JPH0633228B2 - Molecular beam epitaxy growth method - Google Patents

Molecular beam epitaxy growth method

Info

Publication number
JPH0633228B2
JPH0633228B2 JP28061285A JP28061285A JPH0633228B2 JP H0633228 B2 JPH0633228 B2 JP H0633228B2 JP 28061285 A JP28061285 A JP 28061285A JP 28061285 A JP28061285 A JP 28061285A JP H0633228 B2 JPH0633228 B2 JP H0633228B2
Authority
JP
Japan
Prior art keywords
molecular beam
group
growth method
epitaxial growth
beam epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28061285A
Other languages
Japanese (ja)
Other versions
JPS62138390A (en
Inventor
卓 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP28061285A priority Critical patent/JPH0633228B2/en
Publication of JPS62138390A publication Critical patent/JPS62138390A/en
Publication of JPH0633228B2 publication Critical patent/JPH0633228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分子線エピタキシャル成長法に関し、特にリ
ン(P)を含有するV族元素化合物とIII族元素とを用
いてIII−V族化合物半導体結晶を成長する分子線エピ
タキシャル成長法に関する。
Description: TECHNICAL FIELD The present invention relates to a molecular beam epitaxial growth method, and particularly to a III-V group compound semiconductor using a group V element compound containing phosphorus (P) and a group III element. The present invention relates to a molecular beam epitaxial growth method for growing a crystal.

〔従来の技術〕[Conventional technology]

分子線エピタキシャル法とは、従来超高真空中で、結晶
のそれぞれの構成元素を別々のるつぼに入れ、加熱蒸発
し基板上に単結晶薄膜を成長させる方法である。この分
子線エピタキシャル法は現在最も薄膜の制御が優れた結
晶成長法として期待されている。
The molecular beam epitaxy method is a method of growing single crystal thin films on a substrate by placing each constituent element of the crystal in a separate crucible and heating and evaporating them in an ultrahigh vacuum. This molecular beam epitaxial method is currently expected as a crystal growth method with the best control of thin films.

しかし従来形の分子線エピタキシャル成長法では主に固
体原料を用いている為に、原料が枯渇し、原料補充の為
に、成長室を大気にさらすということが生じる。このこ
とは成長室を超高真空に戻す為に長時間を費すだけでな
く、エピタキシャル膜の品質という点からも問題であ
る。
However, in the conventional type molecular beam epitaxial growth method, since a solid raw material is mainly used, the raw material is depleted and the growth chamber is exposed to the atmosphere to supplement the raw material. This not only takes a long time to return the growth chamber to the ultra-high vacuum, but also poses a problem in terms of the quality of the epitaxial film.

また、従来形の分子線エピタキシャル成長法は例えばGa
AlAs混晶の様なV族元素を一種類しか含まない結晶の成
長は良好であるが、例えばInGaAsP混晶の様なV族元素
を二種類またはそれ以上含む結晶の成長は困難であっ
た。この原因は、所望の組成比を有する混晶を得る為に
は、二種類またはそれ以上のV族の分子線強度比を正確
に制御することが必要である。しかしながらV族固体原
料を用いる場合、原料の蒸気圧が高く、分子線強度比の
制御が困難であった。
The conventional molecular beam epitaxial growth method is, for example, Ga
The growth of a crystal containing only one type of V group element such as AlAs mixed crystal was good, but the growth of a crystal containing two or more types of V group element such as InGaAsP mixed crystal was difficult. The cause of this is that in order to obtain a mixed crystal having a desired composition ratio, it is necessary to accurately control the ratio of the molecular beam intensities of two or more kinds of group V molecules. However, when a group V solid raw material is used, the vapor pressure of the raw material is high and it is difficult to control the molecular beam intensity ratio.

そこで、この様な欠点を補う成長方法として、従来まで
の固体原料にかわって気体原料を用いた分子線エピタキ
シャル成長法が行なわれている。例えば、エー・アール
・キャラワ(A.R.Calawa)により1981年のアプライ
ド・フィジックス・レター(Applied Physics letter
s)の第38巻の701頁に発表されており、As系,P
系の化合物についてはAsH3,PH3を用いて行われている。
Therefore, as a growth method for compensating for such drawbacks, a molecular beam epitaxial growth method using a gas raw material is performed instead of the conventional solid raw material. For example, AR Calawa's 1981 Applied Physics letter.
s) Volume 38, p. 701, As system, P
AsH 3 and PH 3 are used for the system compounds.

一般的なAsH3,PH3の導入部の断面図を第2図に示す。As
H3,PH3については超高真空系の導入部にてリークバルブ
6を介して導入しタンタル製外管11内のタンタルフィ
ラメント12を用いて加熱する熱分解炉(ガスセル)に
てAs1,As2,As4,P2,等の分子線を形成し成長を行なって
いる。
Fig. 2 shows a cross-sectional view of a general AsH 3 and PH 3 introduction part. As
H 3, PH 3 As 1 at the pyrolysis furnace for heating using a tantalum filament 12 in tantalum outer pipe 11 is introduced through a leak valve 6 at the introduction portion of the ultra-high vacuum system (gas cell) for, The molecular beam of As 2 , As 4 , P 2 , etc. is formed and grown.

また、エム・ビー・パニッシュ(M.B.Panish)とエス・
サムスキー(S.Sumski)は第3図に示す様な熱分解炉に
てAsH3,PH3を分解してInGaAsP系混晶の成長を行ない、I
nGaAsP/InPDHレーザを試作し、1984年発行のジャ
ーナル・オブ・アプライド・フィジックス(Journal of
Applied Physics)の第55巻の3571頁に発表して
いる。この熱分解炉は第3図に示すように、アルミナ製
抵抗加熱炉13中にあるガス導入管5の先端にリークす
る為の穴があり、AsH3またはPH3の圧力を変化させて供
給量を制御している。
In addition, MB Panish and S.
S.Sumski decomposes AsH 3 and PH 3 in a pyrolysis furnace as shown in Fig. 3 to grow InGaAsP-based mixed crystals.
Prototyped nGaAsP / InPDH laser, which was published in 1984, Journal of Applied Physics.
Applied Physics) 55, p. 3571. As shown in FIG. 3, this pyrolysis furnace has a hole for leaking at the tip of the gas introduction pipe 5 in the resistance heating furnace 13 made of alumina, and the supply amount is changed by changing the pressure of AsH 3 or PH 3. Are in control.

このようにV族原料として気体を用いた分子線エピタキ
シャル成長法は従来の固体原料の分子線エピタキシャル
法と比べてV族の分子線強度を制御することが可能で、
V族元素を2種類以上含む混晶系の成長が可能であるこ
とが知られている。
As described above, the molecular beam epitaxial growth method using a gas as the group V raw material can control the group V molecular beam intensity as compared with the conventional solid source molecular beam epitaxial method.
It is known that a mixed crystal system containing two or more kinds of Group V elements can be grown.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、従来のV族気体原料を用いた分子線エピ
タキシャル法は急激なガス組成の切り替えが困難である
という欠点を有していた。従来のV族気体原料を用いた
分子線エピタキシャル法では、V族元素の組成変化はリ
ークバルブあるいはガス圧力を変化させて行なうが、超
高真空系内の分子線強度は急激には変化しなかった。こ
れは、熱分解炉の出口付近に特にP,Pが付着,吸
着,再蒸発するという現象が起っており、急激にPH3
量を断っても、しばらくP等の分子線が発生している
為であると考えられる。この現象はシャッターを用いて
もシャッター上でPの形で吸着し、また再蒸発を起こ
し、完全に防止することは出来なかった。
However, the conventional molecular beam epitaxial method using a group V gas raw material has a drawback that it is difficult to rapidly change the gas composition. In the conventional molecular beam epitaxial method using a group V gas source, the composition of the group V element is changed by changing the leak valve or the gas pressure, but the molecular beam intensity in the ultra-high vacuum system does not change rapidly. It was This is due to the phenomenon that P 2 , P 4 are attached, adsorbed, and re-evaporated particularly near the exit of the pyrolysis furnace, and even if the PH 3 flow rate is suddenly cut off, molecular beams such as P 2 will remain for a while. It is thought that it is because it has occurred. Even if a shutter was used, this phenomenon was not completely prevented because it was adsorbed in the form of P 4 on the shutter and re-evaporated.

本発明はV族気体原料を用いた分子線エピタキシャル成
長法の特徴であるV族の分子線強度を正確に制御するこ
とが出来るという特徴を生かし、かつ同法の欠点である
急激なV族分子線強度の変化を可能ならしめる分子線エ
ピタキシャル成長法を提供することを目的とする。
INDUSTRIAL APPLICABILITY The present invention takes advantage of the feature that the molecular beam intensity of the V group, which is the feature of the molecular beam epitaxial growth method using a V group gas raw material, can be accurately controlled, and the sharp V group molecular beam that is the drawback of the method It is an object of the present invention to provide a molecular beam epitaxial growth method capable of changing the strength.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の分子線エピタキシャル成長法は、リン(P)を
含有するV族元素化合物とIII族元素とを用いてIII−V
族化合物半導体結晶を成長する分子線エピタキシャル成
長法において、P供給原料ガスとしてジホスフィン(P2
H4)を用い、波長100nm以上260nm以下の励起光源
を用い光分解させたものを用いることを特徴として構成
される。
The molecular beam epitaxial growth method of the present invention uses a group V element compound containing phosphorus (P) and a group III element for III-V.
In the molecular beam epitaxial growth method for growing a group compound semiconductor crystal, diphosphine (P 2
H 4 ) is used, and a photodecomposition is performed using an excitation light source having a wavelength of 100 nm or more and 260 nm or less.

〔作用〕[Action]

ジホスフィンはホスフィンと比べて不安定な物質で室温
で紫外線を照射することにより分解することが知られて
いる。川崎によると、P2H4の光分解反応の吸収波長は2
60nm以下であり、最大吸収波長は220nm以下である
ことが知られている(川崎昌博:応用物理,53,19
85,603)。なお光励起プロセス用電源としては、
例えば日経マイクロデバイス,1985年春号,61〜
78頁に示されているように、現在100nm以下の波長
のものは入手が困難であるのが実状である。従ってジホ
スフィンをP供給原料ガスとして前記波長の光照射を行
なうことにより、熱分解炉を用いないで、P分子線を安
定的に得ることが出来る。また光照射は超高真空系内の
空間で行なう為に、熱分解炉の場合の様なP2,P4の吸着
現象は起らない。この為に急激なP分子線強度の変化が
可能となる。
It is known that diphosphine is an unstable substance as compared with phosphine and decomposes when irradiated with ultraviolet rays at room temperature. According to Kawasaki, the absorption wavelength of the photolysis reaction of P 2 H 4 is 2
It is known that the maximum absorption wavelength is 60 nm or less and the maximum absorption wavelength is 220 nm or less (Masahiro Kawasaki: Applied Physics, 53, 19).
85, 603). As a power source for the photoexcitation process,
For example, Nikkei Microdevice, Spring 1985, 61-
As shown on page 78, it is the actual situation that it is currently difficult to obtain light having a wavelength of 100 nm or less. Therefore, by irradiating light of the above wavelength with diphosphine as the P feed gas, the P molecular beam can be stably obtained without using the thermal decomposition furnace. Moreover, since the light irradiation is performed in the space of the ultra-high vacuum system, the adsorption phenomenon of P 2 and P 4 unlike in the case of the pyrolysis furnace does not occur. Therefore, it is possible to change the P molecular beam intensity rapidly.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明す
る。第1図は本発明の一実施例を説明するための分子線
エピタキシャル成長装置の構成図である。以下第1図を
用いてInP基板上にInP/InGaAs超格子構造を作成する場
合について説明する。第1図において、10-9Torr程度
の超高真空に排気された真空チェンバー1内にInP基板
2を設置しヒーター3にて基板温度を300℃に設定し
た。III族原料は通常のセル4内で高純度InGaを加熱し
て分子線を得る。V族元素はAsについてはAsH3を導入管
5aよりリークバルブ6aを介して超高真空系内に導入
し通常の熱分解炉7にてヒ素分子線を得た。Pについて
はP2H4を導入管5bよりリークバルブ6bを介して超高
真空系内に導入し、水銀ランプ8を用いて光照射窓9を
通して紫外線をP2H4原料ビームに照射した。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a molecular beam epitaxial growth apparatus for explaining an embodiment of the present invention. A case of forming an InP / InGaAs superlattice structure on an InP substrate will be described below with reference to FIG. In FIG. 1, the InP substrate 2 was installed in the vacuum chamber 1 evacuated to an ultrahigh vacuum of about 10 −9 Torr, and the substrate temperature was set to 300 ° C. by the heater 3. The group III raw material is obtained by heating high-purity InGa in the ordinary cell 4 to obtain a molecular beam. As As the group V element, AsH 3 was introduced into the ultrahigh vacuum system from the introduction pipe 5a through the leak valve 6a to obtain arsenic molecular beam in the ordinary pyrolysis furnace 7. Regarding P, P 2 H 4 was introduced into the ultrahigh vacuum system from the introduction tube 5b through the leak valve 6b, and the mercury lamp 8 was used to irradiate the P 2 H 4 raw material beam with ultraviolet rays through the light irradiation window 9.

InP層の成長に際しては、Ga分子線をシャッター10に
て遮断し、AsH3原料はリークバルブを閉め、さらにシャ
ッターにて遮断した。InGaAs層成長に際してはP2H4原料
はリークバルブを閉め遮断し光照射を中断した。AsH3
熱分解炉は700℃に設定した。
During the growth of the InP layer, the Ga molecular beam was blocked by the shutter 10, the AsH 3 raw material was closed by a leak valve, and further blocked by the shutter. When growing the InGaAs layer, the P 2 H 4 raw material was closed by closing the leak valve and interrupting the light irradiation. The AsH 3 pyrolysis furnace was set at 700 ° C.

この様にして50A周期のInGaAs/InP超格子構造を20
層成長させた。その結果良好な鏡面の成長層が得られ
た。
In this way, an InGaAs / InP superlattice structure of 50 A period
Layers were grown. As a result, a good mirror growth layer was obtained.

さらに二次イオン質量分析装置(SIMS)にて深さ方
向にAs,P原子の濃度を測定した結果界面は非常に良好
で、本発明の特徴であるP原子濃度が界面で急峻に変化
していることが確認された。
Furthermore, as a result of measuring the concentration of As and P atoms in the depth direction with a secondary ion mass spectrometer (SIMS), the interface is very good, and the P atom concentration, which is a feature of the present invention, changes sharply at the interface. Was confirmed.

〔発明の効果〕〔The invention's effect〕

Pを含有するV族元素化合物とIII族元素とを用いてIII
−V族化合物半導体結晶の分子線エピタキシャル成長を
行なうにあたり、P供給原料ガスとしてP2H4(ジホスフ
ィン)を用い波長100nm以上260nm以下の励起光源
を用い超高真空系内の空間で光分解させたものを用いて
いるので、急激にV族元素の分子線強度を変化させた際
に熱分解炉を必要としない。従って、リンの吸着,再蒸
発に起因する成長界面でのP原子濃度変化が急峻になら
ず広がる現象は存在せず、良好な界面を有する成長結晶
が得られる。
Using a Group V element compound containing P and a Group III element III
In performing the molecular beam epitaxial growth of a group V compound semiconductor crystal, P 2 H 4 (diphosphine) was used as a P supply source gas and photodecomposed in a space in an ultrahigh vacuum system using an excitation light source having a wavelength of 100 nm or more and 260 nm or less. Since the material is used, a pyrolysis furnace is not required when the molecular beam intensity of the group V element is rapidly changed. Therefore, there is no phenomenon in which the P atom concentration change at the growth interface due to the adsorption and re-evaporation of phosphorus does not become steep and spreads, and a grown crystal having a good interface can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を説明するための分子線エピ
タキシャル成長装置の構成図、第2図は従来の分子線エ
ピタキシャル成長装置のAsH3,PH3の導入部の断面図、第
3図はパニシュ(Panish)の用いた熱分解炉の断面図で
ある。 1……真空チェンバー、2……InP基板、3……ヒータ
ー、4……III族原料セル、5a,5b……ガス導入
管、6a,6b……リークバルブ、7……通常の熱分解
炉、8……水銀ランプ、9……光照射窓、10……シャ
ッター、11……タンタル製外管、12……タンタルフ
ィラメント、13……アルミナ製抵抗加熱炉。
FIG. 1 is a block diagram of a molecular beam epitaxial growth apparatus for explaining an embodiment of the present invention, FIG. 2 is a cross-sectional view of a conventional molecular beam epitaxial growth apparatus where AsH 3 and PH 3 are introduced, and FIG. It is sectional drawing of the thermal decomposition furnace which used Panish. 1 ... Vacuum chamber, 2 ... InP substrate, 3 ... Heater, 4 ... Group III raw material cell, 5a, 5b ... Gas introduction pipe, 6a, 6b ... Leak valve, 7 ... Ordinary pyrolysis furnace , 8 ... Mercury lamp, 9 ... Light irradiation window, 10 ... Shutter, 11 ... Tantalum outer tube, 12 ... Tantalum filament, 13 ... Alumina resistance heating furnace.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リンを含有するV族元素化合物とIII族元
素とを用いてIII−V族化合物半導体結晶を成長する分
子線エピタキシャル成長法において、リン供給原料ガス
としてジホスフィンを用い、波長100nm以上260nm
以下の励起光源を用い光分解することを特徴とする分子
線エピタキシャル成長法。
1. A molecular beam epitaxial growth method for growing a III-V group compound semiconductor crystal using a group V element compound containing phosphorus and a group III element, wherein diphosphine is used as a phosphorus source gas and the wavelength is 100 nm or more and 260 nm.
A molecular beam epitaxial growth method characterized by photolysis using the following excitation light source.
JP28061285A 1985-12-12 1985-12-12 Molecular beam epitaxy growth method Expired - Lifetime JPH0633228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28061285A JPH0633228B2 (en) 1985-12-12 1985-12-12 Molecular beam epitaxy growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28061285A JPH0633228B2 (en) 1985-12-12 1985-12-12 Molecular beam epitaxy growth method

Publications (2)

Publication Number Publication Date
JPS62138390A JPS62138390A (en) 1987-06-22
JPH0633228B2 true JPH0633228B2 (en) 1994-05-02

Family

ID=17627463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28061285A Expired - Lifetime JPH0633228B2 (en) 1985-12-12 1985-12-12 Molecular beam epitaxy growth method

Country Status (1)

Country Link
JP (1) JPH0633228B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813717B2 (en) * 1989-01-12 1996-02-14 日本電気株式会社 Silicon molecular beam growth method
JPH02302394A (en) * 1989-05-18 1990-12-14 Ulvac Corp Film-forming apparatus
JP2842269B2 (en) * 1995-01-25 1998-12-24 日本電気株式会社 Compound semiconductor crystal growth equipment

Also Published As

Publication number Publication date
JPS62138390A (en) 1987-06-22

Similar Documents

Publication Publication Date Title
DenBaars et al. Atomic layer epitaxy of compound semiconductors with metalorganic precursors
US6334901B1 (en) Apparatus for forming semiconductor crystal
JPS6134927A (en) Growing process of compound semiconductor single crystal thin film
JPH0633228B2 (en) Molecular beam epitaxy growth method
GB2170043A (en) Apparatus for the growth of semiconductor crystals
JPH0662356B2 (en) Molecular beam epitaxy growth method
JPH0253097B2 (en)
RU2023325C1 (en) Process of growing diamond films
JPH03274275A (en) Device for forming thin film utilizing organometallic gas
US5542373A (en) Method of manufacturing GaAs single crystals
JP3182584B2 (en) Compound thin film forming method
JP2687371B2 (en) Vapor growth of compound semiconductors
JP2821557B2 (en) Method for growing compound semiconductor single crystal thin film
JPS62120016A (en) Controlling method for carbon doping
JPH0556650B2 (en)
JPH0212814A (en) Crystal growth method of compound semiconductor
JPS62232919A (en) Crystal growth
JPH0442891A (en) Production of semiconductor thin film
JPS6226568B2 (en)
JPS59164697A (en) Vapor growth method
JPH05198518A (en) Compound semiconductor film formation method
JPH0532482A (en) Molecular beam epitaxy method and compound semiconductor film
Yoshimoto et al. In-situ reflection high-energy electron diffraction observation of laser-triggered GaP growth in chemical beam epitaxy
JPH05251369A (en) Organic metal chemical vapor growth method
JPH0152891B2 (en)