JPH03105971A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH03105971A
JPH03105971A JP1241972A JP24197289A JPH03105971A JP H03105971 A JPH03105971 A JP H03105971A JP 1241972 A JP1241972 A JP 1241972A JP 24197289 A JP24197289 A JP 24197289A JP H03105971 A JPH03105971 A JP H03105971A
Authority
JP
Japan
Prior art keywords
integrated circuit
type
circuit device
semiconductor integrated
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1241972A
Other languages
Japanese (ja)
Inventor
Mitsuzo Sakamoto
光造 坂本
Takeaki Okabe
岡部 健明
Isao Yoshida
功 吉田
Masatoshi Morikawa
正敏 森川
Hitoshi Kume
久米 均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1241972A priority Critical patent/JPH03105971A/en
Publication of JPH03105971A publication Critical patent/JPH03105971A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Non-Volatile Memory (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce a resistance of a body part and to increase a resistant amount to a latch-up of a parasitic thyristor by a method wherein a high- concentration P-type buried layer is formed at the lower part of a P-well of an N-channel type nonvolatile memory transistor which is operated in an avalanche region. CONSTITUTION:The following are formed on the same chip: a double-diffusion type output MOS transistor which forms a channel part by doubly diffusing a part 114 and a part 116 formed by mating use of a gate electrode layer 113 as a mask; and a floating-gate type nonvolatile memory transistor. During this process, a voltage drop by a Hall current flowing in a drain region is made to be a low resistance by using a first enclosure in a P-type region which is composed of a P-type buried layer 106 and a P-type diffusion layer 108. Thereby, it is possible to prevent that a parasitic thyristor which is constituted between the P-type region and a P-channel MOS transistor part is latched np.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は不揮発性メモリとパワーMOSFETを同一チ
ップ上に形成する半導体集積回路装置に係り、特に、C
MOS部のラッチアップ耐量を増加させた半導体集積回
路装置に関する。 [従来の技術】 ホットエレクトロンをフローテインクケートに注入する
EPROMやフラッシュEEPROMでは書き込みモー
ドでは不揮発性メモリトランジスタをアバランシェ領域
で動作させ書き込みを行っている。このモードでは、ゲ
ートに流れるホットエレクトロンより遥かに多くのホー
ルがドレインからボディに流れるという現象がある。こ
のため,上記メカニズムを利用する不揮発性メモリトラ
ンジスタでは,不揮発性メモリトランジスタのボディを
半導体基板と共通にし,ボディ部の抵抗を低減し,寄生
サイリスタのラッチアップ耐量を増加する構造をとって
いる。 なお、本発明に関連する従来技術としては、『福田 イ
也,  LMビットCMOS  EPRON  ”HN
27C101”  ”HN27C301”日立評論VO
L.68 N0.7(1986−7)Jが挙げられる。 [発明が解決しようとする課題】 上記従来例では,ラッチアップ防止のため不揮発性メモ
リトランジスタを含むすべてのNチャネルMOSトラン
ジスタのボディには共通のP型半導体基板を使用してい
た。このため,単体のパワーMOSFETのようにソー
スとボディを接続し,さらに,ソース電位を基板電位よ
り高く持ち上げて動作させることが可能な出力MOSト
ランジスタ(本発明ではソースとボディが接続され,な
おかっ,ソース電圧を接地電圧以上に駆動することが可
能なMISトランジスタを出力MOSトランジスタと呼
ぶこととする)を共存する半導体集積回路装置の実現法
に関しては考慮されていなかった。 本発明の第1の目的は,アバランシェ領域で動作する不
揮発性メモリトランジスタと,基板バイアス効果のかか
らないソースフォロア回路にも使用可能なNチャネルM
OSトランジスタを同一チップ上に形成できる半導体集
積回路装置とその製造方法を提供することにある。 また,本発明の第2の目的は不揮発性メモリトランジス
タの有無に係らず,NチャネルMOSトランジスタに関
してもPチャネルMOSトランジスタに関しても,とも
に,各端子電位を自由に設定でき,さらに,ソースとボ
ディを接続し基板効果をなくすことにより電流邸動能力
を劣化させない出力MOSトランジスタを同一チップ上
に容易に形成できる半導体集積回路装置とその製造方法
を提供することにある。
The present invention relates to a semiconductor integrated circuit device in which a nonvolatile memory and a power MOSFET are formed on the same chip.
The present invention relates to a semiconductor integrated circuit device with increased latch-up resistance of a MOS section. [Prior Art] In an EPROM or a flash EEPROM in which hot electrons are injected into a floating circuit, in a write mode, a nonvolatile memory transistor is operated in an avalanche region to perform writing. In this mode, there is a phenomenon in which far more holes flow from the drain to the body than hot electrons flow to the gate. For this reason, nonvolatile memory transistors that utilize the above mechanism have a structure in which the body of the nonvolatile memory transistor is shared with the semiconductor substrate, reducing the resistance of the body portion and increasing the latch-up resistance of the parasitic thyristor. In addition, as a prior art related to the present invention, "Iya Fukuda, LM bit CMOS EPRON" HN
27C101” “HN27C301” Hitachi Review VO
L. 68 No. 7 (1986-7) J. [Problems to be Solved by the Invention] In the conventional example described above, a common P-type semiconductor substrate is used for the bodies of all N-channel MOS transistors including nonvolatile memory transistors to prevent latch-up. For this reason, an output MOS transistor (in the present invention, the source and body are connected and the body is connected like a single power MOSFET) and can be operated by raising the source potential higher than the substrate potential. , an MIS transistor whose source voltage can be driven to a level higher than the ground voltage is referred to as an output MOS transistor). The first object of the present invention is to provide an N-channel MMOS transistor that can be used for nonvolatile memory transistors that operate in the avalanche region and for source follower circuits that are not subject to the body bias effect.
An object of the present invention is to provide a semiconductor integrated circuit device in which OS transistors can be formed on the same chip, and a method for manufacturing the same. A second object of the present invention is to be able to freely set the potential of each terminal of both the N-channel MOS transistor and the P-channel MOS transistor, regardless of the presence or absence of a nonvolatile memory transistor, and furthermore, the source and body can be set freely. It is an object of the present invention to provide a semiconductor integrated circuit device and a method for manufacturing the same, in which output MOS transistors that do not deteriorate the current consumption ability by connecting and eliminating the substrate effect can be easily formed on the same chip.

【課題を解決するための手段】[Means to solve the problem]

上記第1の目的を達成するために,アバランシ工領域で
動作するNチャネル型不揮発性メモリトランジスタのP
ウェル下部に高濃度P型埋込層を設け,ボディ部の抵抗
を低減してラッチアップ対策を行い,さらに,前記Pウ
エル(Nチャネル型不揮発性メモリトランジスタのボデ
ィ領域)とはN型領域により分離されたP型半導体領域
に,出力MOSトランジスタを形成した。また,他の方
法としてはNチャネル型不揮発性メモリトランジスタの
ボディをP型半導体基板と共用し,出力MOSトランジ
スタはP型半導体基板で素子分離されたN型半導体領域
をドレインとした2重拡散構造で形成した。 上記第2の目的を達成するために,横型のPチャネルM
OSトランジスタをP型半導体基板で分離されたNウエ
ル内に形成し,2重拡散型のNチャネルMOSトランジ
スタをP型半導体基板で分離されたNウェル内に形成し
た。
In order to achieve the first objective above, the P of an N-channel nonvolatile memory transistor operating in the avalanche region is
A heavily doped P-type buried layer is provided at the bottom of the well to reduce the resistance of the body part and take measures against latch-up. An output MOS transistor was formed in the separated P-type semiconductor region. Another method is to share the body of the N-channel nonvolatile memory transistor with the P-type semiconductor substrate, and the output MOS transistor has a double diffusion structure with the drain being the N-type semiconductor region separated by the P-type semiconductor substrate. It was formed with In order to achieve the second objective above, horizontal P-channel M
An OS transistor was formed in an N-well separated by a P-type semiconductor substrate, and a double-diffusion type N-channel MOS transistor was formed in an N-well separated by a P-type semiconductor substrate.

【作用) 本発明によれば、不揮発性メモリトランジスタと出力MOSトランジスタを同一チップ上に共存させた半導体集積回路装置において寄生サイリスタのラッチアップ耐量を向上し,さらに,出力MOSトランジスタの動作から不揮発性メモリトランジスタやロジック用MOSトランジスタ部への雑音を防止できるという利点がある。 また,本発明によれば,不揮発性メモリトランジスタの有無に係らず,NチャネルMOSトランジスタに関してもPチャネルMOSトランジスタに関しても,ともに,各端子電位を自由に設定でき,さらに,ソースとボデイを接続し基板効果をなくすことにより電流駆動能力を劣化させない出力MOSトランジスタを同一チップ上に容易に形成できる半導体集積回路装置を実現できる。 【実施例】[effect] According to the present invention, in a semiconductor integrated circuit device in which a non-volatile memory transistor and an output MOS transistor coexist on the same chip, the latch-up resistance of a parasitic thyristor is improved, and further, the non-volatile memory transistor and This has the advantage that noise to the logic MOS transistor section can be prevented. Furthermore, according to the present invention, the potential of each terminal of both the N-channel MOS transistor and the P-channel MOS transistor can be freely set regardless of the presence or absence of a nonvolatile memory transistor, and furthermore, the source and body can be connected. By eliminating the substrate effect, it is possible to realize a semiconductor integrated circuit device in which output MOS transistors that do not deteriorate current drive capability can be easily formed on the same chip. 【Example】

以下、本発明の実施例を説明する。 第1図は本発明の第1の実施例の半導体集積回路装置の
断面図である。本実施例では断面図の右側にNチャネル
の出力MOSトランジスタ,中央にフローテイング型不
揮発性メモリトランジスタ,左側にPチャネルMOSト
ランジスタを示す。 本実施例の半導体集積回路装置の製造方法を以下に述べ
る。 まず最初に,P型半導体基板101上にN型埋込110
2とP型埋込N103を形成する。次に,N型エビタキ
シャル層104を戊長し,N型埋込層105とP型埋込
層106を形成する。その後,再びN型エビタキシャル
層107を成長し,P型埋込1106に達するP型拡散
,IW108と,N型埋込ffl05に達するN型拡散
/eJ109を形成し,PチャネルMOSトランジスタ
のボディ領域となるNウエル拡散M110とNチャネル
フローティング型不揮発性MoSトランジスタのボデイ
領域となるPウェル拡散層111を形成する。 その後,ゲート電極11.13,115と2重拡散型の
Nチャネル出力MOSトランジスタ用のボディ領域とな
るP型拡散層114.,Nチャネル出力MOSトランジ
スタのソースとなる高濃度N型拡散層116とPチャネ
ルMOSトランジスタのソース,ドレイン領域となる高
濃度P型拡散層工17を形成し,最後に,金属電極層1
18を形成することにより実現できる。 本実施例ではゲート電極層113をマスクにして形成さ
れる114と116の2重拡散によりチャネル部を形成
する2重拡散型の出力MOSトランジスタと不揮発性メ
モリトランジスタを同一チップ上に形成する場合を示し
てある。 図の中央に示したフローテイングゲート型不揮発性メモ
リトランジスタにデータを書き込むには,例えば,ゲー
ト115に12.5V,ドレインにホットエレクトロン
を不揮発性メモリトランジスタのフローティングゲート
113に注入する。しかし,この時,多量のホールがド
レインからボデイ側に流れる。このため,従来のホット
エレクトロン注入型不揮発性メモリトランジスタではボ
ディと基板を共通にし低抵抗化し,寄生サイリスタのラ
ッチアップを防止していた。 本実施例の場合には,ドレイン領域に流れるホール電流
による電圧降下をP型埋込N106とP型拡散層108
からなるP型領域の第1の囲いで低抵抗化することによ
り,PチャネルMOSトランジスタ部との間で構成され
る寄生サイリスタがラッチアップすることを防止した。 また,図の右側の2重拡散型の出力MOSトランジスタ
はP型基板101,P型埋込M1、03と106,P型
拡散層108からなるP型領域の第2の囲いにより素子
分離されているため,ソースとボディを接続したまま,
ソース電圧を接地電圧以上に持ち上げて動作させること
が可能である。 拡散J’ll05,109で構成されるN型半導体領域
の囲いを,前記のP型半導体領域の第1の囲いと,出力
MOSトランジスタの素子分離用のP型領域の第2の囲
いとの間に設け,この3つの領域を最低電位にして出力
MOSトランジスタからの雑音を不揮発性メモリトラン
ジスタやCMOSロジック部に与えない構造としている
。なお,上記N型半導体領域の囲いだけを高電位に設定
してもよい。 なお,不揮発性メモリトランジスタの囲いとして用いる
P型拡散M108は、P型埋込層106の電位を固定す
るために設けているため,部分的に不揮発性メモリトラ
ンジスタのボデイを囲わない部分があってもその効果は
損なわれない。前記N型半導体領域の囲いに関しても,
出力MOSトランジスタ等からの雑音対策に支障が生じ
ない範囲において,N型半導体層の囲いの一部を取り除
くことができる。また,P型拡散1108ならびにN型
拡散層109(または,N型拡散N109とN型埋込層
105)は溝の側壁に絶縁層を設け,金属または合金ま
たは低抵抗化した多結晶シリコンを埋め込んだ導電体に
置き換えてもよい。 本実施例の半導体集積回路装置によれば,モータ暉動等
のブリッジ回路の上アーム素子と下アーム素子をともに
,本図に示した出力トランジスタを基本どする,オン抵
抗が小さく電流駆動能力の大きいNチャネルパワーMO
SFETを用いて実現することができる。さらに,この
出力用のパワーMOSFETの動作は,同一チップ上に
形成された不揮発性メモリに,あらかじめ記憶しておい
たデータに応じ,同じ入力を本半導体集積回路に入力し
ても異なった動作を行うようにプログラム可能であると
いう利点がある。 第2図は本発明の第2の実施例の半導体集積回路装置の
断面図である。本実施例でも断面図の右側にNチャネル
の出力MOSトランジスタ,中央にフローテイング型不
揮発性メモリトランジスタ,左側にPチャネルMOSト
ランジスタを示してある。 本実施例の半導体集積回路装置の製造方法を以下に述べ
る。まず最初に,P型半導体基板201上に高濃度N型
埋込層202を形成し拡散後,P型埋込N203を形成
する。ここで,N型埋込層202の不純物としてアンチ
モンかヒ素を用い,P型埋込FM203の不純物として
はボロンを用いることにより,P型エピタキシャル層2
08を戊長し,さらに熱工程が追加されることにより,
最終的形状としてはヒ素やアンチモンに比べ拡散係数の
大きいボロンのP型埋込層203の上方拡散長の方を大
きくすることが可能である。 このため,本実施例では,1回のエビタキシャル或長で
不揮発性メモリトランジスタのボディを囲むP型領域2
03,205とN型領域202,206を形成できる。 次に,PチャネルMOSトランジスタのボディ領域とな
るNウェル拡散層207とNチャネルMOS}−ランジ
スタのボディ領域となるPウエル拡散層208を形成す
る。その後,ゲート電極層210,212と2重拡散型
の出力MOSトランジスタ用のボディ領域となるP型拡
散,9211,NチャネルMOSトランジスタのソース
となる高濃度N型拡散N213とPチャネルMOSトラ
ンジスタのソース、ドレイン領域となる高濃度P型拡@
層214を形成し,最後に,金属電極層215を形成す
ることにより実現できる。 第3図は本発明の第3の実施例の半導体集積回路装置の
断面図である。本実施例では断面図の右側に基板をドレ
インとするNチャネルの出力M○Sトランジスタ,中央
にブローティング型不揮発性メモリトランジスタ,左側
にPチャネルMOSトランジスタを示してある。 本実施例の半導体集積回路装置の製造方法を以下に述べ
る。まず最初に,N型半導体基板301上に高濃度N型
埋込M302を形成し,P型エピタキシャル層303を
成長する。次に,高濃度N型埋込J’l304と高濃度
P型埋込層305を形成し,その後.N型エピタキシャ
ルN306を成長し,次に,高濃度P型拡散N307と
高濃度N型拡散層308を形成し,PチャネルMOSト
ランジスタのボディ領域となるNウェル拡散層309と
NチャネルMOSトランジスタのボディ領域となるPウ
エル310を形成する。その後,ゲート電極層312,
314.2重拡散型のNチャネルの出力MOSトランジ
スタ用のボディ領域となるP型拡散層313,Nチャネ
ルMOSトランジスタのソース,ドレインとなる高濃度
N型拡散層315とPチャネルMOSトランジスタのソ
ース,ドレイン領域となる高濃度P型拡散層316等を
形戒し,最後に,金属電極層316を形成することによ
り実現できる。 本実施例ではN型半導体基板301を出力M○Sトラン
ジスタのドレインとし,P型エピタキシャル領域303
を接地電位に設定し,この上に不揮発性メモリやCMO
Sロジック部やバイボーラトランジスタのようにP型拡
散層で素子分離が必要な素子を形成できる構造としてい
る。また、本実施例では,不揮発性メモリトランジスタ
のボディの低抵抗化のためボディ下部のP型埋込M30
5とボディ側面のP型拡散層307を設けてある。 第4図は本発明の第4の実施例の半導体集積回路装置の
断面図である。本実施例でも断面図の右側にNチャネル
の出力MOSトランジスタ,中央にフローティング型不
揮発性メモリトランジスタ,左側にPチャネルMOSト
ランジスタを示してある。 本実施例の半導体集積回路装置の製造方法を以下に述べ
る。まず最初に,N型半導体基板401上に高濃度P型
埋込層402を形成し,P型エピタキシャル層403を
成長させる。その後,素子分離用の高濃度N型拡散層4
05とP型埋込層402に達するように高濃度P型拡散
M404を形成する。次に,PチャネルMOSトランジ
スタのボディ領域となるNウェル拡散層406,Nチャ
ネルMOSトランジスタのボディ領域となるPウェル拡
散N407を形成する。その後,ゲート電極層409,
411,高耐圧NチャネルMOSトランジスタ用の低濃
度N型拡敢[410,NチャネルMOSトランジスタの
ソース,ドレインとなる高濃度N型拡散層412とPチ
ャネルM.OSトランジスタのソース,ドレイン領域と
なる高濃度P型拡散層413を形成し,最後に,金属電
極層414を形成することにより実現できる。 本実施例では不揮発性メモリトランジスタのボディの低
抵抗化のためボディ下部のP型拡散7!402とボディ
側面のP型拡散M404を設けてある.Nチャネル出力
MOSトランジスタとの分離はN型基板401とN型拡
散層405により行っている。 第5図は本発明の第5の実施例の半導体集積回路装置の
断面図である。本実施例でも断面図の右側にNチャネル
の出力MOSトランジスタ,中央にフローティング型不
揮発性メモリトランジスタ,左側にPチャネルMOSト
ランジスタを示してある。 本実施例の半導体集積回路装置の製造方法を以下に述べ
る。 まず最初に,P型半導体基板501上に高濃度N型埋込
層502と高濃度P型埋込Jll503を形成し,N型
エピタキシャルM504を或長させる.その後,P型埋
込層503に達するように高濃度P型拡散層505とN
型埋込層502に達するように高濃度N型拡散層506
を形成する,次に,PチャネルMOSトランジスタのボ
ディ領域となるNウェル拡散/il507.Nチャネル
MOSトランジスタのボディ領域となるPウェル拡散1
508を形成する。その後,ゲート電極,Ii510,
512,と2重拡散型NチャネルMOSトランジスタの
チャネル用P型拡散N511を形成後,NチャネルMO
Sトランジスタのソースとなる高濃度N型拡散層513
とPチャネルMOSトランジスタのソース,ドレイン領
域となる高濃度P型拡散1514を形成し,最後に,金
属電極層515を形成することにより実現できる。 本実施例では不揮発性メモリトランジスタのP型ボディ
の低抵抗化のためボディ下部のP型埋込層503とボデ
ィ側面のP型拡散層505を設け,さらにP型基板に接
続することにより不揮発性メモリトランジスタのボディ
抵抗を低減してある。 Nチャネル出力MOSトランジスタとの分離はN型埋込
/I502とN型拡散M506により行っている。 第6図は本発明の第6の実施例の半導体集積回路装置の
断面図である.本実施例でも断面図の右側にNチャネル
の出力MOSトランジスタ,中央にフローティング型不
揮発性メモリトランジスタ,左側にPチャネルMOSト
ランジスタを示してある。 本実施例の半導体集積回路装置の製造方法を以下に述べ
る。 まず最初に,P型半導体基板601上に深い高濃度N型
埋込M602を形成する。これはボロン拡散後,これを
打ち消すようbこリン拡散し延ばす,いわゆるレトログ
レード手法により,表面より深いところに不純物濃度の
ピークがあるように深く形成する。次に,PチャネルM
OSトランジスタのボディ領域となるNウェル拡散N6
03,NチャネルMOSトランジスタのボディ領域とな
るPウェル拡散層604を形成する。 その後,ゲート電極11606,608,2重拡散型N
チャネルMOSトランジスタのチャネルとなるP型拡散
層607を形成後,必要に応じ高耐圧の横型Nチャネル
MOSトランジスタのオフセットドレイン用のN型拡散
層608,N型拡散層のソース,ドレインとなる高濃度
N型拡vlN609とPチャネルMOSトランジスタの
ソース,ドレイン領域となる高濃度P型拡散#610を
形成し,最後に,金属電極層611を形成することによ
り実現できる。 本実施例では不揮発性メモリトランジスタのP型ボディ
をP型半導体基板601と接続することにより,ボディ
部の低抵抗化を図ると同時に,同一チップ上に,ソース
電圧を接地電圧以上に持ち上げて動作させることが可能
な出力MOSトランジスタをP型基板で分離されたN型
拡散1602をドレインとする横型の2重拡散型Nチャ
ネルMOSトランジスタで実現している。 なお,本半導体構造によれば,横型のPチャネルMOS
トランジスタをP型半導体基板で分離されたNウェル内
に形成し,2重拡散型のNチャネルMOSトランジスタ
をP型基板で分離されたNウェル内に形成できる。この
ため,NチャネルMOSトランジスタに関してもPチャ
ネルMOSトランジスタに関しても,ともに,各端子電
位を自由に設定でき,さらに,ソースとボディを接続し
基板効果をなくすことにより,電流隙動能力を劣化させ
ない出力MOSトランジスタを同一チップ上に容易に形
成できる。本実施例の有効性は不揮発性メモリの有無に
よらない。
Examples of the present invention will be described below. FIG. 1 is a sectional view of a semiconductor integrated circuit device according to a first embodiment of the present invention. In this embodiment, an N-channel output MOS transistor is shown on the right side of the sectional view, a floating type nonvolatile memory transistor is shown in the center, and a P-channel MOS transistor is shown on the left side. A method of manufacturing the semiconductor integrated circuit device of this embodiment will be described below. First, an N-type buried 110 is placed on a P-type semiconductor substrate 101.
2 and a P-type buried N103 is formed. Next, the N-type epitaxial layer 104 is lengthened to form an N-type buried layer 105 and a P-type buried layer 106. After that, the N-type epitaxial layer 107 is grown again, and the P-type diffusion IW108 reaching the P-type buried 1106 and the N-type diffusion /eJ109 reaching the N-type buried ffl05 are formed, and the body region of the P-channel MOS transistor is formed. An N-well diffusion M110, which will become the structure, and a P-well diffusion layer 111, which will become the body region of the N-channel floating nonvolatile MoS transistor, are formed. Thereafter, gate electrodes 11, 13, 115 and a P-type diffusion layer 114, which becomes a body region for a double-diffusion type N-channel output MOS transistor. , a highly doped N-type diffusion layer 116 that will become the source of the N-channel output MOS transistor and a highly doped P-type diffusion layer 17 that will become the source and drain regions of the P-channel MOS transistor are formed, and finally, the metal electrode layer 1 is formed.
This can be realized by forming 18. In this embodiment, a double diffusion type output MOS transistor and a nonvolatile memory transistor are formed on the same chip to form a channel part by double diffusion of transistors 114 and 116 formed using the gate electrode layer 113 as a mask. It is shown. To write data to the floating gate type nonvolatile memory transistor shown in the center of the figure, for example, 12.5 V is applied to the gate 115 and hot electrons are injected to the drain of the floating gate 113 of the nonvolatile memory transistor. However, at this time, a large number of holes flow from the drain to the body side. For this reason, conventional hot electron injection nonvolatile memory transistors use a common body and substrate to reduce resistance and prevent parasitic thyristor latch-up. In the case of this embodiment, the voltage drop due to the hole current flowing in the drain region is reduced between the P-type buried N106 and the P-type diffused layer 106.
By lowering the resistance in the first enclosure of the P-type region, latch-up of the parasitic thyristor formed between the P-channel MOS transistor section and the P-channel MOS transistor section is prevented. In addition, the double-diffusion type output MOS transistor on the right side of the figure is isolated by a second enclosure of the P-type region consisting of a P-type substrate 101, P-type buried M1, 03 and 106, and a P-type diffusion layer 108. Therefore, while the source and body are connected,
It is possible to operate the device by raising the source voltage above the ground voltage. An enclosure of the N-type semiconductor region composed of diffusion J'll05, 109 is placed between the first enclosure of the P-type semiconductor region and the second enclosure of the P-type region for element isolation of the output MOS transistor. The structure is such that these three regions are set at the lowest potential to prevent noise from the output MOS transistor from being applied to the nonvolatile memory transistor or CMOS logic section. Note that only the area surrounding the N-type semiconductor region may be set to a high potential. Note that since the P-type diffusion M108 used as an enclosure for the non-volatile memory transistor is provided to fix the potential of the P-type buried layer 106, there are some parts that do not surround the body of the non-volatile memory transistor. The effect remains unchanged. Regarding the enclosure of the N-type semiconductor region,
A portion of the N-type semiconductor layer enclosure can be removed within a range that does not interfere with noise countermeasures from output MOS transistors and the like. In addition, for the P-type diffusion layer 1108 and the N-type diffusion layer 109 (or the N-type diffusion layer N109 and the N-type buried layer 105), an insulating layer is provided on the side wall of the trench, and metal, alloy, or low-resistance polycrystalline silicon is buried. It may be replaced with a conductor. According to the semiconductor integrated circuit device of this embodiment, both the upper arm element and the lower arm element of a bridge circuit such as a motor drive are basically the output transistors shown in this figure, and the on-resistance is small and the current drive capacity is high. Large N-channel power MO
This can be realized using SFET. Furthermore, the operation of this output power MOSFET varies depending on the data stored in advance in the nonvolatile memory formed on the same chip, even if the same input is input to this semiconductor integrated circuit. It has the advantage of being programmable to do so. FIG. 2 is a sectional view of a semiconductor integrated circuit device according to a second embodiment of the present invention. In this embodiment as well, the N-channel output MOS transistor is shown on the right side of the sectional view, the floating type nonvolatile memory transistor is shown in the center, and the P-channel MOS transistor is shown on the left side. A method of manufacturing the semiconductor integrated circuit device of this embodiment will be described below. First, a heavily doped N-type buried layer 202 is formed on a P-type semiconductor substrate 201, and after diffusion, a P-type buried layer N203 is formed. Here, by using antimony or arsenic as the impurity for the N-type buried layer 202 and using boron as the impurity for the P-type buried FM 203, the P-type epitaxial layer 2
By lengthening 08 and adding a heat process,
As for the final shape, it is possible to increase the upward diffusion length of the P-type buried layer 203 of boron, which has a larger diffusion coefficient than arsenic or antimony. Therefore, in this embodiment, the P-type region 2 surrounding the body of the nonvolatile memory transistor is
03, 205 and N-type regions 202, 206 can be formed. Next, an N-well diffusion layer 207 that will become the body region of the P-channel MOS transistor and a P-well diffusion layer 208 that will become the body region of the N-channel MOS transistor are formed. After that, gate electrode layers 210 and 212, a P-type diffusion 9211 which becomes a body region for a double-diffusion type output MOS transistor, a high concentration N-type diffusion N213 which becomes a source of an N-channel MOS transistor, and a source of a P-channel MOS transistor. , a highly doped P-type expansion @ which becomes the drain region
This can be achieved by forming the layer 214 and finally forming the metal electrode layer 215. FIG. 3 is a sectional view of a semiconductor integrated circuit device according to a third embodiment of the present invention. In this embodiment, an N-channel output M○S transistor whose drain is the substrate is shown on the right side of the sectional view, a bloating type nonvolatile memory transistor is shown in the center, and a P-channel MOS transistor is shown on the left side. A method of manufacturing the semiconductor integrated circuit device of this embodiment will be described below. First, a heavily doped N-type buried layer M302 is formed on an N-type semiconductor substrate 301, and a P-type epitaxial layer 303 is grown. Next, a high concentration N type buried layer 304 and a high concentration P type buried layer 305 are formed. An N-type epitaxial layer N306 is grown, and then a high concentration P-type diffusion N307 and a high concentration N-type diffusion layer 308 are formed to form an N-well diffusion layer 309 which will become the body region of the P-channel MOS transistor and the body of the N-channel MOS transistor. A P well 310 is formed as a region. After that, the gate electrode layer 312,
314. A P-type diffusion layer 313 that becomes a body region for a double-diffusion type N-channel output MOS transistor, a high concentration N-type diffusion layer 315 that becomes a source and drain of an N-channel MOS transistor, and a source of a P-channel MOS transistor. This can be achieved by forming the highly concentrated P-type diffusion layer 316, which will become the drain region, and finally forming the metal electrode layer 316. In this embodiment, the N-type semiconductor substrate 301 is used as the drain of the output M○S transistor, and the P-type epitaxial region 303
is set to ground potential, and non-volatile memory and CMO
The structure is such that it is possible to form elements that require element isolation using a P-type diffusion layer, such as an S logic section or a bipolar transistor. In addition, in this embodiment, in order to reduce the resistance of the body of the nonvolatile memory transistor, a P-type buried M30 is used at the bottom of the body.
5 and a P-type diffusion layer 307 on the side surface of the body. FIG. 4 is a sectional view of a semiconductor integrated circuit device according to a fourth embodiment of the present invention. In this embodiment as well, the N-channel output MOS transistor is shown on the right side of the sectional view, the floating type nonvolatile memory transistor is shown in the center, and the P-channel MOS transistor is shown on the left side. A method of manufacturing the semiconductor integrated circuit device of this embodiment will be described below. First, a heavily doped P-type buried layer 402 is formed on an N-type semiconductor substrate 401, and a P-type epitaxial layer 403 is grown. After that, a high concentration N-type diffusion layer 4 for element isolation is added.
A high concentration P type diffusion M404 is formed so as to reach the P type buried layer 402. Next, an N-well diffusion layer 406, which will become the body region of the P-channel MOS transistor, and a P-well diffusion N407, which will become the body region of the N-channel MOS transistor, are formed. After that, the gate electrode layer 409,
411, Low concentration N-type expansion for high voltage N-channel MOS transistor [410, High concentration N-type diffusion layer 412 which becomes the source and drain of the N-channel MOS transistor and P-channel M. This can be achieved by forming a heavily doped P-type diffusion layer 413 that will become the source and drain regions of the OS transistor, and finally forming a metal electrode layer 414. In this embodiment, in order to reduce the resistance of the body of the nonvolatile memory transistor, a P-type diffusion 7!402 at the bottom of the body and a P-type diffusion M404 at the side surface of the body are provided. Separation from the N-channel output MOS transistor is performed by an N-type substrate 401 and an N-type diffusion layer 405. FIG. 5 is a sectional view of a semiconductor integrated circuit device according to a fifth embodiment of the present invention. In this embodiment as well, the N-channel output MOS transistor is shown on the right side of the sectional view, the floating type nonvolatile memory transistor is shown in the center, and the P-channel MOS transistor is shown on the left side. A method of manufacturing the semiconductor integrated circuit device of this embodiment will be described below. First, a heavily doped N-type buried layer 502 and a heavily doped P-type buried layer 503 are formed on a P-type semiconductor substrate 501, and an N-type epitaxial layer M504 is lengthened. After that, the high concentration P type diffusion layer 505 and N
A high concentration N type diffusion layer 506 is formed to reach the type buried layer 502.
Next, N-well diffusion/il507. which becomes the body region of the P-channel MOS transistor is formed. P-well diffusion 1 which becomes the body region of the N-channel MOS transistor
508 is formed. After that, the gate electrode, Ii510,
512, and a P-type diffusion N511 for the channel of the double-diffused N-channel MOS transistor.
High concentration N type diffusion layer 513 which becomes the source of the S transistor
This can be achieved by forming highly concentrated P-type diffusions 1514 that will become the source and drain regions of a P-channel MOS transistor, and finally forming a metal electrode layer 515. In this example, in order to reduce the resistance of the P-type body of the nonvolatile memory transistor, a P-type buried layer 503 at the bottom of the body and a P-type diffusion layer 505 on the side surface of the body are provided, and by further connecting to the P-type substrate, the nonvolatile The body resistance of the memory transistor is reduced. Isolation from the N-channel output MOS transistor is performed by N-type buried/I502 and N-type diffusion M506. FIG. 6 is a sectional view of a semiconductor integrated circuit device according to a sixth embodiment of the present invention. In this embodiment as well, the N-channel output MOS transistor is shown on the right side of the sectional view, the floating type nonvolatile memory transistor is shown in the center, and the P-channel MOS transistor is shown on the left side. A method of manufacturing the semiconductor integrated circuit device of this embodiment will be described below. First, a deep, heavily doped N-type burying M602 is formed on a P-type semiconductor substrate 601. This is formed deeply so that the impurity concentration peak is deeper than the surface by a so-called retrograde method in which boron is diffused and then b-choline is diffused to cancel it out. Next, P channel M
N well diffusion N6 which becomes the body region of the OS transistor
03, a P-well diffusion layer 604 is formed to become the body region of the N-channel MOS transistor. After that, gate electrodes 11606, 608, double diffusion type N
After forming the P-type diffusion layer 607 that will become the channel of the channel MOS transistor, if necessary, form the N-type diffusion layer 608 for the offset drain of the high-voltage lateral N-channel MOS transistor, and the highly doped N-type diffusion layer 608 that will become the source and drain of the N-type diffusion layer. This can be achieved by forming an N-type expanded vlN 609 and a heavily doped P-type diffusion #610 that will become the source and drain regions of the P-channel MOS transistor, and finally forming a metal electrode layer 611. In this embodiment, by connecting the P-type body of the nonvolatile memory transistor to the P-type semiconductor substrate 601, the resistance of the body part is lowered, and at the same time, the source voltage is raised above the ground voltage on the same chip. The output MOS transistor that can be used is a horizontal double-diffusion type N-channel MOS transistor whose drain is an N-type diffusion 1602 separated by a P-type substrate. Note that according to this semiconductor structure, a horizontal P-channel MOS
A transistor can be formed in an N-well separated by a P-type semiconductor substrate, and a double diffusion type N-channel MOS transistor can be formed in an N-well separated by a P-type substrate. Therefore, the potential of each terminal can be freely set for both N-channel MOS transistors and P-channel MOS transistors.Furthermore, by connecting the source and body to eliminate the substrate effect, the output does not deteriorate the current gap capability. MOS transistors can be easily formed on the same chip. The effectiveness of this embodiment is independent of the presence or absence of nonvolatile memory.

【発明の効果】【Effect of the invention】

本発明によれば,不揮発性メモリトランジスタと出力M
OSトランジスタを同一チップ上に共存させた半導体集
積回路装置において寄生サイリスタのラッチアップ耐量
を向上し,さらに,出力MoSトランジスタの動作から
不揮発性メモリトランジスタやロジック用MOSトラン
ジスタ部への雑音を防止できるという効果がある。 ま
た,本発明によれば,不揮発性メモリトランジスタの有
無に係らず,NチャネルMoSトランジスタに関しても
PチャネルMOSトランジスタに関しても,ともに,各
端子電位を自由に設定でき,さらに,ソースとボディを
接続し基板効果をなくすことにより電流駆動能力を劣化
させない出力MOSトランジスタを同一チップ上に容易
に形成できるという効果がある。
According to the present invention, a non-volatile memory transistor and an output M
In semiconductor integrated circuit devices in which OS transistors coexist on the same chip, the latch-up resistance of parasitic thyristors can be improved, and furthermore, it is possible to prevent noise from the operation of output MoS transistors to nonvolatile memory transistors and logic MOS transistors. effective. Further, according to the present invention, regardless of the presence or absence of a nonvolatile memory transistor, each terminal potential can be freely set for both an N-channel MoS transistor and a P-channel MOS transistor, and furthermore, the source and body can be connected. By eliminating the substrate effect, it is possible to easily form an output MOS transistor on the same chip without deteriorating the current drive capability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第6図はそれぞれ本発明の実施例の半導体
集積回路装置の要部断面図である。 符号の説明 101,201,501,601     ・・・・・
・・・・P型半導体基板301,401       
  ・・・・・・・・・N型半導体基板102,105
,202,302,304,502・・・・・・・・・
・・・・・・N型埋込層103,106,203,30
5,402,503・・・・・・・・・・・・・・・P
型埋込層104,107.204,303,306,5
04・・・・・・・・・・・・・・・N型エピタキシャ
ル層403      ・・・・・・・・・・・・・・
・P型エピタキシャル層108, 11 1 , 11
4, 117, 205, 208, 211 , 2
14 ,307, 310,313,404,407,
413,505,508,511,514,604,6
07,610・・・・・・・・・・・・・・・P型拡散
層109, 110, 116, 206 , 207
, 213, 308 , 309 , 315 ,4
05,406,410,412,506,507,51
3,602,603,609・・・N型拡散層112,
209,311,408,509,605・・・・・・
・・・・・・・・・・・・・・・絶縁層113 , 1
15, 210, 212,312,314 ,316
,409,4].1 , 510 , 512,606
,608,611・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・ゲート電極層118,215
,414,515・・・・・・・・・・・・・・・・・
・・・・・・・・・・金属電極層第1図 第3図 子2図 ノθタ  Jθ5 101 jθ3 Jθ2 304 羊4図 4σl 4θl 403
1 to 6 are sectional views of essential parts of semiconductor integrated circuit devices according to embodiments of the present invention, respectively. Explanation of symbols 101, 201, 501, 601...
...P-type semiconductor substrate 301, 401
......N-type semiconductor substrate 102, 105
,202,302,304,502...
...N-type buried layer 103, 106, 203, 30
5,402,503・・・・・・・・・・・・P
Mold embedding layer 104, 107, 204, 303, 306, 5
04・・・・・・・・・・・・N-type epitaxial layer 403 ・・・・・・・・・・・・・・・
・P-type epitaxial layer 108, 11 1, 11
4, 117, 205, 208, 211, 2
14, 307, 310, 313, 404, 407,
413,505,508,511,514,604,6
07,610...P-type diffusion layer 109, 110, 116, 206, 207
, 213, 308, 309, 315, 4
05,406,410,412,506,507,51
3,602,603,609...N type diffusion layer 112,
209,311,408,509,605...
......Insulating layer 113, 1
15, 210, 212, 312, 314, 316
, 409, 4]. 1, 510, 512,606
,608,611・・・・・・・・・・・・・・・
......Gate electrode layer 118, 215
,414,515・・・・・・・・・・・・・・・
・・・・・・・・・Metal electrode layer Fig. 1 Fig. 3 Fig. 2 No. θta Jθ5 101 jθ3 Jθ2 304 Sheep 4 Fig. 4σl 4θl 403

Claims (1)

【特許請求の範囲】 1、ソースとボディが接続され、なおかつ、ソース電圧
を接地電圧以上に駆動することが可能な第1のMISト
ランジスタと不揮発性メモリトランジスタを同一チップ
上に形成したことを特徴とする半導体集積回路装置。 2、前記不揮発性メモリトランジスタが、アバランシェ
領域で動作するモードを有することを特徴とする請求項
第1項記載の半導体集積回路装置。 3、前記不揮発性メモリトランジスタのボディ(第1導
電型)下方に第1導電型の第1の高濃度埋込層を設け、
ボディ領域を低抵抗化させたことを特徴とする請求項第
1項ならびに第2項記載の半導体集積回路装置。 4、前記不揮発性メモリトランジスタの前記第1導電型
の第1の高濃度埋込層に到達するように、半導体主表面
より第1導電型の第2の半導体領域を設けたことを特徴
とする請求項第1項から第3項記載の半導体集積回路装
置。 5、前記不揮発性メモリトランジスタのボディ領域の周
辺部を、前記第1導電型の第1の高濃度埋込層と前記第
1導電型の第2の半導体領域で囲んでいることを特徴と
する請求項第1項から第4項記載の半導体集積回路装置
。 6、前記不揮発性メモリトランジスタのボディ領域の外
側を、第2導電型の第1導電型半導体層で囲んでいるこ
とを特徴とする請求項第1項から第5項記載の半導体集
積回路装置。 7、前記第2導電型の第1導電型半導体層で囲まれる領
域に、前記不揮発性メモリトランジスタ以外のMISト
ランジスタも形成したことを特徴とする請求項第6項記
載の半導体集積回路装置。 8、前記不揮発性メモリトランジスタのボディ領域が半
導体基板と同じ導電型の半導体層で接続されていること
を特徴とする請求項第1項から第5項記載の半導体集積
回路装置。 9、前記第1のMISトランジスタのドレインが半導体
基板の一部で構成されていることを特徴とする請求項第
1項から第7項記載の半導体集積回路装置。 10、前記第1のMISトランジスタがNチャネルMI
Sトランジスタであることを特徴とする請求項第1項か
ら第9項記載の半導体集積回路装置。 11、前記第1のMISトランジスタが2重拡散型のM
ISトランジスタであることを特徴とする請求項第1項
から第10項記載の半導体集積回路装置。 12、前記第1導電型の第2の半導体領域のかわりに、
側面が絶縁層で囲まれ、金属または合金または低抵抗化
した多結晶シリコン層を埋め込んだ導電体領域を用いた
ことを特徴とする請求項第4項から第11項記載の半導
体集積回路装置。 13、前記不揮発性メモリトランジスタのボディ領域の
外側に設けた第2導電型の第1導電型半導体層の囲いの
一部に、側面が絶縁層で囲まれ、金属または合金または
低抵抗化した多結晶シリコン層を埋め込んだ導電体領域
を用いたことを特徴とする請求項第6項から第12項記
載の半導体集積回路装置。 14、前記不揮発性メモリに、あらかじめ記憶しておい
たデータに応じ、前記第1のMISトランジスタの動作
を可変にしたことを特徴とする請求項第1項から第13
項記載の半導体集積回路装置。 15、横型のPチャネルMISトランジスタをP型基板
で分離されたNウェル内に形成し、2重拡散型のNチャ
ネルMISトランジスタをP型基板で分離されたNウェ
ル内に形成したことを特徴とする半導体集積回路装置。
[Claims] 1. A first MIS transistor and a nonvolatile memory transistor whose source and body are connected and whose source voltage can be driven to a ground voltage or higher are formed on the same chip. Semiconductor integrated circuit device. 2. The semiconductor integrated circuit device according to claim 1, wherein the nonvolatile memory transistor has a mode of operation in an avalanche region. 3. providing a first high concentration buried layer of a first conductivity type below the body (first conductivity type) of the nonvolatile memory transistor;
3. The semiconductor integrated circuit device according to claim 1, wherein the body region has a low resistance. 4. A second semiconductor region of the first conductivity type is provided from the main surface of the semiconductor so as to reach the first high concentration buried layer of the first conductivity type of the nonvolatile memory transistor. A semiconductor integrated circuit device according to any one of claims 1 to 3. 5. A peripheral portion of the body region of the nonvolatile memory transistor is surrounded by the first high concentration buried layer of the first conductivity type and the second semiconductor region of the first conductivity type. A semiconductor integrated circuit device according to any one of claims 1 to 4. 6. The semiconductor integrated circuit device according to claim 1, wherein the outside of the body region of the nonvolatile memory transistor is surrounded by a first conductivity type semiconductor layer of a second conductivity type. 7. The semiconductor integrated circuit device according to claim 6, wherein a MIS transistor other than the nonvolatile memory transistor is also formed in a region surrounded by the first conductivity type semiconductor layer of the second conductivity type. 8. The semiconductor integrated circuit device according to claim 1, wherein the body region of the nonvolatile memory transistor is connected through a semiconductor layer of the same conductivity type as the semiconductor substrate. 9. The semiconductor integrated circuit device according to claim 1, wherein the drain of the first MIS transistor is formed of a part of a semiconductor substrate. 10. The first MIS transistor is an N-channel MIS transistor.
10. The semiconductor integrated circuit device according to claim 1, wherein the semiconductor integrated circuit device is an S transistor. 11. The first MIS transistor is a double diffusion type M
11. The semiconductor integrated circuit device according to claim 1, wherein the semiconductor integrated circuit device is an IS transistor. 12. Instead of the second semiconductor region of the first conductivity type,
12. The semiconductor integrated circuit device according to claim 4, further comprising a conductor region whose side surfaces are surrounded by an insulating layer and in which a metal, alloy, or low-resistance polycrystalline silicon layer is embedded. 13. A part of the enclosure of the first conductivity type semiconductor layer of the second conductivity type provided outside the body region of the nonvolatile memory transistor is surrounded by an insulating layer on the side surface, and is made of a metal, an alloy, or a low-resistance polyester. 13. A semiconductor integrated circuit device according to claim 6, characterized in that a conductor region in which a crystalline silicon layer is buried is used. 14. Claims 1 to 13, characterized in that the operation of the first MIS transistor is made variable according to data stored in advance in the nonvolatile memory.
The semiconductor integrated circuit device described in . 15. A horizontal P-channel MIS transistor is formed in an N-well separated by a P-type substrate, and a double-diffused N-channel MIS transistor is formed in an N-well separated by a P-type substrate. Semiconductor integrated circuit device.
JP1241972A 1989-09-20 1989-09-20 Semiconductor integrated circuit device Pending JPH03105971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1241972A JPH03105971A (en) 1989-09-20 1989-09-20 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1241972A JPH03105971A (en) 1989-09-20 1989-09-20 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH03105971A true JPH03105971A (en) 1991-05-02

Family

ID=17082327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1241972A Pending JPH03105971A (en) 1989-09-20 1989-09-20 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH03105971A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658938A1 (en) * 1993-12-15 1995-06-21 STMicroelectronics S.r.l. An integrated circuit comprising an EPROM cell and a MOS transistor
EP0731504A1 (en) * 1995-03-09 1996-09-11 STMicroelectronics S.r.l. Process for the manufacturing of integrated circuits comprising lateral low-voltage and high-voltage DMOS-technology power devices and non-volatile memory cells
EP0690508A3 (en) * 1994-07-01 1997-09-10 Advanced Micro Devices Inc Buried layer in a memory array
EP0853343A2 (en) * 1997-01-13 1998-07-15 Nec Corporation Semiconductor memory device having novel layout pattern
US6492675B1 (en) 1998-01-16 2002-12-10 Advanced Micro Devices, Inc. Flash memory array with dual function control lines and asymmetrical source and drain junctions
WO2010054987A1 (en) * 2008-11-12 2010-05-20 International Business Machines Corporation Structure for device isolation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837554A (en) * 1993-12-15 1998-11-17 Sgs-Thomson Microelectronics S.R.L. Integrated circuit with EPROM cells
EP0658938A1 (en) * 1993-12-15 1995-06-21 STMicroelectronics S.r.l. An integrated circuit comprising an EPROM cell and a MOS transistor
US5610421A (en) * 1993-12-15 1997-03-11 Sgs-Thomson Microelectronics S.R.L. Integrated circuit with EPROM cells
KR100366599B1 (en) * 1994-07-01 2003-04-26 아드밴스트 마이크로 디이바이시스 인코포레이티드 High energy buried layer implant with flash providing low resistance pit-well to pyramid array
EP0690508A3 (en) * 1994-07-01 1997-09-10 Advanced Micro Devices Inc Buried layer in a memory array
JP2008270838A (en) * 1994-07-01 2008-11-06 Spansion Llc Method of erasing charge from electrical path and floating gate of memory cell
US6022778A (en) * 1995-03-09 2000-02-08 Sgs-Thomson Microelectronics, S.R.L. Process for the manufacturing of integrated circuits comprising low-voltage and high-voltage DMOS-technology power devices and non-volatile memory cells
EP0731504A1 (en) * 1995-03-09 1996-09-11 STMicroelectronics S.r.l. Process for the manufacturing of integrated circuits comprising lateral low-voltage and high-voltage DMOS-technology power devices and non-volatile memory cells
EP0853343A2 (en) * 1997-01-13 1998-07-15 Nec Corporation Semiconductor memory device having novel layout pattern
EP0853343A3 (en) * 1997-01-13 2000-04-12 Nec Corporation Semiconductor memory device having novel layout pattern
US6492675B1 (en) 1998-01-16 2002-12-10 Advanced Micro Devices, Inc. Flash memory array with dual function control lines and asymmetrical source and drain junctions
US6744668B1 (en) 1998-01-16 2004-06-01 Advanced Micro Devices, Inc. Flash memory array with dual function control lines and asymmetrical source and drain junctions
WO2010054987A1 (en) * 2008-11-12 2010-05-20 International Business Machines Corporation Structure for device isolation

Similar Documents

Publication Publication Date Title
Snoeys et al. A new NMOS layout structure for radiation tolerance
US7400016B2 (en) Semiconductor device realizing characteristics like a SOI MOSFET
US5427964A (en) Insulated gate field effect transistor and method for fabricating
KR0147500B1 (en) Structure and method for reducing parasitic leakage in a memory array with merged isolation and node trench construction
US20050205931A1 (en) SOI CMOS device with reduced DIBL
KR101035452B1 (en) Methods of performance improvement of hvmos devices
KR100387194B1 (en) Insulated gate field effect transistor and its manufacturing method
US6215138B1 (en) Semiconductor device and its fabrication method
JP2006202810A (en) Lateral double-diffused mos transistor and its fabrication process
JP3275569B2 (en) Lateral high withstand voltage field effect transistor and method of manufacturing the same
JP2012059938A (en) Semiconductor integrated circuit device, and method of manufacturing semiconductor integrated circuit device
US5072267A (en) Complementary field effect transistor
US6873021B1 (en) MOS transistors having higher drain current without reduced breakdown voltage
JPH03105971A (en) Semiconductor integrated circuit device
US6111295A (en) Semiconductor device having channel stopper portions integrally formed as part of a well
US6476430B1 (en) Integrated circuit
EP0091256A2 (en) CMOS device
US7067888B2 (en) Semiconductor device and a method of manufacturing the same
US7592661B1 (en) CMOS embedded high voltage transistor
JPH10135349A (en) Cmos type semiconductor device and its manufacturing method
JPH08148679A (en) Semiconductor integrated circuit device, and its manufacture
JPS63293979A (en) Semiconductor device
KR100546496B1 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
US20040159882A1 (en) Semiconductor device
JPH08316335A (en) Semiconductor device and fabrication thereof