JPH04274317A - Method and device for forming thin film - Google Patents

Method and device for forming thin film

Info

Publication number
JPH04274317A
JPH04274317A JP3592491A JP3592491A JPH04274317A JP H04274317 A JPH04274317 A JP H04274317A JP 3592491 A JP3592491 A JP 3592491A JP 3592491 A JP3592491 A JP 3592491A JP H04274317 A JPH04274317 A JP H04274317A
Authority
JP
Japan
Prior art keywords
reaction
light
material compound
thin film
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3592491A
Other languages
Japanese (ja)
Inventor
Koichi Ikeda
浩一 池田
Masahiko Maeda
前田 正彦
Mutsunobu Arita
有田 睦信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3592491A priority Critical patent/JPH04274317A/en
Publication of JPH04274317A publication Critical patent/JPH04274317A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent reduction in a light excitation efficiency due to adhesion of a raw material compound or a reaction product onto a light-irradiation window and enable a thin film with a high quality to be formed with an improved productivity when forming each kind of thin film by the chemical vapor growth (CVD) method utilizing a light excitation reaction. CONSTITUTION:Title items are the light CVD method which performs light excitation of a raw material compound which is introduced onto a substrate in a reaction film-forming chamber before reaching onto the substrate and causing a decomposition film-forming reaction to occur and a light CVD device with a means for performing light excitation by emitting a visible light and a light in ultraviolet rays region to a flow of the raw material compound at a pre-stage when the raw-material compound to be introduced reaches onto a substrate surface which is retained within the reaction film-forming chamber in the chemical vapor growth method for forming a thin film by a decomposition film-forming reaction accompanied by light excitation. Cloudiness of a light irradiation window for performing light excitation of the raw-material compound can be restricted and a high-quality thin film can be produced with an improved productivity and stably. Further, exchange and cleaning of the light- irradiation window can be performed individually, thus eliminating reduction in productivity of a thin film accompanied by atmospheric opening of the reaction film-forming chamber.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光励起反応を利用した薄
膜形成方法および装置に係り,特に原料化合物に光を照
射して化学気相成長(CVD)法により各種の薄膜を形
成するのに好適な光CVDによる薄膜形成方法およびそ
の装置に関する。
[Industrial Application Field] The present invention relates to a method and apparatus for forming thin films using photoexcitation reactions, and is particularly suitable for forming various thin films by chemical vapor deposition (CVD) by irradiating a raw material compound with light. The present invention relates to a thin film forming method by optical CVD and an apparatus therefor.

【0002】0002

【従来の技術】従来の光CVD法は,反応成膜室中に基
板を保持し,該基板上に薄膜構成元素を含む各種の原料
化合物を導入し,ランプまたはレーザ等の光源から薄膜
を形成する反応成膜室に取り付けられている光照射窓を
通して,基板の上面または側面から光を照射し光励起に
よる分解成膜反応を起こさせて薄膜の形成が行われてい
た〔ジャパニーズ  ジャーナル  オブ  アプライ
ド  フィジックス(Japanese J. App
l. Phys.)28巻,3号(1989年3月)p
pL346−L348〕。
[Prior Art] In the conventional photo-CVD method, a substrate is held in a reaction film forming chamber, various raw material compounds containing thin film constituent elements are introduced onto the substrate, and a thin film is formed using a light source such as a lamp or laser. Thin films were formed by irradiating light from the top or side of the substrate through a light irradiation window installed in a reaction film-forming chamber to cause a decomposition film-forming reaction due to optical excitation [Japanese Journal of Applied Physics (Japanese Journal of Applied Physics)] Japanese J. App
l. Phys. ) Volume 28, No. 3 (March 1989) p.
pL346-L348].

【0003】この従来の光CVD法において,光照射窓
(石英窓)は基板が保持されている反応成膜室に設けら
れているため,導入される原料化合物および反応生成物
,副生成物などが成膜反応中に光照射窓にまで飛来して
付着し,光照射窓を曇らせてしまうため紫外光などの光
照射が妨げられ原料化合物に対する光励起が低下し,薄
膜を形成する分解成膜反応が劣化するという問題があっ
た。
[0003] In this conventional photo-CVD method, a light irradiation window (quartz window) is provided in the reaction deposition chamber in which the substrate is held, so that raw material compounds, reaction products, by-products, etc. During the film-forming reaction, the particles fly to the light irradiation window and adhere to it, clouding the light irradiation window, which prevents light irradiation such as ultraviolet light and reduces photoexcitation of the raw material compound, resulting in a decomposition film-forming reaction that forms a thin film. There was a problem of deterioration.

【0004】0004

【発明が解決しようとする課題】上述したごとく,従来
の光CVD法は,紫外光などの光照射を反応成膜室に取
付けられた光照射窓を通して基板面上に照射しているた
め,成膜反応中に原料化合物や反応生成物,副生成物な
どが光照射窓に付着しやすく,そのため光照射が妨げら
れて光励起反応が劣化し薄膜の生産性が著しく低下する
という問題があった。
[Problems to be Solved by the Invention] As mentioned above, in the conventional photoCVD method, light irradiation such as ultraviolet light is irradiated onto the substrate surface through the light irradiation window installed in the reaction film formation chamber. During the film reaction, raw material compounds, reaction products, by-products, etc. tend to adhere to the light irradiation window, which blocks light irradiation, degrades the photoexcitation reaction, and significantly reduces thin film productivity.

【0005】本発明の目的は,上記従来技術における問
題点を解消するものであって,光励起反応を利用する光
CVD法により各種の薄膜を形成する場合に,光照射用
の窓に原料化合物や反応生成物などが付着して光の照射
が妨げられることなく,高品質の薄膜を生産性よく形成
することができ,かつ成膜装置の構造および維持管理が
極めて簡易な構造の光CVDによる薄膜形成方法および
それを実施するための装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems in the prior art, and when forming various thin films by the photo-CVD method that utilizes photoexcitation reactions, the source compound or the like is used in the window for light irradiation. A thin film produced by photo-CVD, which allows high-quality thin films to be formed with high productivity without adhesion of reaction products and the like, which prevents light irradiation, and which has an extremely simple structure and maintenance management of the film-forming equipment. The object of the present invention is to provide a forming method and an apparatus for implementing the same.

【0006】[0006]

【課題を解決するための手段】上記本発明の目的を達成
するために,光励起反応を利用して所定の基板上に各種
の薄膜を形成する光CVD法において,原料化合物に可
視および紫外領域の光を照射してあらかじめ光励起させ
ておき,この光励起された原料化合物を,反応成膜室に
保持されている基板上に導入して分解成膜反応を効率よ
く起こさせ,薄膜形成の生産性の向上をはかるものであ
る。
[Means for Solving the Problems] In order to achieve the above-mentioned object of the present invention, in the photo-CVD method that forms various thin films on a predetermined substrate using a photoexcitation reaction, raw material compounds are used in the visible and ultraviolet regions. The photoexcited raw material compound is preliminarily excited by irradiation with light, and the photoexcited raw material compound is introduced onto the substrate held in the reaction film formation chamber to efficiently cause the decomposition film formation reaction, thereby increasing the productivity of thin film formation. It is intended to improve.

【0007】本発明の光CVD法においては,光照射を
反応成膜室に保持された基板に対して行うものではなく
,反応成膜室の基板上に導入される前の原料化合物に対
して行うことを特徴とするものである。そのため薄膜形
成装置の光照射窓は必ずしも反応成膜室に取り付ける必
要はなく,原料化合物導入管に光照射窓を付帯させても
よく,また反応成膜室の前段階に光照射窓を設けた原料
化合物の光励起室を独立して設置する構成にしてもよい
。さらに,反応成膜室中の基板部へ原料化合物を導入す
る導入管の原料化合物流出端部に,レーザ光などの平行
性の良い光を集中的に照射して,基板上に導入する原料
化合物をあらかじめ光励起することも可能である。
In the photoCVD method of the present invention, light irradiation is not performed on the substrate held in the reaction film forming chamber, but on the raw material compound before it is introduced onto the substrate in the reaction film forming chamber. It is characterized by the fact that Therefore, the light irradiation window of the thin film forming apparatus does not necessarily need to be installed in the reaction film formation chamber, and the light irradiation window may be attached to the raw material compound introduction tube, or the light irradiation window may be provided at the front stage of the reaction film formation chamber. A configuration may be adopted in which a photoexcitation chamber for the raw material compound is installed independently. Furthermore, the outflow end of the raw material compound of the introduction pipe that introduces the raw material compound to the substrate part in the reaction film forming chamber is intensively irradiated with well-paralleled light such as laser light, so that the raw material compound introduced onto the substrate is heated. It is also possible to optically excite it in advance.

【0008】本発明の薄膜形成装置においては,原料化
合物を光励起するための光照射部を,反応成膜室中に保
持された基板とは無関係の位置に構成することができる
ため,光励起を利用するCVD法では不可欠の光照射用
の窓に,原料化合物や反応生成物などが飛来し付着しな
い構成に工夫することが容易であり,また反応成膜室と
は独立した光励起室を構成することができる。この場合
には,光励起室に反応成膜室とは独立した排気機構を設
けることにより,薄膜形成装置の長期の使用によって光
照射窓に汚れが生じた場合に,反応成膜室の真空を保っ
たままで光励起室のみ大気開放して光透過窓の清掃ある
いは交換を行うことができるので,成膜に対し悪い影響
を与えることなく,また反応成膜室の大気開放に伴う量
産性の低下といった問題を回避することができる。
In the thin film forming apparatus of the present invention, the light irradiation section for optically exciting the raw material compound can be configured at a position independent of the substrate held in the reaction film forming chamber. In the CVD method, it is easy to devise a configuration in which the window for light irradiation, which is essential, does not allow raw materials and reaction products to fly in and adhere to it, and it is also possible to configure a light excitation chamber that is independent of the reaction deposition chamber. Can be done. In this case, by providing an exhaust mechanism in the photoexcitation chamber that is independent of the reaction deposition chamber, it is possible to maintain a vacuum in the reaction deposition chamber even if the light irradiation window becomes dirty due to long-term use of the thin film deposition apparatus. Since the light excitation chamber can be left open to the atmosphere and the light transmission window can be cleaned or replaced, there is no negative effect on film formation, and it also eliminates problems such as reduced mass productivity caused by opening the reaction film deposition chamber to the atmosphere. can be avoided.

【0009】[0009]

【実施例】以下に本発明の実施例を挙げ,図面を用いて
さらに詳細に説明する。 <実施例1>図1は,本実施例において用いた薄膜形成
装置の構成の一例を示す模式図で,原料ガス供給部(図
示せず)から供給された原料化合物8は,流量調節バル
ブ7を通って光励起室10に導入される。光励起室10
には,ランプ5aから発生した紫外光を光励起室10内
の原料化合物8に紫外光照射4する光照射窓(石英窓)
3が設けられている。そして,紫外光照射4により光励
起された原料化合物8は,流量調節バルブ7aを通って
反応成膜室11内の基板ホルダ(ヒータ内装)上に設置
されている基板(図示せず)部に導入して,基板上で分
解成膜反応を起こさせて所望する薄膜を形成する。反応
成膜室11および光励起室10の各室は,真空排気に対
し真空バルブ(図示せず)を介し独立して設置されてい
る。また,紫外光照射4に用いる光源は,ランプ光であ
ってもレーザ光であってもよいことは言うまでもない。 なお,比較のために従来用いられてきた反応成膜室11
に光照射窓3を持つ光CVD装置の構成の一例を図4に
示す。
EXAMPLES Examples of the present invention will be described below in more detail with reference to the drawings. <Example 1> FIG. 1 is a schematic diagram showing an example of the configuration of a thin film forming apparatus used in this example. A raw material compound 8 supplied from a raw material gas supply section (not shown) is supplied to a flow rate control valve 7. The light is introduced into the light excitation chamber 10 through the. Photoexcitation chamber 10
There is a light irradiation window (quartz window) that irradiates the raw material compound 8 in the photoexcitation chamber 10 with ultraviolet light generated from the lamp 5a.
3 is provided. Then, the raw material compound 8 that has been optically excited by the ultraviolet light irradiation 4 is introduced into the substrate (not shown) installed on the substrate holder (inside the heater) in the reaction deposition chamber 11 through the flow rate control valve 7a. Then, a decomposition film formation reaction is caused on the substrate to form a desired thin film. Each of the reaction film forming chamber 11 and the optical excitation chamber 10 is installed independently for evacuation via a vacuum valve (not shown). Further, it goes without saying that the light source used for the ultraviolet light irradiation 4 may be lamp light or laser light. For comparison, the conventionally used reaction deposition chamber 11
FIG. 4 shows an example of the configuration of a photo-CVD apparatus having a light irradiation window 3 at the top.

【0010】上記図1に示した本発明の光CVD装置を
用い,原料化合物8として,ビスシクロペンタジエニル
チタニウムダイアジド〔Cp2Ti(N3)2,Cpは
シクロペンタジエニル基を表わす〕を使用して,窒化チ
タン(TiN)膜を形成させた場合を例に挙げ,本発明
の光CVD法について具体的に説明する。
[0010] Using the photo-CVD apparatus of the present invention shown in FIG. The photo-CVD method of the present invention will be specifically explained using an example in which a titanium nitride (TiN) film is formed.

【0011】Cp2Ti(N3)2が充填されている原
料容器(図示せず)を加熱して気化した原料化合物8は
,原料化合物導入管9中で冷却され凝縮または凝固する
のを防ぐために,原料化合物導入管9は加熱し保温する
構造になっている。Cp2Ti(N3)2の場合は,1
0Pa程度の真空度で,130〜150℃程度の温度で
昇華して気体となる。このCp2Ti(N3)2の気体
は,単独またはアルゴン,窒素ガス等のキャリアガスと
混合して用いることができる。上記の気体としたCp2
Ti(N3)2を含む原料化合物8を,光励起室10に
導入し,光照射窓3より高圧水銀灯などのランプ5aか
ら発生する紫外光照射4を行って光励起したCp2Ti
(N3)2の気体を,反応成膜室11内の100〜50
0℃の温度に加熱可能な基板ホルダに設置されているシ
リコンよりなる基板上に導入したところ,基板の温度が
300℃程度で,これまでの導電体膜のCVDによる成
膜方法では考えられない低温で成膜を行った場合におい
ても高品質の窒化チタン膜を形成させることができた。 これは,Cp2Ti(N3)2を高圧水銀灯などを光源
とした可視および紫外領域の光を照射して光励起を行う
と,熱分解反応とは異なる分解反応を起こし成膜が促進
されたものと考えられる。図1に示す本発明の光CVD
装置を用いて薄膜を形成する場合に,Cp2Ti(N3
)2原料化合物8は,まず光励起室10で光励起され,
その励起種は反応成膜室11まで寿命を保つため,反応
成膜室11内に保持され加熱された基板上で分解反応を
起こし,窒化チタン膜が形成されるものである。なお,
光励起室10の光照射窓3には,ほとんど汚物の付着が
なく曇りは生じなかった。そして,比較のために図2に
示す従来の光CVD装置を用い,上記と同じ原料化合物
を使用して薄膜の形成を行ったところ,上記実施例と同
様の高品質な窒化チタン膜を得ることができた。これは
,原料化合物であるCp2Ti(N3)2を用いたCV
D反応機構が,まず原料化合物が光励起されて,その後
に分解成膜反応を起こすためであると考えられる。しか
し,従来の光CVD装置では反応成膜室11内の基板2
の上方部に光照射窓3が設けられているため,反応生成
物などが飛来して光照射窓3が汚染され曇り易く,おお
よそ10〜12時間程度で光照射窓3に汚物が付着し曇
りが生じ成膜効率が低下した。これに対し,図1に示す
本発明の光CVD装置においては,光励起室10に設け
られている光照射窓3にはほとんど曇りの発生が無く,
かりに汚物が付着した場合には光照射窓の交換,清掃が
容易であるので,半永久的に薄膜の形成操作が可能とな
る。
The raw material compound 8, which has been vaporized by heating the raw material container (not shown) filled with Cp2Ti(N3)2, is cooled in the raw material compound introduction pipe 9 to prevent it from condensing or solidifying. The compound introduction pipe 9 has a structure that is heated and kept warm. In the case of Cp2Ti(N3)2, 1
At a vacuum degree of about 0 Pa and a temperature of about 130 to 150° C., it sublimates and becomes a gas. This Cp2Ti(N3)2 gas can be used alone or in combination with a carrier gas such as argon or nitrogen gas. Cp2 as the above gas
A raw material compound 8 containing Ti(N3)2 is introduced into a photoexcitation chamber 10, and ultraviolet light irradiation 4 generated from a lamp 5a such as a high-pressure mercury lamp is applied through a light irradiation window 3 to photoexcite Cp2Ti.
(N3)2 gas to 100 to 50% in the reaction film forming chamber 11.
When introduced onto a silicon substrate placed in a substrate holder that can be heated to a temperature of 0°C, the temperature of the substrate was approximately 300°C, which is unimaginable with conventional CVD film formation methods for conductive films. Even when the film was formed at low temperature, a high quality titanium nitride film could be formed. This is thought to be due to the fact that when Cp2Ti(N3)2 is photoexcited by irradiating it with light in the visible and ultraviolet regions using a light source such as a high-pressure mercury lamp, a decomposition reaction different from a thermal decomposition reaction occurs and film formation is promoted. It will be done. Photo-CVD of the present invention shown in FIG.
When forming a thin film using a device, Cp2Ti(N3
)2 raw material compound 8 is first photoexcited in a photoexcitation chamber 10,
In order to maintain the life of the excited species until the reaction film formation chamber 11, a decomposition reaction occurs on the heated substrate held in the reaction film formation chamber 11, and a titanium nitride film is formed. In addition,
The light irradiation window 3 of the light excitation chamber 10 had almost no dirt attached to it, and no clouding occurred. For comparison, when a thin film was formed using the same raw material compound as above using the conventional photo-CVD apparatus shown in Figure 2, a high-quality titanium nitride film similar to that in the above example was obtained. was completed. This is a CV process using Cp2Ti(N3)2 as a raw material compound.
It is thought that the D reaction mechanism is that the raw material compound is first photoexcited, and then a decomposition film-forming reaction occurs. However, in the conventional photo-CVD apparatus, the substrate 2 in the reaction deposition chamber 11
Since the light irradiation window 3 is provided in the upper part, the light irradiation window 3 is easily contaminated by flying reaction products and becomes cloudy, and after about 10 to 12 hours, the light irradiation window 3 becomes cloudy due to dirt attached to it. This resulted in a decrease in film-forming efficiency. In contrast, in the photoCVD apparatus of the present invention shown in FIG. 1, there is almost no fogging on the light irradiation window 3 provided in the photoexcitation chamber 10.
If dirt adheres to the window, the light irradiation window can be easily replaced and cleaned, making it possible to form a thin film semi-permanently.

【0012】<実施例2>図2は,本発明の光励起室1
0の構造の一例を示す模式図である。図において,原料
化合物導入管9の一部を,光透過性の石英管9aで作製
し,石英管9aを取り囲むようにランプ5aを設ける。 このランプ5aに囲まれた石英管9aを,内壁を鏡面加
工したカバー14で覆うことにより光照射の効率を高め
ることができる。なお,図2に示す光励起室10は,流
量調節バルブ7aを介して反応成膜室に取り付ける場合
を示しているが,流量調節バルブ7aを介さずに,直接
反応成膜室へ原料化合物8の供給を行ってもよい。
<Embodiment 2> FIG. 2 shows a photoexcitation chamber 1 of the present invention.
FIG. 2 is a schematic diagram showing an example of the structure of 0. In the figure, a part of the raw material compound introduction tube 9 is made of a light-transmissive quartz tube 9a, and a lamp 5a is provided so as to surround the quartz tube 9a. The efficiency of light irradiation can be increased by covering the quartz tube 9a surrounded by the lamp 5a with a cover 14 whose inner wall is mirror-finished. Note that although the photoexcitation chamber 10 shown in FIG. 2 is attached to the reaction film formation chamber via the flow rate control valve 7a, the raw material compound 8 is directly supplied to the reaction film formation chamber without going through the flow rate control valve 7a. Supply may be provided.

【0013】<実施例3>図3に,本発明の光CVD装
置の他の構成の一例を示す。図において,原料化合物8
は,原料化合物導入管9を通り反応成膜室11に導入さ
れると同時に,反応成膜室11に接続されている原料化
合物導入管9の原料化合物8の流出端近傍の光励起部1
0aに,集光された光を照射し,基板2に原料化合物8
が到達する前に光励起を行う光導入管12が設けられて
いる。 本実施例における光CVD装置の光源5は,水銀ランプ
等でもよいが,レーザ光のように平行性の良い光源5を
用いる方が,照射光の強度を高めることができ,いっそ
う分解成膜反応を促進させることができる。なお,本実
施例では,反応成膜室11の底部に凹型反射鏡13を設
置し集光効率を向上させている。本実施例に示すごとく
,原料化合物導入管9の先端部で,原料化合物8の光励
起を行うことにより,原料化合物の励起効率を向上させ
ることができ,実施例1と同様の高品質の窒化チタン膜
を形成させることができた。また,図3に示すごとく,
光導入管12,凹型反射鏡13などの温度調節も基板2
の加熱とは別々に行うことができるので,これらを適度
な温度調節により,光導入管12に設けられている光照
射窓3や凹型反射鏡13などについても原料化合物およ
び反応生成物などの付着による汚染を抑制することがで
き,実施例1の場合と同様に長期間連続使用することが
可能である。
<Embodiment 3> FIG. 3 shows an example of another configuration of the optical CVD apparatus of the present invention. In the figure, starting compound 8
is introduced into the reaction film-forming chamber 11 through the raw material compound introduction pipe 9, and at the same time, the light excitation part 1 near the outflow end of the raw material compound 8 of the raw material compound introduction pipe 9 connected to the reaction film-forming chamber 11 is introduced.
0a is irradiated with focused light, and the raw material compound 8 is applied to the substrate 2.
A light introduction tube 12 is provided to perform optical excitation before the light reaches the target. The light source 5 of the photo-CVD apparatus in this embodiment may be a mercury lamp or the like, but it is better to use a light source 5 with good parallelism such as a laser beam, since the intensity of the irradiated light can be increased and the decomposition film formation reaction can be further enhanced. can be promoted. In this embodiment, a concave reflecting mirror 13 is installed at the bottom of the reaction film forming chamber 11 to improve light collection efficiency. As shown in this example, by optically exciting the raw material compound 8 at the tip of the raw material compound introduction tube 9, the excitation efficiency of the raw material compound can be improved, and the same high quality titanium nitride as in Example 1 can be produced. A film could be formed. Also, as shown in Figure 3,
The substrate 2 also controls the temperature of the light introduction tube 12, concave reflector 13, etc.
This can be done separately from heating, so by controlling these temperatures appropriately, the light irradiation window 3 provided in the light introduction tube 12, the concave reflecting mirror 13, etc. can also be heated to prevent the attachment of raw material compounds and reaction products. It is possible to suppress the contamination caused by oxidation, and it is possible to use it continuously for a long period of time as in the case of the first embodiment.

【0014】[0014]

【発明の効果】以上詳細に説明したごとく,本発明の光
CVD法による薄膜形成方法は,薄膜構成元素を含む原
料化合物をあらかじめ光励起しておき,これを反応成膜
室の基板上に導入して分解成膜反応を起こさせる方法で
あるので,従来の光照射窓を基板の上方に設けた光CV
D装置を用いて成膜する場合と比較して,光照射窓に原
料化合物や反応生成物などが付着して曇らせ光照射を妨
げるという問題が生じないので,長期にわたり安定して
高品質の薄膜を生産性よく製造することができる。また
,本発明の光CVD装置は,反応成膜室と光照射窓を有
する光励起室とを独立して設けるか,または反応成膜室
とは隔離した構造に光励起部を構成しているため,光照
射窓の交換,清掃も反応成膜室に悪い影響を与えること
なしに行うことができ,反応成膜室の大気開放に伴う量
産性の低下の問題も解消することができる。
[Effects of the Invention] As explained in detail above, the method for forming a thin film using the photoCVD method of the present invention involves photo-exciting the raw material compound containing the thin film constituent elements in advance and introducing it onto the substrate in the reaction film forming chamber. This method uses a conventional optical CV with a light irradiation window above the substrate.
Compared to the case of film formation using D equipment, there is no problem that raw material compounds or reaction products adhere to the light irradiation window, clouding it and interfering with light irradiation, so it is possible to produce a stable, high-quality thin film over a long period of time. can be manufactured with high productivity. In addition, the photo-CVD apparatus of the present invention has a reaction film forming chamber and a light excitation chamber having a light irradiation window independently provided, or has a light excitation part configured in a structure separated from the reaction film forming chamber. The light irradiation window can be replaced and cleaned without adversely affecting the reaction film forming chamber, and the problem of reduced mass productivity due to opening of the reaction film forming chamber to the atmosphere can also be solved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例1で例示した薄膜形成装置の構
成を示す模式図。
FIG. 1 is a schematic diagram showing the configuration of a thin film forming apparatus exemplified in Example 1 of the present invention.

【図2】本発明の実施例2で例示した薄膜形成装置の光
励起室の構造を示す模式図。
FIG. 2 is a schematic diagram showing the structure of a light excitation chamber of the thin film forming apparatus exemplified in Example 2 of the present invention.

【図3】本発明の実施例3で例示した薄膜形成装置の構
成を示す模式図。
FIG. 3 is a schematic diagram showing the configuration of a thin film forming apparatus exemplified in Example 3 of the present invention.

【図4】従来の薄膜形成装置の構成を示す模式図である
FIG. 4 is a schematic diagram showing the configuration of a conventional thin film forming apparatus.

【符号の説明】[Explanation of symbols]

1…基板ホルダ(ヒータ内装) 2…基板 3…光照射窓(石英窓) 4…紫外光照射 5…光源 5a…ランプ 6…レンズ 7…流量調節バルブ 7a…流量調節バルブ 8…原料化合物 9…原料化合物導入管 9a…石英管 10…光励起室 10a…光励起部 11…反応成膜室 12…光導入管 13…凹型反射鏡 14…内壁を鏡面加工したカバー 15…石英管と金属管の接合部 1... Board holder (heater interior) 2...Substrate 3...Light irradiation window (quartz window) 4...Ultraviolet light irradiation 5...Light source 5a...Lamp 6...Lens 7...Flow rate adjustment valve 7a...Flow rate adjustment valve 8... Raw material compound 9... Raw material compound introduction pipe 9a...Quartz tube 10...Photoexcitation chamber 10a...Photoexcitation part 11...Reaction deposition chamber 12...Light introduction tube 13...Concave reflector 14...Cover with mirror-finished inner wall 15…Joint part of quartz tube and metal tube

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】反応成膜室中に設置されている基板上に原
料化合物を導入し,光励起を伴う分解成膜反応により薄
膜を形成する化学気相成長法において,上記反応成膜室
の基板上に導入する原料化合物の光励起を,上記基板上
に到達し分解反応を起こす前に行うことを特徴とする薄
膜形成方法。
Claim 1: In a chemical vapor deposition method in which a raw material compound is introduced onto a substrate placed in a reaction film formation chamber and a thin film is formed by a decomposition film formation reaction accompanied by optical excitation, the substrate in the reaction film formation chamber is A method for forming a thin film, characterized in that optical excitation of a raw material compound introduced onto the substrate is performed before it reaches the substrate and causes a decomposition reaction.
【請求項2】反応成膜室に保持された基板上に原料化合
物を導入し,光励起を伴う分解成膜反応により薄膜を形
成する化学気相成長装置において,上記導入する原料化
合物が反応成膜室に保持された基板表面に到達する前段
階で,上記原料化合物の流れに可視および紫外領域の光
を照射して光励起を行う手段を備えたことを特徴とする
薄膜形成装置。
[Claim 2] In a chemical vapor deposition apparatus in which a raw material compound is introduced onto a substrate held in a reaction film forming chamber and a thin film is formed by a decomposition film forming reaction accompanied by optical excitation, the introduced raw material compound is used to form a thin film through a reaction film forming process. A thin film forming apparatus comprising means for optically exciting the flow of the raw material compound by irradiating it with light in the visible and ultraviolet regions before reaching the surface of the substrate held in the chamber.
JP3592491A 1991-03-01 1991-03-01 Method and device for forming thin film Pending JPH04274317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3592491A JPH04274317A (en) 1991-03-01 1991-03-01 Method and device for forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3592491A JPH04274317A (en) 1991-03-01 1991-03-01 Method and device for forming thin film

Publications (1)

Publication Number Publication Date
JPH04274317A true JPH04274317A (en) 1992-09-30

Family

ID=12455585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3592491A Pending JPH04274317A (en) 1991-03-01 1991-03-01 Method and device for forming thin film

Country Status (1)

Country Link
JP (1) JPH04274317A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009166A1 (en) * 2000-07-21 2002-01-31 Tokyo Electron Limited Method for manufacturing semiconductor device, substrate treater, and substrate treatment system
US7501352B2 (en) 2005-03-30 2009-03-10 Tokyo Electron, Ltd. Method and system for forming an oxynitride layer
US7517814B2 (en) 2005-03-30 2009-04-14 Tokyo Electron, Ltd. Method and system for forming an oxynitride layer by performing oxidation and nitridation concurrently
WO2009093459A1 (en) * 2008-01-25 2009-07-30 Mitsui Engineering & Shipbuilding Co., Ltd. Atomic layer growing apparatus and thin film forming method
JP2012015259A (en) * 2010-06-30 2012-01-19 Hitachi High-Technologies Corp Substrate treatment apparatus and substrate treatment method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009166A1 (en) * 2000-07-21 2002-01-31 Tokyo Electron Limited Method for manufacturing semiconductor device, substrate treater, and substrate treatment system
US7501352B2 (en) 2005-03-30 2009-03-10 Tokyo Electron, Ltd. Method and system for forming an oxynitride layer
US7517814B2 (en) 2005-03-30 2009-04-14 Tokyo Electron, Ltd. Method and system for forming an oxynitride layer by performing oxidation and nitridation concurrently
WO2009093459A1 (en) * 2008-01-25 2009-07-30 Mitsui Engineering & Shipbuilding Co., Ltd. Atomic layer growing apparatus and thin film forming method
JP4540742B2 (en) * 2008-01-25 2010-09-08 三井造船株式会社 Atomic layer growth apparatus and thin film forming method
JPWO2009093459A1 (en) * 2008-01-25 2011-05-26 三井造船株式会社 Atomic layer growth apparatus and thin film forming method
JP2012015259A (en) * 2010-06-30 2012-01-19 Hitachi High-Technologies Corp Substrate treatment apparatus and substrate treatment method

Similar Documents

Publication Publication Date Title
US6150265A (en) Apparatus for forming materials
US4058638A (en) Method of optical thin film coating
JPH04274317A (en) Method and device for forming thin film
JP4565062B2 (en) Thin film single crystal growth method
JP3351477B2 (en) Solid laser crystal thin film forming method and solid laser crystal thin film forming apparatus
JP2556211B2 (en) Apparatus for growing semiconductor crystal layer and method for growing the same
JPS60128265A (en) Device for forming thin film in vapor phase
US6281122B1 (en) Method for forming materials
JPS6149392B2 (en)
JPS60241219A (en) Method for forming thin film by utilizing laser
JPS59208065A (en) Depositing method of metal by laser
JPS63283135A (en) Method of building cadmium telluride layers and mercury telluride layers alternately
JP2723658B2 (en) Wiring forming method by laser CVD method and apparatus therefor
JP2002241930A (en) Method for deposition of nitride thin film
JPH0491427A (en) Chemical vapor growth method
JPH03237731A (en) Method and apparatus for vapor growth
JP2006219730A (en) Film deposition system
JP2002020859A (en) Laser ablation film deposition method
JP4377008B2 (en) Chemical vapor deposition method and chemical vapor deposition apparatus
JPH02239184A (en) Method and apparatus for vapor growth by photoexcitation
JPH0478717B2 (en)
JPS62264619A (en) Impurity doping method
JPS61269305A (en) Semiconductor manufacturing equipment
JPS63310967A (en) Production of thin film by cvd and device therefor
JPH04174513A (en) Equipment and method for molecular beam crystal growth