JPH03233501A - Optical multilayered film filter element and production thereof - Google Patents

Optical multilayered film filter element and production thereof

Info

Publication number
JPH03233501A
JPH03233501A JP3042090A JP3042090A JPH03233501A JP H03233501 A JPH03233501 A JP H03233501A JP 3042090 A JP3042090 A JP 3042090A JP 3042090 A JP3042090 A JP 3042090A JP H03233501 A JPH03233501 A JP H03233501A
Authority
JP
Japan
Prior art keywords
optical
optical filter
internal stress
layer
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3042090A
Other languages
Japanese (ja)
Inventor
Toshisada Sekiguchi
利貞 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Precision Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP3042090A priority Critical patent/JPH03233501A/en
Priority to US07/650,247 priority patent/US5241417A/en
Publication of JPH03233501A publication Critical patent/JPH03233501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)

Abstract

PURPOSE:To obtain the ultra-thin type optical filter element which is free from deformation, such as warpage, and has good moisture resistance by separating multilayered films of highly compacted optical filters from a glass substrate. CONSTITUTION:The optical filter element 1 is formed of the thin films of the optical filters consisting of the multilayered structure alternately laminated with high-refractive layers 3 and low-refractive layers 4 as its constituting element. The high-refractive layers 3 consist of an optical material having a relatively high refractive index, has the dense compsn. having no adsorptivity of moisture, etc., and exhibits a specified compressive internal stress. The low- refractive layers 4 consist of an optical material having a relatively low refrac tive index, has the dense compsn. having no adsorptivity of moisture, etc., and exhibits the compressive internal stress approximately equal to the compressive internal stress of the high-refractive layers. The thin films 2 of the optical filters with which the compressive internal stress between the glass substrate and the multilayered films is of no problem, unlike the conventional filters, and which have a good yield and excellent moisture resistance are obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学多層膜フィルタ素子及びその製造方法に
関する。特に、光通信等に用いる超小型且つ超薄型の光
合分波フィルタ素子及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical multilayer filter element and a method for manufacturing the same. In particular, the present invention relates to an ultra-small and ultra-thin optical multiplexing/demultiplexing filter element used in optical communications, etc., and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

−iに、光学多層膜フィルタ素工は多層膜による光の干
渉を利用して、特定の波長βn域の先のみを選択的に透
過又は反射させるものである。光学多層膜フィルタ素子
は屈折率の異なる非金属光学物質を重ね占わせた積層構
造を有し、従来ガラス基板上に真空蒸管によって形成さ
れていた。各層の膜厚及び屈折率を変える事により、任
意の中心波長に対して任意の半値幅を持つフィルタをi
′4る事かできる。
-i, the optical multilayer film filter material utilizes the interference of light by the multilayer film to selectively transmit or reflect only the end of a specific wavelength βn range. Optical multilayer film filter elements have a laminated structure in which nonmetallic optical materials with different refractive indexes are stacked one on top of the other, and have conventionally been formed on a glass substrate using a vacuum vapor tube. By changing the film thickness and refractive index of each layer, a filter with an arbitrary half-value width for an arbitrary center wavelength can be created.
'4 I can do something.

かかる光学多層膜フィルタ素子は光多重通信等において
光合分波フィルタとして広く用いられている。即ち、光
合分波フィルタは光ファイバから構成される光導波路網
の分岐点に挿入され、各波長成分の分離及び合成を行な
うものである。二の為、光合分波フィルタは超小型の寸
法をaし、且つ光損失を防ぐ為に数十血程度の超薄型寸
法を釘する。
Such optical multilayer filter elements are widely used as optical multiplexing/demultiplexing filters in optical multiplex communications and the like. That is, the optical multiplexing/demultiplexing filter is inserted at a branch point of an optical waveguide network made up of optical fibers, and separates and combines each wavelength component. For the second reason, the optical multiplexing/demultiplexing filter has an ultra-small size and an ultra-thin size of about several tens of meters to prevent optical loss.

従来の光合分波フィルタは、厚さ数十μmのガラス基板
上に屈折率の異なる光学物質を真空蒸着法により交互に
積層した構造を有していた。かかるフィルタを製造する
為に、従来ガラス基板上に多層膜を真空蒸着した後、ガ
ラス基板を数十血に研摩し、これを数mm角に切断して
いた。あるいは、fめ数十血に研摩されたガラス基板上
に多層膜を堆積して製造していた。
A conventional optical multiplexing/demultiplexing filter has a structure in which optical materials having different refractive indexes are alternately laminated on a glass substrate having a thickness of several tens of μm using a vacuum evaporation method. In order to manufacture such a filter, conventionally, a multilayer film is vacuum-deposited on a glass substrate, and then the glass substrate is polished to a depth of several tens of millimeters, and then cut into pieces of several millimeters square. Alternatively, it has been manufactured by depositing a multilayer film on a glass substrate that has been polished to a depth of several tens of degrees.

〔発明か解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら、従来の光合分波フィルタは真空蒸着法に
より堆積された多層膜構造である為、膜質は多孔性であ
り耐候性特に耐湿性に劣るという問題点かあった。即ち
、多層膜が多孔性である為水分あるいはアルコールを吸
着しフィルタの透過周波数特性が変動してしまい正確な
光合分波を行なう事ができなくなり、多重通信にノイズ
が混入してしまうという問題点があった。かかる問題点
に鑑み、本発明の第1の目的は耐候性特に耐湿性に優れ
た超小型及び超薄型の光学多層膜フィルタ素子を提供す
る事である。かかる第1の目的を達成する為に、本発明
においては水分等に対して非吸着性の緻密組成を有する
光学多層膜を利用している。
However, since conventional optical multiplexing/demultiplexing filters have a multilayer film structure deposited by vacuum evaporation, the film quality is porous and has a problem of poor weather resistance, particularly moisture resistance. In other words, since the multilayer film is porous, it adsorbs moisture or alcohol, which changes the transmission frequency characteristics of the filter, making it impossible to perform accurate optical multiplexing and demultiplexing, and causing noise to be mixed into multiplex communications. was there. In view of these problems, a first object of the present invention is to provide an ultra-small and ultra-thin optical multilayer filter element that has excellent weather resistance, particularly moisture resistance. In order to achieve the first object, the present invention utilizes an optical multilayer film having a dense composition that does not adsorb moisture or the like.

ところで、従来と同様に、緻密組成を有する多層膜をガ
ラス基板上に固着させた後ガラス2!仮を数十血の厚さ
に研摩して超薄型の光学フィルタを製造すると、緻密多
層膜がガラス基板に対して強い圧縮内部応力を示す為、
研摩の段階でガラス基板か破損してしまう。仮に、破損
せずに研摩されたとしても、強い圧縮内部応力の為にガ
ラス基板に変形か生じ使用する事か困難となる。かかる
困難に鑑み、本発明の第2の目的は緻密多層膜からなる
耐候性に優れた超薄型光学フィルタ素子を破損あるいは
変形なしに製造する事である。
By the way, as in the conventional case, after a multilayer film having a dense composition is fixed on a glass substrate, glass 2! When an ultra-thin optical filter is manufactured by polishing a temporary layer to a thickness of several tens of pounds, the dense multilayer film exhibits strong compressive internal stress against the glass substrate.
The glass substrate may be damaged during the polishing stage. Even if it were polished without breaking, the glass substrate would be deformed due to the strong compressive internal stress, making it difficult to use. In view of these difficulties, a second object of the present invention is to manufacture an ultra-thin optical filter element made of a dense multilayer film and having excellent weather resistance without being damaged or deformed.

〔問題点を解決する為の手段〕[Means for solving problems]

上記第1の目的を達成する為に、本発明にかかる光学フ
ィルタ素子は高屈折層と低屈折層を交互に積層した多層
構造からなる単体型の光学フィルタ薄膜を構成要素とし
ている。高屈折層は比較的高屈折率の光学物質からなり
水分等に対して非吸着性の緻密組成を有するとともに一
定の圧縮内部応力を呈する。又低屈折層は比較的低屈折
率の光学物質からなり水分等に対して非吸着性の緻密組
成を有するとともに高屈折層と略同等の圧縮内部応力を
呈する。
In order to achieve the first object, the optical filter element according to the present invention has a single optical filter thin film having a multilayer structure in which high refractive layers and low refractive layers are alternately laminated. The high refractive layer is made of an optical material with a relatively high refractive index, has a dense composition that does not adsorb moisture, etc., and exhibits a certain compressive internal stress. The low refractive layer is made of an optical material with a relatively low refractive index, has a dense composition that does not adsorb moisture, etc., and exhibits a compressive internal stress approximately equal to that of the high refractive layer.

上記の第2の目的を達成する為に、本発明にかかる光学
フィルタ薄膜の製造方法は溶媒に対して可溶性の担体を
用意する準備工程を含んでいる。
In order to achieve the above second object, the method for manufacturing an optical filter thin film according to the present invention includes a preparation step of preparing a carrier soluble in a solvent.

続いて、可溶性担体に対して高屈折率の光学物質と低屈
折率の光学物質を交互に堆積し積層の光学フィルタ薄膜
を形成する堆積工程が行なわれる。
Subsequently, a deposition step is performed in which a high refractive index optical material and a low refractive index optical material are alternately deposited on the soluble carrier to form a laminated optical filter thin film.

最後に、可溶性担体を溶媒に溶解して光学フィルタ薄膜
を剥離する分離工程か行なわれ単体型光学フィルタ薄膜
が得られる。
Finally, a separation step is performed in which the soluble carrier is dissolved in a solvent and the optical filter thin film is peeled off to obtain a single optical filter thin film.

〔作  用〕[For production]

本発明によれば、超薄型光学フィルタ素子は水分等に対
して非吸着性の緻密組成を有する多層膜から構成されて
おり、耐候性特に耐湿性に優れている。又、多層膜を構
成する高屈折層と低屈折層は互いに略同等の圧縮内部応
力を呈する為、層間に内部歪みか蓄積されずその形状寸
法に安定性かある。
According to the present invention, the ultra-thin optical filter element is composed of a multilayer film having a dense composition that does not adsorb moisture, etc., and has excellent weather resistance, particularly moisture resistance. In addition, since the high refractive index layer and the low refractive index layer constituting the multilayer film exhibit substantially the same compressive internal stress, no internal strain is accumulated between the layers, resulting in stability in their shape and dimensions.

又、本発明にかかる光学フィルタ薄膜の製造方法によれ
ば、光学フィルタ薄膜は担体から剥離された単体型の多
層膜として得られる。従って、従来の様にガラス基板と
多層膜との間の圧縮内部応力が問題とならす歩留りよく
光学フィルタ薄膜を製造する事かできる。
Further, according to the method for manufacturing an optical filter thin film according to the present invention, the optical filter thin film is obtained as a single multilayer film peeled from a carrier. Therefore, it is possible to manufacture an optical filter thin film with a high yield, unlike the conventional method where compressive internal stress between the glass substrate and the multilayer film poses a problem.

〔実 施 例〕〔Example〕

以下図面を2照して本発明の好適な実施例を詳細に説明
する。第1図は光学多り膜フイルタ素子の第1の実施例
を示す斜視図である。図示する様に、光学フィルタ素子
1は単体型の多層膜2から構成されている。但し、実際
の使用に当っては他の光学部材あるいは光学部品と組合
せて用いる事ができる事はいうまでもない。多層膜2は
高屈折層3と低屈折層4を交互に積層した多層構造を有
する。高屈折層3は比較的高屈折率の光学物質からなり
水分に対して非吸着性の緻密組成を有するとともに一定
の圧縮内部応力を呈する。又低屈折層4は比較的低屈折
率の光学物質からなり水分に対して非吸着性の緻密組成
を有するとともに”高屈折層3と略同等の圧縮内部応力
を呈する。各屈折層の屈折率及び厚みを適宜設定する事
により、所望の光選択周波数特性を有する光学フィルタ
多層膜2を得る事かできる。本実施例においては、特に
光学フィルタ素子1を光多重通信等に使われる先金分波
フィルタ素子として用いる為に、数關角の面積と数十鵬
程度の膜厚を有する。例えば、0.25mmの層厚を有
する高屈折層3及び低屈折層4を60層重ねる事により
膜厚か1511nの多層膜2を得る事ができる。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a first embodiment of an optical multi-layer filter element. As shown in the figure, the optical filter element 1 is composed of a single multilayer film 2. However, in actual use, it goes without saying that it can be used in combination with other optical members or optical parts. The multilayer film 2 has a multilayer structure in which high refractive layers 3 and low refractive layers 4 are alternately laminated. The high refractive layer 3 is made of an optical material with a relatively high refractive index, has a dense composition that does not adsorb moisture, and exhibits a certain compressive internal stress. Furthermore, the low refractive layer 4 is made of an optical material with a relatively low refractive index, has a dense composition that does not adsorb moisture, and exhibits a compressive internal stress approximately equal to that of the high refractive layer 3.The refractive index of each refractive layer By appropriately setting the thickness and thickness, it is possible to obtain an optical filter multilayer film 2 having desired optical selection frequency characteristics. In order to be used as a wave filter element, it has an area of several angles and a film thickness of about several tens of degrees.For example, by stacking 60 layers of high refractive layer 3 and low refractive layer 4 each having a layer thickness of 0.25 mm, a film can be formed. A multilayer film 2 with a thickness of 1511 nm can be obtained.

高屈折層3を構成する高屈折率の光学物質としては例え
ばT a 905を用いる事かでき、低屈折層4を構成
する低屈折率の光学物質としては5in9を用いる事か
できる。これら光学物質は加速エネルギー粒子を利用し
た堆積処理により積層され水分あるいはアルコール等の
溶媒分に対して非吸着性の緻密組成を有する。加速エネ
ルギー粒子を利用した堆積処理としては、例えばイオン
アシスト真空蒸着法が用いられる。
For example, Ta 905 can be used as the optical material with a high refractive index constituting the high refractive layer 3, and 5in9 can be used as the optical material with a low refractive index constituting the low refractive layer 4. These optical materials are laminated by a deposition process using accelerated energy particles and have a dense composition that does not adsorb water or solvents such as alcohol. As a deposition process using accelerated energy particles, for example, an ion-assisted vacuum evaporation method is used.

第2図は本発明にかかる光学フィルタ素子の第2の実施
例を示す斜視図である。図示する様に、光学フィルタ素
子10は第1の実施例と同様に単体型の多層膜2から構
成されている。本実施例においては、多層膜2は高屈折
層3と低屈折層4の積層部分の他に、調整層5を有して
いる。この調整層5は多層膜2の所望の膜厚を得る為に
調整的に設定された層厚を有している。即ち、光学フィ
ルタ素T−10はフィルタリング機能を有する積層部分
の他に単に多層膜2の厚み調整機能のみを有する調整層
とを有している。調整層5は例えば低屈折層4と同一の
光学物質から構成されており、積層部分と同様に水分に
対して非吸着性の緻密組成を有する事が好ましい。
FIG. 2 is a perspective view showing a second embodiment of the optical filter element according to the present invention. As shown in the figure, the optical filter element 10 is composed of a single multilayer film 2 as in the first embodiment. In this embodiment, the multilayer film 2 includes an adjustment layer 5 in addition to the laminated portion of the high refractive layer 3 and the low refractive layer 4. This adjustment layer 5 has a layer thickness adjusted to obtain a desired thickness of the multilayer film 2. That is, the optical filter element T-10 has, in addition to the laminated portion having a filtering function, an adjustment layer having only a function of adjusting the thickness of the multilayer film 2. The adjustment layer 5 is made of the same optical material as the low refractive layer 4, for example, and preferably has a dense composition that does not adsorb moisture, like the laminated portion.

次に、第3図を膠照して本発明にかかる光学フィルタ素
子の物理的特徴を詳細に説明する。第3図はガラス基板
に対して種々の光学物質をイオンアシスト真空蒸着法に
より堆積して形成された単層膜の内部応力を示すグラフ
である。縦軸は単層堆積膜の内部応力の大きさを示し、
0レベルを基準として上側が圧縮内部応力を示し下側は
引張内部応力を示す。圧縮内部応力はガラス基板の接合
面に対して圧縮歪みを加える様な方向に作用し、引張応
力は逆にガラス基板の接合面に対して引張歪みを与える
方向に作用する。横軸はイオンアシスト真空蒸着法にお
いて用いられるアシストイオンのイオン電流密度を示す
。イオンアシスト真空蒸着法は真空蒸着中において蒸着
面に対して加速エネルギー粒子であるイオンを照射し蒸
着堆積膜を緻密化する為のものである。従ってイオン電
流密度が大きい程緻密化は進行する。かかるイオンアシ
スト真空蒸着法を用いる事により水分に対して非吸着性
の緻密組成を有する屈折層を形成する事ができる。屈折
層の材料として光学酸化物を用いた場合には加速イオン
粒子としては酸素イオンが好ましい。第3図に示す様に
、イオン電流密度が0の場合には、即ち通常の真空蒸着
法を行なった場合には、高屈折率物質TlO2は引張内
部応力を呈し、低屈折率物質S 102は略同等の大き
さを有する圧縮内部応力を呈する。従って、従来におい
てはTiOと5IO2を通常の真空蒸着法を用いてガラ
ス基板上に積層し光学フィルタ素子を製造していた。T
lO2の引張内部応力とSiO2の圧縮内部応力が互い
に打消し合いガラス基板に対しては実質的に応力か如わ
らない。
Next, the physical characteristics of the optical filter element according to the present invention will be explained in detail with reference to FIG. FIG. 3 is a graph showing the internal stress of a single layer film formed by depositing various optical substances on a glass substrate by ion-assisted vacuum deposition. The vertical axis indicates the internal stress of the single layer deposited film,
The upper side shows the compressive internal stress and the lower side shows the tensile internal stress based on the 0 level. Compressive internal stress acts in a direction that applies compressive strain to the bonding surface of the glass substrate, and tensile stress conversely acts in a direction that imparts tensile strain to the bonding surface of the glass substrate. The horizontal axis indicates the ion current density of assist ions used in the ion-assisted vacuum evaporation method. The ion-assisted vacuum deposition method irradiates the deposition surface with ions, which are accelerated energy particles, during vacuum deposition to densify the deposited film. Therefore, the higher the ion current density, the more densification progresses. By using such an ion-assisted vacuum deposition method, a refractive layer having a dense composition that does not adsorb moisture can be formed. When an optical oxide is used as the material for the refractive layer, oxygen ions are preferred as the accelerated ion particles. As shown in FIG. 3, when the ion current density is 0, that is, when normal vacuum evaporation is performed, the high refractive index material TlO2 exhibits tensile internal stress, and the low refractive index material S102 exhibits tensile internal stress. They exhibit compressive internal stresses with approximately the same magnitude. Therefore, in the past, optical filter elements were manufactured by laminating TiO and 5IO2 on a glass substrate using a normal vacuum evaporation method. T
The tensile internal stress of lO2 and the compressive internal stress of SiO2 cancel each other out, so that there is virtually no stress on the glass substrate.

しかしながら、通常の真空蒸る法を用いた場合には蒸も
堆積層の緻密化か行なわれておらす多孔性である。従っ
て、水分に対して吸着性かあり耐湿性に問題がある。こ
れに対して、本発明においては例えばイオンアシスト真
空蒸着法を用いる事により堆積層の緻密化を図っている
。第3図に示す様に緻密化が進行するに従って、種々の
光学物質から構成される屈折層は全て圧縮内部応力を呈
する様になる。従って、従来と同じ様にかかる強い圧縮
内部応力を有する屈折層をガラス基板に堆積させる事は
極めて困難であった。圧縮内部応力の為にガラス基板の
破損あるいは変形か生しるからである。そこで、本発明
においては光学フィルタ素子は基板から分離した中休型
の多層膜から構成されている。特に、高屈折層の圧縮内
部応力と低屈折層の圧縮内部応力か略等しくなる様な条
件でイオン電流密度を制御しイオンアシスト真空蒸着法
を用いて多層膜を形成する事により、各層間の歪みを除
く事かでき寸法形状的に安定した単体型光学フィルタ多
層膜を得る事かできる。例えば、高屈折率物質としてT
 a Q O5を用い低屈折率物質としてS IO2を
用いた場合には、第3図から明らかな様に、イオン電流
密度の広い領域に渡って両者の圧縮内部応力は略等しく
実質的に歪みのない単体型光学フィルタ多層膜を作る事
かできる。
However, when a normal vacuum evaporation method is used, the evaporation also densifies the deposited layer, resulting in a porous layer. Therefore, there is a problem in moisture resistance due to the adsorption of water. In contrast, in the present invention, the deposited layer is made denser by using, for example, an ion-assisted vacuum deposition method. As shown in FIG. 3, as densification progresses, all the refractive layers composed of various optical materials come to exhibit compressive internal stress. Therefore, it has been extremely difficult to deposit a refractive layer having such a strong compressive internal stress on a glass substrate as in the past. This is because the compressive internal stress may cause damage or deformation of the glass substrate. Therefore, in the present invention, the optical filter element is constituted by a partially suspended multilayer film separated from the substrate. In particular, by controlling the ion current density under conditions such that the compressive internal stress of the high refractive layer and the compressive internal stress of the low refractive layer are approximately equal, and forming a multilayer film using ion-assisted vacuum evaporation, it is possible to By eliminating distortion, it is possible to obtain a single optical filter multilayer film that is stable in size and shape. For example, T as a high refractive index material
When aQO5 is used and SIO2 is used as a low refractive index material, as is clear from Fig. 3, the compressive internal stress of both is approximately equal over a wide range of ion current density, and the strain is substantially reduced. It is possible to create a single-piece optical filter multilayer film.

次に本発明にかかる単体型光学フィルタ薄膜の製造方法
を詳細に説明する。第4図は本発明にかかる製造方法の
第1の実施例を示す工程図である。
Next, a method for manufacturing a single-piece optical filter thin film according to the present invention will be explained in detail. FIG. 4 is a process diagram showing a first embodiment of the manufacturing method according to the present invention.

第4図(A)に示す工程において、溶媒に対して可溶性
の担体6が用意される。本実施例においては、担体6は
可溶性物質からなる平板担体を利用している。可溶性物
質としては水に溶ける食塩単結晶や酸もしくはアルカリ
に可溶な金属例えばアルミニウムを用いる事かできる。
In the step shown in FIG. 4(A), a carrier 6 soluble in a solvent is prepared. In this embodiment, the carrier 6 is a flat carrier made of a soluble substance. As the soluble substance, a single crystal of common salt which is soluble in water or a metal soluble in acid or alkali such as aluminum can be used.

あるいはアルミナ等の金属酸化物を担体材料に用いても
良い。溶媒としては、酸やアルカリの他に所定のエッチ
ャントを用いても良い。但し、溶媒はフィルタ薄膜を構
成する物質に影響を与えないものを選択する。
Alternatively, a metal oxide such as alumina may be used as the carrier material. As the solvent, a predetermined etchant may be used in addition to acids and alkalis. However, the solvent should be selected so as not to affect the substances constituting the filter thin film.

続いて第4図(B)に示す工程において、可溶性担体6
に対して高屈折率の光学物質と低屈折率の光学物質を交
互に堆積し積層の光学フィルタ多層膜2を形成する。堆
積方法としては通常の真空蒸着法を用いる事もできるが
、二の場合には多層膜は多孔性を有し水分に対して吸告
性かある。従って、好ましくは水分に対して非吸着性の
緻密組成を有する多層膜2を堆積する為に、イオンアシ
スト真空蒸着法、イオンブレーティング真空蒸着法ある
いはスパッタリング法を用いる事が好ましい。
Subsequently, in the step shown in FIG. 4(B), the soluble carrier 6
A high refractive index optical material and a low refractive index optical material are alternately deposited on the optical filter layer 2 to form a laminated optical filter multilayer film 2. As a deposition method, a normal vacuum evaporation method can be used, but in the second case, the multilayer film is porous and has moisture absorption properties. Therefore, in order to deposit the multilayer film 2 having a dense composition that preferably does not adsorb water, it is preferable to use an ion-assisted vacuum deposition method, an ion-blating vacuum deposition method, or a sputtering method.

これらの堆積方法は加速エネルギー粒子を利用する事に
より水分に対して非吸着性の緻密な屈折層を形成する事
ができる。なお、イオンブレーティング真空蒸着法は電
子線加熱により蒸発した物質をプラズマ中において加速
させ担体表面に堆積させるものである。高屈折層を形成
する高屈折率光学物質としては例えばTa2O5を用い
る事かでき、低屈折層を形成する低屈折率光学物質とし
ては例えばS iO2を用いる事ができる。
By utilizing accelerated energy particles, these deposition methods can form a dense refractive layer that does not adsorb moisture. In addition, the ion blasting vacuum evaporation method is a method in which a substance evaporated by electron beam heating is accelerated in plasma and deposited on the surface of a carrier. For example, Ta2O5 can be used as the high refractive index optical material forming the high refractive layer, and SiO2 can be used, for example, as the low refractive index optical material forming the low refractive layer.

第4図(C)に示す工程において、光学フィルタ薄膜2
を可溶性担体6に担持されている状態のままで切断し所
望の寸法に細分化する。この切断は例えば半導体製造に
用いられるウェハのスクライバ−を使う事ができる。こ
の時、図示する様に切断線は多層膜2の膜厚よりやや深
めに設定し可溶性担体6の表面部をも合わせて切断する
事か好ましい。なお、切断時に用いられる冷却液は可溶
性担体6を溶解するものであってはならない。
In the step shown in FIG. 4(C), the optical filter thin film 2
While still being supported on the soluble carrier 6, it is cut and finely divided into desired dimensions. For this cutting, for example, a wafer scriber used in semiconductor manufacturing can be used. At this time, it is preferable to set the cutting line slightly deeper than the thickness of the multilayer film 2 and cut the surface part of the soluble carrier 6 as shown in the figure. Note that the cooling liquid used during cutting must not dissolve the soluble carrier 6.

最後に第4図(D)に示す工程において、可溶性担体6
を特定の溶媒に浸漬して溶解し細分化された光学フィル
タ多層膜2を剥離する。この結果、細分化された個々の
光学フィルタ多層膜片が分離され単体型の光学フィルタ
素子1を得る事ができる。例えば、可溶性担体6か食塩
の単結晶板で構成されている場合には溶媒としては水を
使う事ができる。又、可溶性担体としてアルミニウム金
属板を用いた場合には、特定の溶媒として酸を用いる事
ができる。
Finally, in the step shown in FIG. 4(D), the soluble carrier 6
is immersed in a specific solvent to dissolve it, and the finely divided optical filter multilayer film 2 is peeled off. As a result, the individual subdivided optical filter multilayer film pieces are separated, and a single optical filter element 1 can be obtained. For example, if the soluble carrier 6 is composed of a single crystal plate of common salt, water can be used as the solvent. Furthermore, when an aluminum metal plate is used as the soluble carrier, an acid can be used as the specific solvent.

第5図は本発明にかかる単体型光学フィルタ薄膜の製造
方法の第2の実施例を示す工程図である。
FIG. 5 is a process diagram showing a second embodiment of the method for manufacturing a single-piece optical filter thin film according to the present invention.

第5図(A)に示す工程において、不溶性物質からなる
仮基板7が!f−備される。
In the step shown in FIG. 5(A), the temporary substrate 7 made of an insoluble substance! f-equipped.

第5図(B)に示す工程において、仮基板7の表面に可
溶性物質からなる被膜担体6を形成する。
In the step shown in FIG. 5(B), a film carrier 6 made of a soluble substance is formed on the surface of the temporary substrate 7.

この被膜担体6は例えば金属アルミニウムのスパッタリ
ングや真空蒸る等により得る事ができる。
This coated carrier 6 can be obtained, for example, by sputtering or vacuum vaporizing metal aluminum.

そしてこの可溶性波膜担体6は特定の二ソチング液に対
して可溶である。
This soluble wave membrane carrier 6 is soluble in a specific disoting solution.

第5図(C)に示す工程において、被膜担体6に対して
高屈折率の光学物質と低屈折率の光学物質を交互に堆積
し積層の光学フィルタ多層膜2を形成する。この堆積工
程は第4図に示す第1の実施例と同様に行なわれる。
In the step shown in FIG. 5(C), a high refractive index optical material and a low refractive index optical material are alternately deposited on the film carrier 6 to form a laminated optical filter multilayer film 2. This deposition step is performed in the same manner as in the first embodiment shown in FIG.

第5図CD)に示す工程において、堆積された光学フィ
ルタ多層膜2を被膜担体6に担持されている状態で切断
し所望の−j法に細分化する。この切断工程も第1の実
施例と同様に行なう。本実施例においては多層膜2の厚
みよりも深めに切断し同時に担体被膜6にも切込みを入
れる事か好ましい。
In the step shown in FIG. 5CD), the deposited optical filter multilayer film 2 is cut while being supported on the film carrier 6 to be subdivided into desired -j dimensions. This cutting step is also performed in the same manner as in the first embodiment. In this embodiment, it is preferable to cut deeper than the thickness of the multilayer film 2 and to make a cut in the carrier film 6 at the same time.

但し、必ずしも切込みを入れる必要はない。However, it is not always necessary to make a cut.

最後に第5図(E)に示す工程において、被膜担体を溶
媒に溶角7して細分化された光学フィルタ多層膜2を剥
離する。この時、被膜担体に切込みか入っておりその端
面が露出している場合にはサイドエツチングの効果によ
り被膜担体の溶解が促進される。この様にして、細分化
された光学フィルタ多層膜2は仮基板7から分離され個
々の単体型光学フィルタ素子1を得る事ができる。
Finally, in the step shown in FIG. 5(E), the film carrier is dissolved in a solvent at an angle of 7 to peel off the subdivided optical filter multilayer film 2. At this time, if the coated carrier has a notch and its end face is exposed, the dissolution of the coated carrier is promoted by the effect of side etching. In this manner, the segmented optical filter multilayer film 2 is separated from the temporary substrate 7 to obtain individual single optical filter elements 1.

〔発明の効果〕〔Effect of the invention〕

上述した様に、本発明によれば緻密化された光学フィル
タ多層膜をガラス基板から分離する事により従来問題と
なっていたガラス基板に対する多層膜の圧縮内部応力が
解放され、反り等の変形がなく耐候性特に耐湿性の良好
な超薄型光学フィルタ素子を得る事かできるという効果
かある。又、本発明にかかる製造方法によれば、従来の
様に多層膜の圧縮内部応力によりガラス基板が研摩中に
破損したり圧縮内部応力によって変形が生じる事がなく
、製造歩留りを著しく向上する事ができるという効果か
ある。
As described above, according to the present invention, by separating the densified optical filter multilayer film from the glass substrate, the compressive internal stress of the multilayer film against the glass substrate, which has been a problem in the past, is released, and deformation such as warping is prevented. This has the advantage that it is possible to obtain an ultra-thin optical filter element with good weather resistance, particularly moisture resistance. Furthermore, according to the manufacturing method of the present invention, the glass substrate is not damaged during polishing due to the compressive internal stress of the multilayer film, nor is it deformed due to the compressive internal stress, unlike in the past, and the manufacturing yield can be significantly improved. It has the effect of being able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光学フィルタ素子の第1の実施例を示す斜視図
、第2図は光学フィルタ素子の第2の実施例を示す斜視
図、第3図は堆積膜内部応力とイオン電流密度の関係を
示すグラフ、第4図は光学フィルタ素子製造方法の第1
の実施例を示す工程図、及び第5図は光学フィルタ素子
の製造方法の第2の実施例を示す工程図である。 1・・・光学フィルタ素子  2・・・多層膜3・・・
高屈折層      4・・・低屈折層5・・・調整層
       6・・・可溶性担体7・・・不溶性仮基
Fig. 1 is a perspective view showing the first embodiment of the optical filter element, Fig. 2 is a perspective view showing the second embodiment of the optical filter element, and Fig. 3 is the relationship between the internal stress of the deposited film and the ion current density. FIG. 4 is a graph showing the first method of manufacturing an optical filter element.
FIG. 5 is a process diagram showing a second embodiment of the method for manufacturing an optical filter element. 1... Optical filter element 2... Multilayer film 3...
High refractive layer 4...Low refractive layer 5...Adjusting layer 6...Soluble carrier 7...Insoluble temporary substrate

Claims (1)

【特許請求の範囲】 1、比較的高屈折率の光学物質からなり水分等に対して
非吸着性の緻密組成を有するとともに一定の圧縮内部応
力を呈する高屈折層と、比較的低屈折率の光学物質から
なり水分等に対して非吸着性の緻密組成を有するととも
にほぼ同等の圧縮内部応力を呈する低屈折層とを交互に
積層した多層構造からなる単体型の光学フィルタ薄膜を
構成要素とする光学フィルタ素子。 2、該光学フィルタ薄膜は、所望の膜厚を得る為に調整
的に設定された層厚を有する調整層を含む請求項1に記
載の光学フィルタ素子。 3、該高屈折層はTa_2O_5の緻密堆積層からなり
該低屈折層はSiO_2の緻密堆積層からなる請求項1
に記載の光学フィルタ素子。 4、溶媒に対して可溶性の担体を用意する準備工程と、 可溶性担体に対して高屈折率の光学物質と低屈折率の光
学物質を交互に堆積し積層した光学フィルタ薄膜を形成
する堆積工程と、 可溶性担体を溶媒に溶解して光学フィルタ薄膜を剥離す
る分離工程とからなる単体型光学フィルタ薄膜の製造方
法。 5、可溶性担体に担持された光学フィルタ薄膜を可溶性
担体に担持されている状態で切断し所望の寸法に細分化
する工程を含む請求項4に記載の製造方法。 6、該準備工程は可溶性物質からなる平板担体を用意す
る工程である請求項4に記載の製造方法。 7、該準備工程は不溶性物質からなる仮基板の表面に可
溶性物質からなる被膜担体を形成する工程である請求項
4に記載の製造方法。 8、該堆積工程は、加速エネルギー粒子を利用する事に
より水分等に対して非吸着性の緻密な積層を堆積する工
程である請求項4に記載の製造方法。 9、該堆積工程は緻密な積層中において略同等の圧縮内
部応力を生じる高屈折率の光学物質及び低屈折率の光学
物質を交互に堆積する工程である請求項8に記載の製造
方法。 10、該堆積工程はTa_2O_5とSiO_2を交互
に堆積する工程である請求項9に記載の製造方法。
[Scope of Claims] 1. A high refractive layer made of an optical material with a relatively high refractive index, which has a dense composition that does not adsorb moisture, etc., and exhibits a certain compressive internal stress; The constituent element is a single optical filter thin film consisting of a multilayer structure in which low refractive layers are alternately laminated with low refractive layers that are made of an optical material and have a non-adsorbent property for moisture, etc., and exhibit approximately the same compressive internal stress. Optical filter element. 2. The optical filter element according to claim 1, wherein the optical filter thin film includes an adjustment layer having a layer thickness adjusted to obtain a desired film thickness. 3. Claim 1 in which the high refractive layer is a densely deposited layer of Ta_2O_5 and the low refractive layer is a densely deposited layer of SiO_2.
The optical filter element described in . 4. A preparation step of preparing a carrier soluble in a solvent, and a deposition step of alternately depositing a high refractive index optical substance and a low refractive index optical substance on the soluble carrier to form a laminated optical filter thin film. A method for producing a single-piece optical filter thin film, which comprises a separation step of dissolving a soluble carrier in a solvent and peeling off the optical filter thin film. 5. The manufacturing method according to claim 4, further comprising the step of cutting the optical filter thin film supported on the soluble carrier to subdivide it into desired dimensions. 6. The manufacturing method according to claim 4, wherein the preparation step is a step of preparing a flat carrier made of a soluble substance. 7. The manufacturing method according to claim 4, wherein the preparation step is a step of forming a coating carrier made of a soluble substance on the surface of a temporary substrate made of an insoluble substance. 8. The manufacturing method according to claim 4, wherein the deposition step is a step of depositing a dense laminated layer that does not adsorb moisture or the like by utilizing accelerated energy particles. 9. The manufacturing method according to claim 8, wherein the deposition step is a step of alternately depositing optical materials with a high refractive index and optical materials with a low refractive index that generate approximately the same compressive internal stress in a dense stack. 10. The manufacturing method according to claim 9, wherein the deposition step is a step of alternately depositing Ta_2O_5 and SiO_2.
JP3042090A 1990-02-09 1990-02-09 Optical multilayered film filter element and production thereof Pending JPH03233501A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3042090A JPH03233501A (en) 1990-02-09 1990-02-09 Optical multilayered film filter element and production thereof
US07/650,247 US5241417A (en) 1990-02-09 1991-02-04 Multi-layered optical filter film and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3042090A JPH03233501A (en) 1990-02-09 1990-02-09 Optical multilayered film filter element and production thereof

Publications (1)

Publication Number Publication Date
JPH03233501A true JPH03233501A (en) 1991-10-17

Family

ID=12303462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3042090A Pending JPH03233501A (en) 1990-02-09 1990-02-09 Optical multilayered film filter element and production thereof

Country Status (1)

Country Link
JP (1) JPH03233501A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001526A1 (en) * 2003-06-26 2005-01-06 Nikon Corporation Method for producing multilayer optical device
JP2005266069A (en) * 2004-03-17 2005-09-29 Kyocera Corp Optical filter member and solid-state image pickup device using the same
JPWO2004038061A1 (en) * 2002-10-22 2006-02-23 旭硝子株式会社 Multilayer substrate and method for manufacturing the same
WO2006035610A1 (en) * 2004-09-09 2006-04-06 National University Corporation Hokkaido University Function element, storage element, magnetic recording element, solar cell, photoelectric conversion element, light emitting element, catalyst reaction device, and clean unit
JP2009288424A (en) * 2008-05-28 2009-12-10 Nikon Corp Manufacturing method of multilayer film optical element and multilayer film optical element

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111158A (en) * 1974-07-19 1976-01-29 Komao Oeda DENRYUSEIGENKI
JPS556367A (en) * 1978-06-28 1980-01-17 Nec Corp Production of multilayer film interference filter
JPS5714819A (en) * 1980-06-23 1982-01-26 Int Standard Electric Corp Improved optical fiber dichroic coupler
JPS5865403A (en) * 1981-07-20 1983-04-19 オプチカル・コ−テイング・ラボラトリ−・インコ−ポレ−テツド Optical coating suitable for high temperature application
JPS63116106A (en) * 1986-11-05 1988-05-20 Matsushita Electric Ind Co Ltd Optical multi-layer film and its manufacture
JPS63168602A (en) * 1987-01-06 1988-07-12 Sharp Corp Preparation of thin optical dielectric film
JPS63172120A (en) * 1986-12-24 1988-07-15 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Display device
JPS63240504A (en) * 1987-03-27 1988-10-06 Sharp Corp Preparation of thin dielectric optical film
JPH01200304A (en) * 1988-02-05 1989-08-11 Copal Co Ltd Multilayered optical film
JPH01297857A (en) * 1988-05-25 1989-11-30 Nec Kyushu Ltd Color solid-state image sensing device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111158A (en) * 1974-07-19 1976-01-29 Komao Oeda DENRYUSEIGENKI
JPS556367A (en) * 1978-06-28 1980-01-17 Nec Corp Production of multilayer film interference filter
JPS5714819A (en) * 1980-06-23 1982-01-26 Int Standard Electric Corp Improved optical fiber dichroic coupler
JPS5865403A (en) * 1981-07-20 1983-04-19 オプチカル・コ−テイング・ラボラトリ−・インコ−ポレ−テツド Optical coating suitable for high temperature application
JPS63116106A (en) * 1986-11-05 1988-05-20 Matsushita Electric Ind Co Ltd Optical multi-layer film and its manufacture
JPS63172120A (en) * 1986-12-24 1988-07-15 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Display device
JPS63168602A (en) * 1987-01-06 1988-07-12 Sharp Corp Preparation of thin optical dielectric film
JPS63240504A (en) * 1987-03-27 1988-10-06 Sharp Corp Preparation of thin dielectric optical film
JPH01200304A (en) * 1988-02-05 1989-08-11 Copal Co Ltd Multilayered optical film
JPH01297857A (en) * 1988-05-25 1989-11-30 Nec Kyushu Ltd Color solid-state image sensing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004038061A1 (en) * 2002-10-22 2006-02-23 旭硝子株式会社 Multilayer substrate and method for manufacturing the same
JP4571501B2 (en) * 2002-10-22 2010-10-27 旭硝子株式会社 Manufacturing method of substrate with multilayer film
WO2005001526A1 (en) * 2003-06-26 2005-01-06 Nikon Corporation Method for producing multilayer optical device
CN100378475C (en) * 2003-06-26 2008-04-02 株式会社尼康 Method for producing multilayer optical device
JP2005266069A (en) * 2004-03-17 2005-09-29 Kyocera Corp Optical filter member and solid-state image pickup device using the same
JP4632680B2 (en) * 2004-03-17 2011-02-16 京セラ株式会社 Optical filter member and solid-state imaging device using the same
WO2006035610A1 (en) * 2004-09-09 2006-04-06 National University Corporation Hokkaido University Function element, storage element, magnetic recording element, solar cell, photoelectric conversion element, light emitting element, catalyst reaction device, and clean unit
JP2008153712A (en) * 2004-09-09 2008-07-03 Hokkaido Univ Solar cell and photoelectric conversion device
JP2009288424A (en) * 2008-05-28 2009-12-10 Nikon Corp Manufacturing method of multilayer film optical element and multilayer film optical element

Similar Documents

Publication Publication Date Title
US5241417A (en) Multi-layered optical filter film and production method thereof
EP0266214A2 (en) Interference film filters, optical waveguides and methods for producing them
GB1208962A (en) Method of fabricating thin films and membranes
JPH03233501A (en) Optical multilayered film filter element and production thereof
JP2003098340A (en) Optical multilayer interference film, method for manufacturing the same and filter using optical multilayer interference film
TW200905283A (en) A plasmonic reflection filter
JP2007156321A (en) Method for manufacturing optical multilayer filter
DE4124937C2 (en) Method for producing an optical interference layer system
JPH07209516A (en) Optical multilayer film filter
JP2592528B2 (en) Method for producing glass preform coated with insulating layered structure
JPH03274507A (en) Production of optical multilayered filter element
JPH047505A (en) Production of optical multilayered-film filter element
JP2874439B2 (en) Optical wavelength tunable filter and method of manufacturing the same
JPH11119002A (en) Apparatus for production of optical parts, production of optical parts as well as optical parts using the same and further projection television using these optical parts
JPH11337733A (en) Double refractive plate and its manufacture
JP3917822B2 (en) Optical filter having laminated film and manufacturing method thereof
JPH03274506A (en) Production of optical multilayered film filter element
JPH0667018A (en) Production of thin-film optical filter
JP2002365590A (en) Optical element, method of manufacturing optical element and optical isolator
JP2002277629A (en) Glass substrate for multilayer film optical filter, multilayer film optical filter, and method for producing the same
CN114994820B (en) Optical filter and application thereof
JP2005308968A (en) Optical multilayer film and optical element
JP2003277911A (en) Optical thin film
JPH03196001A (en) Multilayered film type interference filter with no substrate and production thereof
JP2546203B2 (en) Optical element using TiOx thin film