JPH03233832A - Plasma display panel comprising porous metal plate as common cathode - Google Patents

Plasma display panel comprising porous metal plate as common cathode

Info

Publication number
JPH03233832A
JPH03233832A JP2027193A JP2719390A JPH03233832A JP H03233832 A JPH03233832 A JP H03233832A JP 2027193 A JP2027193 A JP 2027193A JP 2719390 A JP2719390 A JP 2719390A JP H03233832 A JPH03233832 A JP H03233832A
Authority
JP
Japan
Prior art keywords
electrode
electrode group
metal plate
insulating plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2027193A
Other languages
Japanese (ja)
Inventor
Motoi Iijima
基 飯島
Akira Kani
可児 章
Sumuto Sago
澄人 左合
Tatsumasa Yokoi
達政 横井
Hideyuki Asai
秀之 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2027193A priority Critical patent/JPH03233832A/en
Priority to EP90915195A priority patent/EP0448727B1/en
Priority to KR1019900016534A priority patent/KR930004994B1/en
Priority to AU65318/90A priority patent/AU638288B2/en
Priority to CA002044267A priority patent/CA2044267C/en
Priority to US07/690,924 priority patent/US5264758A/en
Priority to AT90915195T priority patent/ATE162907T1/en
Priority to PCT/JP1990/001338 priority patent/WO1991006115A1/en
Priority to DE69032003T priority patent/DE69032003T2/en
Publication of JPH03233832A publication Critical patent/JPH03233832A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the sputter proof property and the discharge characteristic to make the assembly processability excellent by comprising a first electrode group and a second electrode group arranged in X-Y matrix through a dielectric layer, a third electrode group made of a porous metal plate and a porous insulating plate bulkhead interposing between the second electrode group and the third electrode group. CONSTITUTION:A plasma display panel consists of a front face glass plate 1, a third electrode (cathode) 2, a porous insulating plate bulkhead 3, a second electrode group (anode) 4, a dielectric layer 5, a first electrode group (trigger electrode) 6 and a rear face glass plate 7. The first electrode group (trigger electrode) 6 and the second electrode group (anode) 4 are arranged in X-Y matrix through the dielectric layer 5. The third electrode 2 and the porous insulating plate bulkhead 3 are pinched by two glass plates of the front face glass plate 1 and the rear face glass plate 7 and the surrounding thereof is sealed with sealing glass. The porous insulating plate bulkhead 3 is interposed between the second electrode group 4 and the third electrode 2. The assembly processability and the assembly accuracy are thereby improved, and while the sputter proof property and the discharge characteristic are improved, and furthermore, a lifetime can be prolonged without lowering of the cell opening ratio.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、3つの電極群から構成されるAC−DC複合
形のプラズマデイスプレィパネルに関し、さらに詳しく
は、−電極群(第3電極)が有孔金属板の一体電極であ
り、他の二電極群(複数の第1電極および複数の第2電
極)が誘電体層を介してX−Yマトリックス状に配置さ
れ、かつ−電極群と二電極群の間に隔壁として有孔絶縁
板を介在させたFDPに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an AC-DC composite plasma display panel consisting of three electrode groups, and more specifically, -electrode group (third electrode). is an integral electrode of a perforated metal plate, and the other two electrode groups (a plurality of first electrodes and a plurality of second electrodes) are arranged in an X-Y matrix through a dielectric layer, and - an electrode group and This invention relates to an FDP in which a perforated insulating plate is interposed as a partition between two electrode groups.

[従来の技術および発明が解決しようとする課題]一般
に直流放電型表示パネル(以下、DC−FDPと略記す
る)の電極材料は、陰極として厚膜N1.陽極として透
明導電膜ITOが使用され、商品化されている。しかし
厚膜N1で形成された陰極表面は緻密性に乏しく寿命の
点で問題があり、またDC−PDPの陰極としては放電
開始電圧も高く、プラズマ中のイオン衝撃によるスパッ
タリングに対しても十分とは言えない。
[Prior Art and Problems to be Solved by the Invention] Generally, the electrode material of a direct current discharge display panel (hereinafter abbreviated as DC-FDP) is a thick film N1. A transparent conductive film ITO is used as an anode and has been commercialized. However, the cathode surface formed with the thick film N1 has poor density and has problems in terms of service life.Also, as a cathode for DC-PDP, the discharge starting voltage is high, and it is not sufficient to resist sputtering due to ion bombardment in the plasma. I can't say that.

このような問題に対処するため、本発明者等は、金属材
料を使用するという考えに至った。金属は厚膜電極に比
べてその緻密性は著しく高く、それ故に金属自身の持っ
ている放電特性、耐スパツタ特性が十分に生かされるこ
とになる。金属薄板をDC−FDPの陰極として使用し
た例はすでに発表されているが、第4図に示されるよう
にいずれもマトリックス状のセル配列の一方向の列に沿
って、各列に一本ずつリボン状の陰極を並べるという形
を採っている。このような場合、通常複数本のリボン状
陰極がパネルの外部領域にて枠組みと一体となった形状
になるようエツチング加工される。周囲の枠組み部分に
より、一体成形部品の強度は保たれているようであるが
、面積が大きくなるにつれ、自重によるたわみ等が無視
できず、組立加工性が著しく悪くなると共に、組立精度
も悪くなるという欠点がある。
In order to deal with such problems, the present inventors came up with the idea of using a metal material. Metals have significantly higher density than thick film electrodes, and therefore the discharge characteristics and spatter resistance characteristics of metals themselves can be fully utilized. Examples of using metal thin plates as cathodes in DC-FDP have already been announced, but as shown in Figure 4, all of them are made by using a matrix of cells arranged in one direction, one in each column. It takes the form of lining up ribbon-shaped cathodes. In such cases, a plurality of ribbon cathodes are typically etched into the frame in the external region of the panel. It seems that the strength of the integrally molded part is maintained by the surrounding framework, but as the area increases, deflection due to its own weight cannot be ignored, and assembly workability becomes significantly worse, as well as assembly accuracy. There is a drawback.

現在までに、金属材料を使用することの利点は上述のよ
うに見い出されているものの、これを好適にパネルに導
入する方法が確立されていないと言える。
Although the advantages of using metal materials have been discovered to date as described above, it can be said that a method for suitably introducing them into panels has not been established.

本発明は、このような従来技術の課題を解決すべくなさ
れたものであって、組立加工性や組立精度に優れると共
に、耐スパツタ性、放電性能が良好で、しかもセル開口
率を低下させることもなく、長寿命化が図れるFDPを
提供することを目的とする。
The present invention has been made to solve the problems of the prior art, and has excellent assembly processability and assembly accuracy, good spatter resistance and discharge performance, and a reduction in cell aperture ratio. The purpose of the present invention is to provide an FDP that can have a long service life.

[課題を解決するための手段および作用]本発明のFD
Pは、誘電体層を介してX−Yマトリックス状に配置さ
れた第1電極群および第2電極群と、有孔金属板からな
る第3電極と、該第2電極群と第3電極の間に介在する
有孔絶縁板隔壁とを具備することを特徴とする。
[Means and effects for solving the problem] FD of the present invention
P includes a first electrode group and a second electrode group arranged in an X-Y matrix with a dielectric layer interposed therebetween, a third electrode made of a perforated metal plate, and the second electrode group and the third electrode. It is characterized by comprising a perforated insulating plate partition wall interposed therebetween.

以下、本発明のFDPを図面に基づいて具体的に説明す
る。
Hereinafter, the FDP of the present invention will be specifically explained based on the drawings.

第1図は、本発明のFDPの各構成部材と組立状態を示
す斜視図であり、また第2図は、本発明のFDPの縦断
面図である。第1〜2図のFDPは、前面ガラス板1、
第3電極(陰極)2、有孔絶縁板隔壁3、第2電極群(
陽極)4、誘電体層5、第1電極群(トリガー電極)6
、背面ガラス板7から構成されている。
FIG. 1 is a perspective view showing each component of the FDP of the present invention and an assembled state, and FIG. 2 is a longitudinal sectional view of the FDP of the present invention. The FDP shown in FIGS. 1 and 2 includes a front glass plate 1,
Third electrode (cathode) 2, perforated insulating plate partition 3, second electrode group (
anode) 4, dielectric layer 5, first electrode group (trigger electrode) 6
, a rear glass plate 7.

第1〜2図に示されるように、第1電極群(トリガー電
極)6および第21!!!極群(陽極)4は誘電体層5
を介してX−Yマトリックス状に配・置されている。
As shown in FIGS. 1 and 2, the first electrode group (trigger electrode) 6 and the 21st! ! ! The electrode group (anode) 4 is a dielectric layer 5
They are arranged in an X-Y matrix via.

この第1電極群6および第2電極群4としては、Nl 
、Au、AJ、Ag等の厚膜電極、N1゜Au、AJ、
Ag、ITO等の薄膜電極あるいはリボン状金属薄板等
が使用できる。第1電極群6と第211極群4の間に誘
電体層5を形成するという構造上の制約、電極形成の精
度、コストあるいは、放電空間での耐久性等を考慮して
一番有利な材料を選べば良い。
The first electrode group 6 and the second electrode group 4 include Nl
, Au, AJ, Ag thick film electrode, N1゜Au, AJ,
A thin film electrode made of Ag, ITO, etc. or a ribbon-shaped thin metal plate can be used. Considering the structural constraints of forming the dielectric layer 5 between the first electrode group 6 and the 211th electrode group 4, the accuracy of electrode formation, cost, durability in the discharge space, etc., which is the most advantageous? All you have to do is choose the material.

また、誘電体層5の形成法は厚膜法、薄膜法等が使用で
きる。製造コスト等を考慮して有利な方法を選べば良い
が一般的には厚膜法が使用される。
Further, as a method for forming the dielectric layer 5, a thick film method, a thin film method, etc. can be used. An advantageous method may be selected in consideration of manufacturing costs, etc., but generally a thick film method is used.

この誘電体材料としてはPb 0−B203−5i02
 、Zn 0−B203−8t 02等のガラス成分と
、必要ならばA4203等のセラミックスやFe 0−
Cr203 、Co 0−AJ203等の顔料を混合粉
砕した粉末100容量部に対してビヒクルlO〜30容
量部を混練して調製したペーストを用いる。このペース
トをスクリーン印刷にて、第1電極上6に形成し所定温
度にて焼成することにより誘電体層5を形成する。
This dielectric material is Pb 0-B203-5i02
, Zn 0-B203-8t 02, etc., and if necessary, ceramics such as A4203 or Fe 0-
A paste prepared by kneading 100 parts by volume of a powder obtained by mixing and pulverizing pigments such as Cr203 and Co0-AJ203 with 10 to 30 parts by volume of a vehicle is used. The dielectric layer 5 is formed by forming this paste on the first electrode 6 by screen printing and baking it at a predetermined temperature.

本発明においては、第3電極(陰極)2は肉厚が0.0
5〜1.(Is程度の有孔金属板が用いられる。
In the present invention, the third electrode (cathode) 2 has a wall thickness of 0.0
5-1. (A metal plate with holes of about Is is used.

抜き穴の形状、配列は使用目的により決定され、例えば
第4〜6図に示される 5× 7ドツトのキャラクタ−
表示、デルタ配列のフルドツト表示、7セグメントの8
の字表示やその他、640X 480ドツトのフルドツ
ト表示等がある。なお、第4〜6図の符番は第1〜2図
と同様である。
The shape and arrangement of the holes are determined depending on the purpose of use, for example, the 5 x 7 dot character shown in Figures 4 to 6.
Display, full dot display in delta array, 8 of 7 segments
In addition to the double dot display, there is also a full dot display of 640 x 480 dots. Note that the reference numbers in FIGS. 4 to 6 are the same as in FIGS. 1 to 2.

この第3電極2は、有孔絶縁板隔壁3と共に、前面ガラ
ス板1と背面ガラス板7の2枚のガラス板に挟まれて、
周囲を封止ガラス(図示せず)でシールされる。従って
、第3電極2、有孔絶縁板隔壁3.2枚のガラス板1,
7および封止ガラスの各々の線熱膨張係数は概略同じで
なければならない。さもなければシール以後の冷却過程
においてガラスに応力が過大にかかり破損に至るからで
ある。一般に2枚のガラス板1,7は、ソーダ石灰ガラ
スが汎用されるので第3電極2の線熱膨張係数はこれに
合わせて80〜100 (X 10−’/ ’C)であ
ることが望ましい。このような金属材料として具体的に
は42重量%N1−6重量%Cr−Fe合金、50重量
%N1−Fe合金等が挙げられる。
This third electrode 2 is sandwiched between two glass plates, a front glass plate 1 and a rear glass plate 7, together with a perforated insulating plate partition 3.
The periphery is sealed with sealing glass (not shown). Therefore, the third electrode 2, the perforated insulating plate partition 3, the two glass plates 1,
7 and the sealing glass should have approximately the same coefficient of linear thermal expansion. Otherwise, excessive stress will be applied to the glass during the cooling process after sealing, leading to breakage. Generally, the two glass plates 1 and 7 are made of soda lime glass, so it is desirable that the linear thermal expansion coefficient of the third electrode 2 is 80 to 100 (X 10-'/'C). . Specific examples of such metal materials include 42% by weight N1-6% by weight Cr-Fe alloy, 50% by weight N1-Fe alloy, and the like.

もちろん使用するガラスの線熱膨張係数が前記と異なる
ものを使用する場合には、これに合わせて金属材料を選
択すれば良い。
Of course, if a glass having a linear thermal expansion coefficient different from the above is used, the metal material may be selected accordingly.

本発明では、上記した第2電極群4と第3電極2の間に
有孔絶縁板隔壁3を介在させる。
In the present invention, a perforated insulating plate partition 3 is interposed between the second electrode group 4 and the third electrode 2 described above.

この有孔絶縁板隔壁3は、ガラスペーストの厚膜印刷、
感光性板ガラスのエツチング、板ガラスへの穴あけ加工
等により得られ、加工性、パネル組立加工性、コスト、
高精細度化への適応性等を考慮して選択すればよい。本
発明においては、有孔絶縁板隔壁3として、格子状金属
板の表面に1〜100μmの誘電体を被着させた特願平
1−269153号に記載の格子状誘電体が好ましく用
いられる。
This perforated insulating plate partition wall 3 is made by thick film printing of glass paste.
It is obtained by etching photosensitive plate glass, drilling holes in plate glass, etc., and improves processability, panel assembly processability, cost,
The selection may be made in consideration of adaptability to higher definition, etc. In the present invention, the grid-shaped dielectric described in Japanese Patent Application No. 1-269153, in which a dielectric of 1 to 100 μm is coated on the surface of a grid-shaped metal plate, is preferably used as the perforated insulating plate partition 3.

この格子状誘電体複合物の製造方法等は、上記特願平1
−289153号明細書に詳述されている。
The method for manufacturing this lattice dielectric composite is described in the above-mentioned patent application No.
It is detailed in the specification of No.-289153.

次に本発明のFDPの駆動方法の一例について説明する
Next, an example of the FDP driving method of the present invention will be explained.

第1〜2図に示されるように、本発明のFDPのセル構
造は第1t4極群6と第2電極群4の各電極の交点が各
セルに 1つずつ存在するような位置に有孔絶縁板隔壁
3が形成され、第3電極2が有孔絶縁板隔壁3の真上に
配置される。第3電極2である金属電極は、セル空間に
露出している断面が電極として作用する。ここで、一般
的にDC−PDPで採用されている補助放電機構につい
て触れると、DC−FDPでは陽極−陰極間に電圧が印
加された時、直ちに放電せずに放電開始に遅れが生じる
という問題がある。
As shown in FIGS. 1 and 2, the cell structure of the FDP of the present invention has holes located at positions such that each cell has one intersection point between the first quadrupole group 6 and each electrode of the second electrode group 4. An insulating plate partition 3 is formed, and the third electrode 2 is placed directly above the perforated insulating plate partition 3. The cross section of the metal electrode that is the third electrode 2 that is exposed to the cell space acts as an electrode. Here, referring to the auxiliary discharge mechanism generally employed in DC-PDPs, the problem with DC-FDPs is that when a voltage is applied between the anode and cathode, the discharge does not occur immediately and there is a delay in the start of discharge. There is.

この問題に対処するために、放電セル空間に予め荷電粒
子を供給して動作を安定化したり、駆動電圧の低下を図
ったりしている(例えば特開昭58−30038号公報
、特開昭55−1411348号公報、特開昭H−19
3235号公報)。
To deal with this problem, charged particles are supplied to the discharge cell space in advance to stabilize the operation or to reduce the driving voltage (for example, Japanese Patent Laid-Open No. 58-30038, Japanese Patent Laid-Open No. 55 -1411348 Publication, Japanese Patent Application Publication No. Sho H-19
Publication No. 3235).

本発明においても、荷電粒子を供給することにより、放
電開始電圧が低下すると言う現象を利用してパネルの駆
動を行なっている。
In the present invention as well, the panel is driven by utilizing the phenomenon that the discharge starting voltage decreases by supplying charged particles.

本発明によるAC−DC複合形FDPでは第3図に示す
ような放電電圧とPd積の関係(パッシェンの法則)に
表わされる放電開始電圧vfと最小放電維持電圧Vs、
sinの間の放電維持電圧Vsだけの電圧を陽極・陰極
間に印加しておき、選択セルのみに荷電粒子を供給し、
−時的にそのセルの放電開始電圧がvf′まで下がるこ
とを利用している。即ち選択されたセルのみが放電開始
条件を満たし点灯する。選択セルへの荷電粒子の供給方
法は、第2電極群4を陽極として線順次に走査するタイ
ミングに合わせて誘電体層5を介して直交配置されてい
る第1電極群6(トリガー電極)にデータ書き込みパル
ス電圧を印加する。
In the AC-DC composite FDP according to the present invention, the discharge starting voltage vf and the minimum discharge sustaining voltage Vs, which are expressed by the relationship between the discharge voltage and the Pd product (Paschen's law) as shown in FIG.
A voltage equal to the discharge sustaining voltage Vs between sin is applied between the anode and the cathode, and charged particles are supplied only to the selected cell,
- It takes advantage of the fact that the discharge starting voltage of the cell drops to vf' from time to time. That is, only the selected cell satisfies the discharge start condition and lights up. The method for supplying charged particles to a selected cell is to supply charged particles to a first electrode group 6 (trigger electrode) arranged orthogonally through a dielectric layer 5 in synchronization with the timing of line-sequential scanning using the second electrode group 4 as an anode. Apply data write pulse voltage.

その時、選択された1本の第2電極(陽極)上のデータ
書き込みパルス電圧が印加されたセルのみに、陽極の走
査電圧とトリガー電極の書き込み電圧の差の分だけ電位
差が発生し、放電開始電圧をVr′まで下げるのに十分
な荷電粒子が供給される。従って、次のステップで第2
電極群4(陽極)と第3電極2(陰極)の間に印加され
る放電維持電圧Vsに対して、データ書き込みされたセ
ルのみが点灯し、データ書き込みされていないセルは、
放電開始条件が満たされていないため点灯しない。
At that time, a potential difference corresponding to the difference between the scanning voltage of the anode and the writing voltage of the trigger electrode is generated only in the cell to which the data write pulse voltage is applied on the selected second electrode (anode), and discharge starts. Enough charged particles are supplied to reduce the voltage to Vr'. Therefore, in the next step the second
With respect to the discharge sustaining voltage Vs applied between the electrode group 4 (anode) and the third electrode 2 (cathode), only the cells to which data has been written light up, and the cells to which no data has been written light up.
It does not light up because the discharge start conditions are not met.

以上の過程を、各陽極1本ずつ線順次に走査してデータ
書き込みを行なえば画像が表示できる。
An image can be displayed by performing the above process by sequentially scanning each anode one by one and writing data.

このように、本発明のFDPでは陰極を全セルに共通な
一体電極としたために、通常のX−YマトリックスDC
−PDPのように駆動できないため3電極構造にして陽
極とトリガー電極の間の間接放電によりセル選択を行な
っている。
In this way, in the FDP of the present invention, since the cathode is an integral electrode common to all cells, the normal X-Y matrix DC
-Since it cannot be driven like a PDP, it has a three-electrode structure and selects cells by indirect discharge between an anode and a trigger electrode.

〔実施例] 以下、本発明を実施例等によりさらに詳しく説明する。〔Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 有孔絶縁板隔壁は、次の方法により作製した。Example 1 The perforated insulating plate partition wall was produced by the following method.

基本となる格子状金属として、線熱膨張係数が92 (
X 10−”/ ”C)である42重量%N1−8重量
%Cr−F6合金を使用した。金属板厚みは、0.1調
、形成ドブトピッチは縦横共0.2am、抜き穴サイズ
は0.15X  O,Lmとし、エツチング加工により
、多数の抜き穴を形成し、格子状金属板とした。
The basic lattice metal has a coefficient of linear thermal expansion of 92 (
A 42 wt.% N1-8 wt.% Cr-F6 alloy with a The thickness of the metal plate was set to 0.1, the groove pitch was 0.2 am both vertically and horizontally, and the hole size was 0.15×O, Lm. A large number of holes were formed by etching to obtain a lattice-shaped metal plate.

誘電体材料としては、軟化点800”C1平均粒径2〜
3.czmのZn 0−B203−3l 02系ガラス
粉末およびAl103 、Fe 0−Cr203等の無
機フィラーを使用した。
The dielectric material has a softening point of 800" C1 average grain size of 2~
3. Zn0-B203-3l02 type glass powder of czm and inorganic fillers such as Al103 and Fe0-Cr203 were used.

誘電体の被着は電着液中にて、格子状金属板を陽極とし
、これと同じ材質、同程度の面積の金属板を陰極として
、電着をした。使用電圧は、直流200v一定とした。
The dielectric was deposited in an electrodeposition solution using a lattice metal plate as an anode and a metal plate made of the same material and having a similar area as a cathode. The voltage used was constant at 200 V DC.

この結果、電着状態や電着層強度も極めて良好であった
As a result, the electrodeposited state and the strength of the electrodeposited layer were also extremely good.

このサンプルを大気中にてガラス粉末の軟化点600℃
より高い温度で焼成し、誘電体層を緻密な膜に仕立て上
げて、電着層の厚みが、10μ飄の格子状誘電体複合物
が得られた。
This sample was heated to the softening point of glass powder of 600°C in the air.
By firing at a higher temperature, the dielectric layer was made into a dense film, and a lattice-shaped dielectric composite with an electrodeposition layer thickness of 10 μm was obtained.

前面ガラス板および背面ガラス板材料はソーダ石灰ガラ
スを使用した。背面ガラス板上には、以下の順に各部材
を形成した。
Soda lime glass was used for the front glass plate and the back glass plate material. Each member was formed on the back glass plate in the following order.

すなわち、第1電極として薄!IAjを(1,2mピッ
チで、ライン幅0.1amのストライブ形状に形威し、
その上に誘電体層としてZnO−B203sio2系ガ
ラス粉末にAl2O2を少量混合した粉末を、ビヒクル
と混練してペースト化し、スクリーン印刷法でベタ印刷
し、580℃にて焼成した。次に誘電体層上に第1電極
と直交する向きに、第2電極としてN1ペーストを用い
、スクリーン印刷法により 0.2aa+ピツチでライ
ン幅0.1amのストライブ形状に形成し、580℃に
て焼成した。さらに、第1電極と第2電極の交点の第2
電極上に螢光体を塗布した。
In other words, the first electrode is thin! IAj is shaped into a stripe shape with a line width of 0.1 am at a pitch of 1.2 m,
A dielectric layer was formed thereon by mixing ZnO-B203sio2-based glass powder with a small amount of Al2O2 and kneading it with a vehicle to form a paste, which was solid printed using a screen printing method and fired at 580°C. Next, N1 paste was used as a second electrode on the dielectric layer in a direction perpendicular to the first electrode, and was formed into a stripe shape with a line width of 0.1 am at a pitch of 0.2 aa+ by screen printing, and heated to 580°C. and fired. Furthermore, the second electrode at the intersection of the first electrode and the second electrode is
A phosphor was coated on the electrode.

第3電極となる有孔金属板電極は、有孔絶縁板隔壁の基
体金属と同じ材質、同じ形状の金属板を使用した。
As the perforated metal plate electrode serving as the third electrode, a metal plate made of the same material and having the same shape as the base metal of the perforated insulating plate partition wall was used.

次に背面ガラス板上に、上述のようにして得られた有孔
絶縁板隔壁を置き、さらに有孔金属板電極の配置された
前面ガラス板で挟み、低融点ガラスフリットでシールし
、チップ管を通して真空排気およびガス封入した後、チ
ップ管を封じ切り、FDPを作成した。なお封入ガスは
He −Xe(2%)  300T orrを用いた。
Next, the perforated insulating plate partition wall obtained as described above is placed on the back glass plate, which is then sandwiched between the front glass plates on which the perforated metal plate electrodes are arranged, and sealed with a low-melting glass frit. After evacuation and gas filling through the tube, the chip tube was sealed off to create an FDP. The gas used was He-Xe (2%) 300T orr.

実施例2 実施例1で示した材料の中で第1電極をスクリーン印刷
によるAgに変更した以外はすべて実施例1と同様にし
てFDPを作成した。
Example 2 An FDP was produced in the same manner as in Example 1 except that the first electrode was changed to Ag by screen printing among the materials shown in Example 1.

比較例1 陰極材料として極薄のリボン状Niが等ピッチで複数本
並んでいるものを使用し、陽極材料としては透明導電膜
(ITO)を使用し、隔壁は実施例1で用いたものと同
様の有孔絶縁板隔壁を使用してFDPを作製した。この
FDPの各構成部材と組立状態を示す斜視図を第4図に
示す。同図のFDPは、前面ガラス板1、陰極21、有
孔絶縁板隔壁3、陽極41.背面ガラス板7から構成さ
れている。
Comparative Example 1 A cathode material in which a plurality of ultra-thin ribbon-shaped Ni strips were lined up at an equal pitch was used, a transparent conductive film (ITO) was used as an anode material, and the partition wall was the same as that used in Example 1. An FDP was fabricated using a similar perforated insulating plate partition. FIG. 4 is a perspective view showing each component of this FDP and its assembled state. The FDP in the figure includes a front glass plate 1, a cathode 21, a perforated insulating plate partition 3, an anode 41. It is composed of a back glass plate 7.

すなわち、前面ガラス板1の内面には、ITO(陽極4
1)が0.21s+ピツチでストライプ状に形成され、
背面ガラス板7上には、ITOと直交する向きに、リボ
ン状N1  (陰極21)が配置されてあり、ITOと
リボン状N1の各交点が、放電セル内に入るように隔壁
3を両ガラス板の間に挾み、周囲を低融点ガラスフリッ
トでシールしチップ管を通して真空排気および、ガス封
入した後、チップ管を封じ切りFDPが作製される。
That is, on the inner surface of the front glass plate 1, ITO (anode 4
1) is formed in a stripe shape with 0.21s+pitch,
A ribbon-shaped N1 (cathode 21) is arranged on the rear glass plate 7 in a direction perpendicular to the ITO, and the partition wall 3 is connected to both glasses so that each intersection of the ITO and the ribbon-shaped N1 enters the discharge cell. It is sandwiched between plates, the periphery is sealed with a low melting point glass frit, the chip tube is evacuated and gas is filled, and then the chip tube is sealed to produce an FDP.

しかるに、このようなFDPではリボン状N1を高精細
なピッチで配置するのに非常に難があり、量産向きとは
いえなかった。
However, in such an FDP, it is very difficult to arrange the ribbon-like N1 at a high-definition pitch, and it cannot be said to be suitable for mass production.

比較例2 陰極材料として厚膜N1、陽極として透明導電膜(IT
O)を使用し、隔壁は実施例1で用いたものと同様の有
孔絶縁板隔壁を使用し、セルピッチ封入ガス等の条件も
実施例1と同様としてFDPを作製した。
Comparative Example 2 Thick film N1 was used as the cathode material, and transparent conductive film (IT) was used as the anode material.
An FDP was produced using the same perforated insulating plate partitions as those used in Example 1, and the same conditions as in Example 1, such as the cell pitch and gas filling.

しかるに、このFDPはスクリーン印刷を用いて陰極を
形成するため、量産向きではあるが、厚膜のN1は緻密
性に乏しく、金属電極に比して寿命の点で問題があった
However, since this FDP uses screen printing to form the cathode, it is suitable for mass production, but the thick N1 film has poor density and has a problem in terms of life compared to metal electrodes.

実験例 実施例1〜2および比較例1〜2で得られたPDPにつ
いて、陰極の耐スパツタ性、陰極の電流密度、放電維持
電圧、加工性(量産性)を評価し、結果を第1表に示し
た。なお、第1表の評価記号は次の通りである。
Experimental Examples The PDPs obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were evaluated for cathode spatter resistance, cathode current density, discharge sustaining voltage, and processability (mass productivity), and the results are shown in Table 1. It was shown to. The evaluation symbols in Table 1 are as follows.

◎:非常に優れている ○:やや優れている Δ:やや劣っている X:劣っている 第 表 この第1表に示されるように、実施例1〜2はすべての
評価項目において良好な結果が得られる。
◎: Very good ○: Slightly excellent Δ: Slightly poor X: Poor Table As shown in this Table 1, Examples 1 and 2 had good results in all evaluation items. is obtained.

これに対し、比較例1は陰極の電流密度が高く、また加
工性に劣る。他方、比較例2は陰極の耐スパツタ性が悪
く、しかも電流密度も高い。
On the other hand, in Comparative Example 1, the current density of the cathode was high and the workability was poor. On the other hand, in Comparative Example 2, the cathode had poor spatter resistance and also had a high current density.

[発明の効果] 以上のごとき本発明においては、次の効果を奏する。[Effect of the invention] The present invention as described above has the following effects.

(1〉第3電極(陰極)表面は、厚膜N1では得られな
い緻密性を有するため、耐スパツタ性、放電特性が向上
する。
(1> Since the third electrode (cathode) surface has a density that cannot be obtained with the thick film N1, spatter resistance and discharge characteristics are improved.

(2〉第3電極が有孔金属板であるので、薄板(50μ
口程度)であっても、組立加工性はリボン状金属板に比
べて格段に優れている。
(2> Since the third electrode is a perforated metal plate, a thin plate (50μ
Even if the size of the metal plate is small, the assembly workability is much better than that of a ribbon-shaped metal plate.

(3)有孔金属板の断面部分が陰極として作用するため
、セル空間の前面側に陰極を配置しても開口率が下がる
ことはない。
(3) Since the cross section of the perforated metal plate acts as a cathode, the aperture ratio does not decrease even if the cathode is placed on the front side of the cell space.

(4)有孔金属板断面は、セルを取り囲む4面がすべて
陰極として作用するため陰極面積が広く取れるため電流
密度を下げることが可能となり、結果として長寿命化に
つながる。
(4) In the cross-section of the perforated metal plate, all four sides surrounding the cell act as cathodes, allowing for a large cathode area, which makes it possible to lower the current density, resulting in a longer life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFDPの構成部材と組立図、 第2図はFDPの陽極方向に添ったセル断面図、第3図
はFDPにおける放電電圧(V)と、ガス圧力、放電ギ
ャップ量の積(P xd)の関係図(パッシェン・カー
ブ)、 第4図は5×7ドツトのキャラクタ−表示FDPの一例
、 第5図はデルタ配列フルドツト表示FDPの一例、 第6図は7セグメント表示FDPの一例、そして、 第7図は陰極にリボン状金属板を用いた従来のFDPの
構成部材と組立図。 :前面ガラス板、  2:第3電極(陰極):有孔絶縁
板隔壁、 :第2電極群(陽極)、 5:誘電体層、二第1電極群
(トリガー電極)、 :背面ガラス板。 ノ 第 図 Pd (Torr−crn) 第 図 第 4 図 第 7 図 平成2年3月23日
Figure 1 is a diagram of the components and assembly of the FDP, Figure 2 is a cross-sectional view of the cell along the anode direction of the FDP, and Figure 3 is the product of the discharge voltage (V), gas pressure, and discharge gap amount (P) in the FDP. xd) relationship diagram (Paschen curve), Figure 4 is an example of a 5x7 dot character display FDP, Figure 5 is an example of a delta array full dot display FDP, Figure 6 is an example of a 7 segment display FDP, FIG. 7 is a diagram showing the components and assembly of a conventional FDP that uses a ribbon-shaped metal plate for the cathode. : Front glass plate, 2: Third electrode (cathode): Perforated insulating plate partition, : Second electrode group (anode), 5: Dielectric layer, 2nd first electrode group (trigger electrode), : Rear glass plate. Figure Pd (Torr-crn) Figure 4 Figure 7 Figure 7 March 23, 1990

Claims (1)

【特許請求の範囲】 1、誘電体層を介してX−Yマトリックス状に配置され
た第1電極群および第2電極群と、有孔金属板からなる
第3電極と、該第2電極群と第3電極の間に介在する隔
壁として介在させた有孔絶縁板とを具備することを特徴
とする気体放電型パネル。 2、前記有孔金属板の線熱膨張係数が80〜100(×
10^−^7/℃)である請求項1に記載の気体放電型
パネル。
[Claims] 1. A first electrode group and a second electrode group arranged in an X-Y matrix with a dielectric layer interposed therebetween, a third electrode made of a perforated metal plate, and the second electrode group. and a perforated insulating plate interposed as a partition between the third electrode and the third electrode. 2. The linear thermal expansion coefficient of the perforated metal plate is 80 to 100 (×
10^-^7/°C). The gas discharge type panel according to claim 1.
JP2027193A 1989-10-18 1990-02-08 Plasma display panel comprising porous metal plate as common cathode Pending JPH03233832A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2027193A JPH03233832A (en) 1990-02-08 1990-02-08 Plasma display panel comprising porous metal plate as common cathode
EP90915195A EP0448727B1 (en) 1989-10-18 1990-10-17 Plasma display panel and method of manufacturing the same
KR1019900016534A KR930004994B1 (en) 1989-10-18 1990-10-17 Plasma display paneled of manufacturing
AU65318/90A AU638288B2 (en) 1989-10-18 1990-10-17 Plasma display panel and method of manufacturing the same
CA002044267A CA2044267C (en) 1989-10-18 1990-10-17 Plasma display panel and method of producing the same
US07/690,924 US5264758A (en) 1989-10-18 1990-10-17 Plasma display panel and method of producing the same
AT90915195T ATE162907T1 (en) 1989-10-18 1990-10-17 PLASMA DISPLAY PANEL AND METHOD OF PRODUCING THE SAME
PCT/JP1990/001338 WO1991006115A1 (en) 1989-10-18 1990-10-17 Plasma display panel and method of manufacturing the same
DE69032003T DE69032003T2 (en) 1989-10-18 1990-10-17 PLASMA DISPLAY BOARD AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2027193A JPH03233832A (en) 1990-02-08 1990-02-08 Plasma display panel comprising porous metal plate as common cathode

Publications (1)

Publication Number Publication Date
JPH03233832A true JPH03233832A (en) 1991-10-17

Family

ID=12214252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2027193A Pending JPH03233832A (en) 1989-10-18 1990-02-08 Plasma display panel comprising porous metal plate as common cathode

Country Status (1)

Country Link
JP (1) JPH03233832A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414435B1 (en) 1997-12-01 2002-07-02 Hitachi, Ltd. AC drive type plasma display panel having display electrodes on front and back plates, and image display apparatus using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55143754A (en) * 1979-04-25 1980-11-10 Fujitsu Ltd Gas discharge panel
JPH01120731A (en) * 1987-10-31 1989-05-12 Fujitsu General Ltd Plasma display panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55143754A (en) * 1979-04-25 1980-11-10 Fujitsu Ltd Gas discharge panel
JPH01120731A (en) * 1987-10-31 1989-05-12 Fujitsu General Ltd Plasma display panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414435B1 (en) 1997-12-01 2002-07-02 Hitachi, Ltd. AC drive type plasma display panel having display electrodes on front and back plates, and image display apparatus using the same
US6696787B2 (en) 1997-12-01 2004-02-24 Hitachi, Ltd. AC drive type plasma display panel having display electrodes on front and back plates, and image display apparatus using the same
US6784616B2 (en) 1997-12-01 2004-08-31 Hitachi, Ltd. AC drive type plasma display panel having display electrodes on front and back plates, and image display apparatus using the same
US7046218B2 (en) 1997-12-01 2006-05-16 Hitachi, Ltd. AC drive type plasma display panel having display electrodes on front and back plates, and image display apparatus using the same

Similar Documents

Publication Publication Date Title
US5754003A (en) Discharger display device having means for air-tight separation of discharge chambers by partition walls, and process of producing the same
US5264758A (en) Plasma display panel and method of producing the same
US4780644A (en) Gas discharge display panel
JPH0665001B2 (en) Plasma display panel
US6255780B1 (en) Plasma display panel
JPH05217510A (en) Plasma display panel
US7521867B2 (en) Plasma display panel and method of driving and plasma display apparatus
JP2005322507A (en) Plasma display panel
US6707250B2 (en) Gas discharge display device, plasma addressed liquid crystal display device, and method for producing the same
JP3438641B2 (en) Plasma display panel
JPH03233832A (en) Plasma display panel comprising porous metal plate as common cathode
JP2741418B2 (en) Metal core rib, method of manufacturing the same, and plasma display panel using the metal core rib
JP2532970B2 (en) Plasma display panel using perforated metal plate as partition wall and method of manufacturing the same
JPH05225911A (en) Plasma display panel
JP2525280B2 (en) Plasma display panel using perforated metal plate in partition as electrode
JP2002083551A (en) Back substrate of plasma display panel, its manufacturing method, and plasma display panel and its manufacturing method
JP2001118520A (en) Gas discharge panel
KR20040070563A (en) Plasma display panel
JPH07147136A (en) Protective film for gas discharge panel, its forming method, and gas discharge panel and display device using the protective film for gas discharge panel
JP4835318B2 (en) Plasma display panel and manufacturing method thereof
JP2005005261A (en) Plasma display panel and manufacturing method of the same
KR100892826B1 (en) Plasma display panel and method of manufacturing the same
JPH06150833A (en) Dc type plasma display panel
US20070120490A1 (en) Plasma display panel
JPH03101035A (en) Plasma display panel