5.24.34: Window 6: Ultra-high pressure mercury lamp 7.26 Mirror 8.35: ArF excimer laser 9: Optics System 10; Top surface of the substrate

Claims (6)

【特許請求の範囲】[Claims] (1)光励起気相成長方法により硫化亜鉛もしくはセレ
ン化亜鉛の薄膜を成長させる方法において、内部に基板
を有する反応管内に、水素をキャリアガスとして所定量
の原料ガスである有機亜鉛もしくは有機セレンを供給し
、前記反応管内の圧力を1torr乃至1気圧にし、か
つ前記基板を15℃乃至400℃に加熱保持し、さらに
、この基板近傍に、前記原料ガスを分解するレーザ光を
照射し、かつ前記基板に硫化亜鉛もしくはセレン化亜鉛
のバンドギャップエネルギー以上の光子エネルギーを有
する光を照射して硫化亜鉛もしくはセレン化亜鉛の薄膜
を成長させることを特徴とする光励起気相成長方法。
(1) In a method of growing a thin film of zinc sulfide or zinc selenide by a photo-excited vapor phase growth method, a predetermined amount of organic zinc or organic selenium as a raw material gas is placed in a reaction tube with a substrate inside, using hydrogen as a carrier gas. supply, the pressure in the reaction tube is set to 1 torr to 1 atm, and the substrate is heated and maintained at 15° C. to 400° C., and the vicinity of the substrate is irradiated with a laser beam that decomposes the source gas, and the A photoexcited vapor phase growth method characterized by growing a thin film of zinc sulfide or zinc selenide by irradiating a substrate with light having a photon energy higher than the band gap energy of zinc sulfide or zinc selenide.
(2)原料ガスを分解するレーザとして、有機亜鉛もし
くはセレン化亜鉛を所定の強度で直接分解することがで
きるArFエキシマ・レーザを用いることを特徴とする
請求項(1)に記載の光励起気相成長方法。
(2) The optically excited gas phase according to claim (1), characterized in that an ArF excimer laser capable of directly decomposing organic zinc or zinc selenide with a predetermined intensity is used as the laser for decomposing the source gas. How to grow.
(3)原料ガスを分解するレーザとして、有機亜鉛もし
くはセレン化亜鉛を多光子吸収により分解できるように
KrFもしくはXeClもしくはXeFの各エキシマ・
レーザを光学系で絞って照射することを特徴とする請求
項(1)に記載の光励起気相成長方法。
(3) As a laser for decomposing raw material gas, each excimer of KrF, XeCl, or XeF can be used to decompose organic zinc or zinc selenide by multiphoton absorption.
2. The photoexcited vapor phase growth method according to claim 1, wherein the laser is focused and irradiated using an optical system.
(4)バンドギャップエネルギー以上の光子エネルギー
を有する光源として高圧放電灯を用いることを特徴とす
る請求項(1)、(2)、(3)のうちいずれか1項に
記載の光励起気相成長方法。
(4) Photoexcited vapor phase growth according to any one of claims (1), (2), and (3), characterized in that a high-pressure discharge lamp is used as the light source having photon energy higher than band gap energy. Method.
(5)バンドギャップエネルギー以上の光源としてKr
FもしくはXeClもしくはXeFまたはHeCdの各
レーザを用いることを特徴とする請求項(1)、(2)
、(3)のうちいずれか1項に記載の光励起気相成長方
法。
(5) Kr as a light source with band gap energy or higher
Claims (1) and (2) characterized in that F, XeCl, XeF, or HeCd lasers are used.
, (3).
(6)バンドギャップエネルギー以上の光子エネルギー
を有する光源として高圧放電灯と、250nm以下の波
長を遮蔽する光学系とを併設して250nm以下の波長
光を遮断することを特徴とする請求項(4)に記載の光
励起気相成長方法。
(6) Claim (4) characterized in that a high-pressure discharge lamp as a light source having a photon energy higher than the band gap energy and an optical system that blocks wavelengths of 250 nm or less are installed to block light of wavelengths of 250 nm or less. ) The photoexcited vapor phase growth method described in
JP3257990A 1990-02-15 1990-02-15 Photo excited vapor growth method Pending JPH03237097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3257990A JPH03237097A (en) 1990-02-15 1990-02-15 Photo excited vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3257990A JPH03237097A (en) 1990-02-15 1990-02-15 Photo excited vapor growth method

Publications (1)

Publication Number Publication Date
JPH03237097A true JPH03237097A (en) 1991-10-22

Family

ID=12362789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3257990A Pending JPH03237097A (en) 1990-02-15 1990-02-15 Photo excited vapor growth method

Country Status (1)

Country Link
JP (1) JPH03237097A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078154A1 (en) * 2004-02-16 2005-08-25 Kaneka Corporation Process for producing transparent conductive film and process for producing tandem thin-film photoelectric converter
US7677198B2 (en) * 2005-11-28 2010-03-16 Industrial Technology Research Institute Method and apparatus for growing a composite metal sulphide photocatalyst thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078154A1 (en) * 2004-02-16 2005-08-25 Kaneka Corporation Process for producing transparent conductive film and process for producing tandem thin-film photoelectric converter
JPWO2005078154A1 (en) * 2004-02-16 2007-10-18 株式会社カネカ Method for producing transparent conductive film and method for producing tandem-type thin film photoelectric conversion device
JP4939058B2 (en) * 2004-02-16 2012-05-23 株式会社カネカ Method for producing transparent conductive film and method for producing tandem-type thin film photoelectric conversion device
US7677198B2 (en) * 2005-11-28 2010-03-16 Industrial Technology Research Institute Method and apparatus for growing a composite metal sulphide photocatalyst thin film

Similar Documents

Publication Publication Date Title
JPH03237097A (en) Photo excited vapor growth method
JPS6134927A (en) Growing process of compound semiconductor single crystal thin film
US4693207A (en) Apparatus for the growth of semiconductor crystals
US5213654A (en) Vapor-phase epitaxial growth method for semiconductor crystal layers
JPH11135436A (en) Formation of compound semiconductor film
JPS6126215A (en) Manufacture of gaas single crystal
JP3182584B2 (en) Compound thin film forming method
JP3441534B2 (en) Method for forming crystalline silicon
JPH04274317A (en) Method and device for forming thin film
JPH0267721A (en) Manufacture of compound semiconductor thin film
JPH0491428A (en) Chemical vapor growth apparatus and semiconductor growth method by means of said apparatus
JPH0633228B2 (en) Molecular beam epitaxy growth method
JPH0474792A (en) Method for forming thin film of semiconductor
JPH04345139A (en) Production of semiconductor fine particle-dispersed glass
JPS63319296A (en) Production of semiconductor
JPH03212624A (en) Production of optical material
JPS6131392A (en) Vapor phase crystal growth device
Bourée et al. Photoassisted metalorganic vapor-phase epitaxy of ZnSe on GaAs
JPS61134013A (en) Compound semiconductor crystal growth method
JPH0380758B2 (en)
JPS6223107A (en) Photo-vapor phase epitaxy method
JPH0361637B2 (en)
JPS62138391A (en) Molecular beam epitaxy
JPH05251369A (en) Organic metal chemical vapor growth method
JPH06191997A (en) Formation of sic crystal film