JPH03234053A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH03234053A
JPH03234053A JP3079290A JP3079290A JPH03234053A JP H03234053 A JPH03234053 A JP H03234053A JP 3079290 A JP3079290 A JP 3079290A JP 3079290 A JP3079290 A JP 3079290A JP H03234053 A JPH03234053 A JP H03234053A
Authority
JP
Japan
Prior art keywords
power supply
transistor
gate
mos transistor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3079290A
Other languages
Japanese (ja)
Other versions
JP2867546B2 (en
Inventor
Yoshito Takahashi
高橋 慶十
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3079290A priority Critical patent/JP2867546B2/en
Publication of JPH03234053A publication Critical patent/JPH03234053A/en
Application granted granted Critical
Publication of JP2867546B2 publication Critical patent/JP2867546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To protect power supply and internal elements from breakdown or damage and to enable quick and efficient current supply by providing a power supply protective circuit for a logic circuit section where the collector and the gate of an isolated gate bipolar transistor having a gate isolation film substantially as thick as an MOS transistor are connected with power supply wiring and the emitter thereof is connected with ground wiring. CONSTITUTION:Collector electrode 72 and gate electrode 73 of an isolated gate bipolar transistor (IGBT 7) having a gate oxide film 74 substantially as thick as a high breakdown strength MOS transistor are connected with power supply winding VDD and the emitter electrode 71 thereof is connected with ground winding VSS, thus forming a power supply protective circuit for a logic circuit section.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路装置に関し、特にMOSトラン
ジスタを含む論理回路部及び前述のMOSトランジスタ
より厚いゲート絶縁膜を有する他のMo8)ランジスタ
を含む高耐圧出力バッファ回路部を有する半導体集積回
路装置に間する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor integrated circuit device, and in particular includes a logic circuit section including a MOS transistor and another Mo8 transistor having a gate insulating film thicker than the above-mentioned MOS transistor. The present invention is applied to a semiconductor integrated circuit device having a high voltage output buffer circuit section.

〔従来の技術〕[Conventional technology]

第2図(a)は従来例を示す半導体チップの断面図、第
2図(b)はその電源保護回路の回路図である。
FIG. 2(a) is a sectional view of a conventional semiconductor chip, and FIG. 2(b) is a circuit diagram of its power protection circuit.

この従来例はpMOSトランジスタ8を含む論理回路部
及びpMOSトランジスタ8のゲート酸化膜84より厚
いゲート酸化膜94を有するP型の高耐圧オフセットゲ
ートMO3)ランジスタ9とNPN)ランジスタ10を
含む高耐圧出力バッファ回路部を含む半導体集積回路装
置であるが、その電源保護回路には低耐圧の電源保護ダ
イオード11が挿入されこのダイオードのPN接合逆方
向耐圧をイオン注入量等により適切に制御することによ
り、電源−接地間に最大電圧が印加される場合の保護を
行なっていた0例えば電源の最大定格電圧7Vの半導体
集積回路装置の電源ラッチアップが15Vで発生する場
合、イオン注入量等を適切に制御することにより電源ダ
イオード逆方向耐圧を例えばIOVとなるように設定し
電源−接地間に瞬間的に過大な電圧が印加されても、電
源保護ダイオードの逆方向電流が流れることにより、論
理回路部の電源−接地間の電圧上昇は抑えられ、電源ラ
ッチアップ等による、電源及び内部素子の破壊・損傷等
は防止されていた。
This conventional example has a logic circuit section including a pMOS transistor 8 and a high breakdown voltage output including a P-type high breakdown voltage offset gate MO3) transistor 9 and an NPN) transistor 10 having a gate oxide film 94 thicker than the gate oxide film 84 of the pMOS transistor 8. This is a semiconductor integrated circuit device including a buffer circuit section, and a low-voltage power protection diode 11 is inserted into the power protection circuit, and the PN junction reverse breakdown voltage of this diode is appropriately controlled by the amount of ion implantation, etc. For example, if a power supply latch-up occurs at 15V in a semiconductor integrated circuit device with a maximum rated voltage of 7V, it is necessary to appropriately control the amount of ion implantation, etc. By setting the reverse withstand voltage of the power supply diode to, for example, IOV, even if an excessive voltage is momentarily applied between the power supply and the ground, the reverse current of the power supply protection diode will flow, and the logic circuit section will be protected. The voltage rise between the power supply and the ground was suppressed, and destruction and damage to the power supply and internal elements due to power supply latch-up and the like were prevented.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体集積回路装置では、電源保護ダイ
オードの逆方向耐圧を適切に制御する必要がある為、イ
オン注入量や熱処理条件等を必要とされる逆方向耐圧が
得られるように、条件設定せねばならないが、一方この
電源保護ダイオードで使用するPN接合のアノード領域
113のP型拡散層は同一チップ上に形成される他素子
のP型拡散層(例えば、NPN)ランジスタ10のベー
ス領域105、高耐圧オフセットゲートMOSトランジ
スタ9のオフセットトレイン領域97等)と共通に使用
されるのが普通である。しかし、例えばNPNt−ラン
ジスタのhPEを上げる為にはベース層の濃度、即ちベ
ース層形成時のイオン注入量は少ない方が好ましいがベ
ース層のイオン注入量が少ないと電源保護ダイオードの
PN接合の耐圧は高くなってしまう(接合の不純物濃度
が低下する為)、また、オフセットゲートMOSトラン
ジスタのオフセット部の濃度は、オフセットゲートMO
Sトランジスタの耐圧と相関があり、それぞれ必要とさ
れる素子の特性を得る為には、P型拡散層の形成条件を
独立に設定できることが望ましいが、従来はこれを共通
条件で行なう場合が多かった為、素子の特性に制約を受
は特に電源保護ダイオードの耐圧設定を優先する場合、
他素子の特性が、その条件によって決まってしまいそれ
ぞれの素子の最良の特性が得られる条件設定が困難であ
るという欠点があった。
In the conventional semiconductor integrated circuit device described above, it is necessary to appropriately control the reverse breakdown voltage of the power protection diode, so conditions such as ion implantation amount and heat treatment conditions must be set to obtain the required reverse breakdown voltage. On the other hand, the P-type diffusion layer of the PN junction anode region 113 used in this power protection diode is similar to the base region 105 of the P-type diffusion layer (for example, NPN) transistor 10 of another element formed on the same chip. , the offset train region 97 of the high voltage offset gate MOS transistor 9, etc.). However, for example, in order to increase the hPE of an NPNt-transistor, it is preferable that the concentration of the base layer, that is, the amount of ions implanted when forming the base layer, is small, but if the amount of ions implanted in the base layer is small, the breakdown voltage of the PN junction of the power protection diode (because the impurity concentration of the junction decreases), and the concentration of the offset part of the offset gate MOS transistor is higher than that of the offset gate MOS transistor.
There is a correlation with the withstand voltage of the S transistor, and in order to obtain the required characteristics of each element, it is desirable to be able to independently set the formation conditions of the P-type diffusion layer, but in the past this was often done under common conditions. Therefore, given the restrictions on the characteristics of the element, especially when giving priority to the withstand voltage setting of the power protection diode,
The disadvantage is that the characteristics of other elements are determined by the conditions, making it difficult to set conditions that will yield the best characteristics of each element.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、第1のMo3)ランジスタを含む論理回路部
及び前記第1のMOSトランジスタより厚いゲート絶縁
膜を有する第2のMOSトランジスタを含む高耐圧出力
バッファ回路部を有する半導体集積回路装置において、
前記第2のMOSトランジスタと実質的に同じ厚さのゲ
ート絶縁膜を有する絶縁ゲートバイポーラトランジスタ
のコレクタとゲートを電源配線にエミッタを設置配線に
それぞれ接続した、前記論理回路部の電源保護回路を有
するというものである。
The present invention provides a semiconductor integrated circuit device having a logic circuit section including a first Mo3) transistor and a high voltage output buffer circuit section including a second MOS transistor having a gate insulating film thicker than the first MOS transistor.
A power protection circuit for the logic circuit section, wherein the collector and gate of an insulated gate bipolar transistor having a gate insulating film having substantially the same thickness as the second MOS transistor are connected to a power supply wiring, and the emitter is connected to an installation wiring, respectively. That is what it is.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)は本発明の一実施例を示す半導体チップの
継断面図、第1図(b)は一実施例の電源保護回路図で
ある。
FIG. 1(a) is a cross-sectional view of a semiconductor chip showing an embodiment of the present invention, and FIG. 1(b) is a power protection circuit diagram of the embodiment.

この実施例はpMOS)ランジスタ8(第1のMOSト
ランジスタ)を含む論理回路部及びpMOSトランジス
タより厚いゲート酸化膜94を有するP型の高耐圧オフ
セラトゲ−)Mo3)ランジスタ9(第2のMOSトラ
ンジスタ)及びNPN)−ランジスタ10を含む高耐圧
出力バッファ回路部を有する半導体集積回路装置におい
て、高耐圧MOSトランジスタと実質的に同じ厚さ(同
一工程で形成された)のゲート酸化膜74を有する絶縁
ゲートバイポーラトランジスタ(IGBT7)のコレク
タ電極72とゲート電極73を電源配線■DDにエミッ
タ電極71を接地配線V55にそれぞれ接続した前述の
論理回路部の電源保護回路を有するというものである。
This embodiment is a P-type high voltage off-cell transistor including a logic circuit section including a pMOS transistor 8 (first MOS transistor) and a gate oxide film 94 thicker than the pMOS transistor. and NPN) - In a semiconductor integrated circuit device having a high voltage output buffer circuit section including a transistor 10, an insulated gate having a gate oxide film 74 having substantially the same thickness (formed in the same process) as a high voltage MOS transistor. It has a power protection circuit for the aforementioned logic circuit section in which the collector electrode 72 and gate electrode 73 of the bipolar transistor (IGBT7) are connected to the power supply wiring (DD), and the emitter electrode 71 is connected to the ground wiring V55.

電源配線V1)□−接地配線VSS間に、電源保護回路
のIGBTのしきい電圧VT(例えば10V)以上の電
圧が印加されると、そのIGBTがオンし、過電圧が電
源配線−接地配線間にかかることを防ぐことができる。
When a voltage higher than the threshold voltage VT (for example, 10V) of the IGBT of the power protection circuit is applied between the power supply wiring V1) and the ground wiring VSS, the IGBT turns on and the overvoltage is applied between the power supply wiring and the ground wiring. This can be prevented.

従来の低耐圧電源保護ダイオードを用いていないので、
電源保護ダイオードの拡散条件による高耐圧オフセット
ゲートMOSトランジスタのオフセット部の拡散条件へ
の制約がなくなる。論理回路部の電源電圧は例えば5ボ
ルト、高耐圧出力バッファ回路部の電源電圧は100〜
200ボルトなどで、高耐圧オフセットゲートMOSト
ランジスタのしきい電圧とIGBTのしきい電圧は無関
係ではないけれどもIGBTのしきい電圧を電源保護に
必要な値に設定しても高耐圧出力バッファ回路の動作に
支障をきたすことはない。
Because it does not use conventional low voltage power protection diodes,
There is no restriction on the diffusion conditions of the offset portion of the high voltage offset gate MOS transistor due to the diffusion conditions of the power supply protection diode. The power supply voltage of the logic circuit section is, for example, 5 volts, and the power supply voltage of the high voltage output buffer circuit section is 100 volts or more.
Although the threshold voltage of the high-voltage offset gate MOS transistor and the IGBT threshold voltage are not unrelated at 200 volts, etc., even if the IGBT threshold voltage is set to the value necessary for power supply protection, the high-voltage output buffer circuit will not operate. It will not cause any hindrance.

又、I GBTは通常のMOSトランジスタと比べ大電
流密度で動作可能であり、ターンオン時間は通常のバイ
ポーラトランジスタより速いので効率よくかつ速やかに
電源保護作用を発揮できる。
Furthermore, IGBTs can operate at higher current densities than ordinary MOS transistors, and have a faster turn-on time than ordinary bipolar transistors, so they can provide efficient and prompt power protection.

更にNPNトランジスタとP型の高耐圧オフセットゲー
トMOS)−ランシストを同一チップ上に設けているの
で、NPNトランジスタのベースとオフセットゲートM
OSトランジスタのオフセットトレインを同時形成する
のが普通であるが、従来のように電源保護ダイオードの
耐圧を考慮する必要が無い分だけ設定条件の制約は少な
くなる。
Furthermore, since the NPN transistor and the P-type high-voltage offset gate MOS)-run transistor are provided on the same chip, the base of the NPN transistor and the offset gate M
Although it is common to form the offset train of the OS transistors at the same time, there are fewer restrictions on the setting conditions since there is no need to consider the withstand voltage of the power protection diode as in the conventional method.

第3図は一実施例の変形を示す半導体チップの縦断面図
である。
FIG. 3 is a longitudinal sectional view of a semiconductor chip showing a modification of one embodiment.

IGBT7による電源保護回路を低耐圧をMOSトラン
ジスタ8、nMOSトランジスタ13からなる論理回路
部にとりつけたもので高耐圧のNチャネルVDMosト
ランジスタ12で高耐圧出力バッファ回路を構成してい
る。従来のように低耐圧の電源保護ダイオードのP型拡
散層をVDMOSトランジスタのP型ベース形成と同時
に形成する必要がないので電源保護ダイオードの耐圧設
定によるベース形成条件の制約がなくなり、VDMOS
トランジスタの最適な条件設定が可能になる。なお、V
DMOSトランジスタ12のゲート酸化膜124とIG
BTのゲート酸化膜74を同一工程で形成されたもので
、CMOSのゲート酸化M84.134より厚くなって
いる。
A power protection circuit using an IGBT 7 is attached to a logic circuit section consisting of a low-voltage MOS transistor 8 and an nMOS transistor 13, and a high-voltage output buffer circuit is configured with a high-voltage N-channel VDMos transistor 12. Unlike conventional methods, it is not necessary to form the P-type diffusion layer of the low-voltage power protection diode at the same time as the formation of the P-type base of the VDMOS transistor.
It becomes possible to set optimal conditions for transistors. In addition, V
Gate oxide film 124 of DMOS transistor 12 and IG
It is formed in the same process as the gate oxide film 74 of BT, and is thicker than the gate oxide film M84.134 of CMOS.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は論理回路部のMOSトラン
ジスタより厚いゲート酸化膜のIGBTを電源保護回路
に挿入し、ゲート及びコレクタを電源(VDD)側に、
エミッタをグラウンド(Vss)側に接続することによ
り、厚いゲート酸化膜のIGBTのしきい電圧以上の電
源−接地間に加えられた場合に、このI GBTがオン
し、電源−接地間にIGBTのオン電流を流すことによ
り、論理回路の電源−接地間にIGBTのオン電流を流
すことにより、論理回路の電源−接地間の電圧上昇を抑
え、電源及び内部素子が破壊・損傷等に至るのを防止す
ることができる。更にIGBTは通常のMOSFETと
比べ単位面積当り大電流を流することが可能で、かつタ
ーンオンに要する時間は通常のバイポーラトランジスタ
より速いので、効率よく、速く、電流を流すことが可能
となる。また、この電源保護回路には従来のような低耐
圧の電源ダイオードがなくイオン注入量や熱処理の条件
等により逆方向耐圧を設定する必要がない為同−チツブ
上に形成された高耐圧出力バッファ回路を構成する素子
(NPN)ランジスタ、高耐圧オフセットゲートMOS
トランジスタ又はVDMOSトランジスタ)の特性に対
する制約がない為、これらの素子の最良の特性を得る条
件で設計が可能となる。
As explained above, the present invention inserts an IGBT with a gate oxide film thicker than the MOS transistor in the logic circuit section into a power supply protection circuit, and places the gate and collector on the power supply (VDD) side.
By connecting the emitter to the ground (Vss) side, when a voltage higher than the threshold voltage of the IGBT with a thick gate oxide film is applied between the power supply and the ground, this IGBT turns on, and the IGBT is connected between the power supply and the ground. By flowing the on-current of the IGBT between the power supply and ground of the logic circuit, the voltage rise between the power supply and ground of the logic circuit is suppressed, and the power supply and internal elements are prevented from being destroyed or damaged. It can be prevented. Furthermore, IGBTs can allow a larger current to flow per unit area than normal MOSFETs, and the turn-on time is faster than that of normal bipolar transistors, so current can flow efficiently and quickly. In addition, this power supply protection circuit does not have a conventional low-voltage power supply diode, and there is no need to set the reverse breakdown voltage depending on the amount of ion implantation or heat treatment conditions, so a high-voltage output buffer formed on the same chip is used. Elements that make up the circuit (NPN) transistors, high voltage offset gate MOS
Since there are no restrictions on the characteristics of transistors or VDMOS transistors, it is possible to design under conditions that obtain the best characteristics of these elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の一実施例を示す縦断面図、第1
図(b)は実施例の電源保護回路の回路図、第2図(a
)は従来例を示す縦断面図、第2図(b)は従来例の電
源保護回路の回路図、第3図は実施例の変形を示す縦断
面図である。 1・・・P型St基板、2a〜2f・・・N型埋込層、
3・・・P型突き抜は拡散層、4a〜4f・・・N型エ
ビタキャル層、5・・・フィールド酸化膜、6・・・層
間絶面膜、7・・・IGBT、71・・・IGBTのエ
ミッタ電極、72・・・IGBTのコレクタ電極、73
・・・IGBTのゲート電極、74・・・IGBTのゲ
ート酸化膜、75・・・IGBTのコレクタ領域、76
・・・I GBTのエミッタ領域、77・・・IGBT
のベース領域、8・・・pMOSトランジスタ、81・
・・PMOSトランジスタのソース電極、82・・・p
MOSトランジスタのドレインti、83・・・pMO
Sトランジスタのゲート電極、84・・・pMOSトラ
ンジスタのゲート酸化膜、85・・・pMO3)ランジ
スタのソース領域、86・・・pMOSトランジスタの
トレイン領域、9・・・高耐圧オフセットゲートMOS
トランジスタ、91・・・9のソース電極、92・・・
9のドレイン電極、93・・・9のゲート電極、94・
・・9のゲート酸化膜、95・・・9のソース領域、9
6・・・9のオフセットトレイン領域、101.・NP
N)ランジスタ、101・・・10のエミッタ電極、1
02・・・10のベース電極、103・・・10のコレ
クタ電極、104・・・10のエミッタ領域、105・
・・10のベース領域、106・・・10のコレクタ引
出領域、11・・・電源保護ダイオード、111・・・
11のアノード電極、112・・・11のカソード電極
、113・・・11のアノード領域、114・・・11
のカソード領域、12・・・VDMOSトランジスタ、
121・・・12のソース電極、122・・・12のゲ
ート酸化膜、123・・・12のドレイン電極、124
・・・12のゲート酸化膜、125・・・12のドレイ
ン引出領域、126・・・12のソース領域、127−
1,127−2・・・12のP型ベース領域、128−
1,128−2・・・12のソース領域。
FIG. 1(a) is a vertical cross-sectional view showing one embodiment of the present invention.
Figure (b) is a circuit diagram of the power supply protection circuit of the embodiment, and Figure 2 (a)
) is a longitudinal sectional view showing a conventional example, FIG. 2(b) is a circuit diagram of a conventional power protection circuit, and FIG. 3 is a longitudinal sectional view showing a modification of the embodiment. 1... P-type St substrate, 2a to 2f... N-type buried layer,
3...P-type punching is a diffusion layer, 4a to 4f...N-type evitacal layer, 5...field oxide film, 6...interlayer isolation film, 7...IGBT, 71...IGBT Emitter electrode of 72...Collector electrode of IGBT, 73
... IGBT gate electrode, 74 ... IGBT gate oxide film, 75 ... IGBT collector region, 76
...IGBT emitter region, 77...IGBT
base region, 8... pMOS transistor, 81...
...PMOS transistor source electrode, 82...p
Drain ti of MOS transistor, 83...pMO
Gate electrode of S transistor, 84... Gate oxide film of pMOS transistor, 85... Source region of pMO3) transistor, 86... Train region of pMOS transistor, 9... High voltage offset gate MOS
Source electrode of transistor, 91...9, 92...
Drain electrode 9, gate electrode 93...9, 94...
...9 gate oxide film, 95...9 source region, 9
6...9 offset train areas, 101.・NP
N) transistor, 101...10 emitter electrodes, 1
02...10 base electrodes, 103...10 collector electrodes, 104...10 emitter regions, 105...
...10 base area, 106...10 collector extraction area, 11...power protection diode, 111...
11 anode electrodes, 112...11 cathode electrodes, 113...11 anode regions, 114...11
cathode region, 12...VDMOS transistor,
121...12 source electrodes, 122...12 gate oxide films, 123...12 drain electrodes, 124
...12 gate oxide film, 125...12 drain lead region, 126...12 source region, 127-
1,127-2...12 P-type base regions, 128-
1,128-2...12 source regions.

Claims (1)

【特許請求の範囲】[Claims] 第1のMOSトランジスタを含む論理回路部及び前記第
1のMOSトランジスタより厚いゲート絶縁膜を有する
第2のMOSトランジスタを含む高耐圧出力バッファ回
路部を有する半導体集積回路装置において、前記第2の
MOSトランジスタと実質的に同じ厚さのゲート絶縁膜
を有する絶縁ゲートバイポーラトランジスタのコレクタ
とゲートを電源配線にエミッタを接地配線にそれぞれ接
続した、前記論理回路部の電源保護回路を有することを
特徴とする半導体集積回路装置。
In a semiconductor integrated circuit device having a logic circuit section including a first MOS transistor and a high voltage output buffer circuit section including a second MOS transistor having a gate insulating film thicker than the first MOS transistor, the second MOS transistor A power protection circuit for the logic circuit portion is provided, the collector and gate of an insulated gate bipolar transistor having a gate insulating film having substantially the same thickness as that of the transistor are connected to a power supply wiring, and the emitter is connected to a ground wiring. Semiconductor integrated circuit device.
JP3079290A 1990-02-09 1990-02-09 Semiconductor integrated circuit device Expired - Lifetime JP2867546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3079290A JP2867546B2 (en) 1990-02-09 1990-02-09 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3079290A JP2867546B2 (en) 1990-02-09 1990-02-09 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPH03234053A true JPH03234053A (en) 1991-10-18
JP2867546B2 JP2867546B2 (en) 1999-03-08

Family

ID=12313533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3079290A Expired - Lifetime JP2867546B2 (en) 1990-02-09 1990-02-09 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP2867546B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335882A (en) * 1992-09-21 2007-12-27 Siliconix Inc BiCDMOS STRUCTURE AND MANUFACTURING METHOD THEREOF

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335882A (en) * 1992-09-21 2007-12-27 Siliconix Inc BiCDMOS STRUCTURE AND MANUFACTURING METHOD THEREOF

Also Published As

Publication number Publication date
JP2867546B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
US4862233A (en) Integrated circuit device having vertical MOS provided with Zener diode
US5903420A (en) Electrostatic discharge protecting circuit having a plurality of current paths in both directions
JP3255147B2 (en) Surge protection circuit for insulated gate transistor
US4893157A (en) Semiconductor device
US6876041B2 (en) ESD protection component
JPH11284175A (en) Mos type semiconductor device
JPH05198800A (en) Insulated gate bipolar transistor
US5751042A (en) Internal ESD protection circuit for semiconductor devices
US5072267A (en) Complementary field effect transistor
JPH10189761A (en) Semiconductor device
US6323522B1 (en) Silicon on insulator thick oxide structure and process of manufacture
JPH0652792B2 (en) Semiconductor device
JP3317345B2 (en) Semiconductor device
JP2814079B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPH03234053A (en) Semiconductor integrated circuit device
JPH0783113B2 (en) Semiconductor device
JP2783191B2 (en) Semiconductor device protection circuit
JPS63137478A (en) Manufacture of semiconductor device having protective circuit
JPH0393265A (en) Semiconductor integrated circuit
JP2737629B2 (en) Semiconductor device having output circuit of CMOS configuration
JPH0553074B2 (en)
JPS62102555A (en) Semiconductor device
JPH03105971A (en) Semiconductor integrated circuit device
JPH0241910B2 (en)
JP4193604B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101225

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101225

Year of fee payment: 12