JPH03233395A - Sound wavepropagation time measuring method - Google Patents

Sound wavepropagation time measuring method

Info

Publication number
JPH03233395A
JPH03233395A JP2027120A JP2712090A JPH03233395A JP H03233395 A JPH03233395 A JP H03233395A JP 2027120 A JP2027120 A JP 2027120A JP 2712090 A JP2712090 A JP 2712090A JP H03233395 A JPH03233395 A JP H03233395A
Authority
JP
Japan
Prior art keywords
circuit
propagation time
time
wave
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2027120A
Other languages
Japanese (ja)
Other versions
JP2608961B2 (en
Inventor
Takashi Ishihara
石原 孝史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marine Instr Co Ltd
Original Assignee
Marine Instr Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marine Instr Co Ltd filed Critical Marine Instr Co Ltd
Priority to JP2027120A priority Critical patent/JP2608961B2/en
Publication of JPH03233395A publication Critical patent/JPH03233395A/en
Application granted granted Critical
Publication of JP2608961B2 publication Critical patent/JP2608961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Measurement Of Unknown Time Intervals (AREA)

Abstract

PURPOSE:To accurately measure sound wave propagation time by using two or more sound waves with the same amplitude and different frequencies, and setting a specific point where the zero-cross of the sound wave with the highest frequency occurs as the time of start and completion of the sound wave propagation time. CONSTITUTION:First and second transmission wave outgoing circuits 1, 2 transmit ultrasonic signals W1, W2 with different frequencies, respectively. Electroacoustic converters 4, 5 perform the mutual exchange of an electrical signal and an acoustic signal. An outgoing reference detection circuit 3 detects the point nearest to a zero- cross point from a positive direction to a negative direction of the signal W2 out of the zero-cross points in the positive and negative directions of the signals W1, W2. Also, the circuit 3 outputs a pulse of positive potential to a propagation time measuring circuit 14 when the potential of the signals W1, W2 go less than the ground potential. A reception circuit 12 for outgoing reference detection is comprised similarly, however, it detects the signal delaying by the propagation time between the converters 4, 5 behind the circuit 3. When the pulse from the circuit 3 is outputted, the circuit 14 starts the measurement of the propagation time, and counts the time until no pulse is outputted from the circuit 12.

Description

【発明の詳細な説明】 【産業上の利用分野〕 本発明は、音波の伝播時間を利用して距離、流体流速、
厚さ、音速、温度等を求める装置の、音波時間測定方法
に関する。 〔従来の技術〕 第6図は音波の伝播時間を利用して流量を求める超音波
流量計の概略構成図、第7図は超音波の送受信のタイミ
ング図、第8図、第9図は受信波形図である。 第6図に示す超音波流量計は、内部を測定対象の流体が
流れる管31の管壁に設けられた電気・音響変換器32
と33の間で超音波を送受信し、超音波流量計変換器3
4によって音波の伝播時間を計測し、流体の線平均流速
Vを求めるものである。 この超音波流量計において、電気・音響変換器32から
電気・音響変換器33へ向けて超音波を出した場合の伝
播時間を11、電気・音響変換器33から電気・音響変
換器32へ向けて超音波を出した場合の伝播時間をt2
とすると、管内を流れる流体の線平均流速Vはおよそ次
式(1)で表わされる。 ただし、 D:管31の内径 θ:管31から被測定流体への超音波入射角C:被測定
流体音速 τ:伝播時間測定回路中の、被測定流体内音波伝播時間
以外に要する伝播時間 ここで、第7図(1)のような送信波形はダンブトウェ
ーブと呼ばれ、時間計測に必要な超音波を必要な波数だ
け送信した後、不要な送信波形はできるだけ早く音響的
にダンプされている。したがって、電気・音響変換器3
3には第7図(2)のような受信波形が得られる。 [発明が解決しようとする課題] ところで、第7図において、音波受信のタイミングを得
るには特公昭44−31284等の方法がある。 ところが、受信波形は常に同一レベル、同一形状である
とは限らず、このためAGCやAPCを用いて様々な考
案がなされている。例えば特開昭61−59275等が
それである。 しかしながら、第7図のようなダンブトウェーブを用い
た通常の1周波数によるパルス法による送受信には以下
のような共通の欠点があり、その結果、測定誤差を生ん
でしまう、(1)式においてては、電気回路遅延でl、
被測定流体以外の音波伝達部材の伝播時間で2、信号音
波の最初の音波到達時刻からトリガ波が認知された後、
最初にOvを横切るまでの時間で3等である(トリガ波
の定義は、特開昭61−59275と同じ)。 て3について特公昭44−31284のゼロクロス法を
用いて、第8図中のS、をトリガ波として計算するただ
し、fは信号とする音波の音波の周波数で3はこのよう
にして予め求めることができ、またでl、て2について
も種々の測定器によって求めることができるので、結局
(11式におけるでは予め定数として計算式に入れるこ
とができる。 ところが、上記のようにて3が求められるのは、トリガ
波としたSlが間違いなくSlであった時である。つま
り、トリガ波としたSlが本当はS2であったならば、
て3は となり、設定したてに誤差が生じてしまい、結局測定器
の指示値誤差になってしまう、トリガ波は、機器が自動
で判断したり、機器使用者がオシロスコープで目視によ
って判断したりするが、いずれの場合も、判断ミスの可
能性が存在する。 超音波流量計の場合、被測定配管や被測定流体、カップ
リング剤等の音波伝達媒体や伝播経路によって、第8図
のような受信波形が第9図のようになることがある。こ
の時、機器やオシロスコープ観測者が、ノイズに埋もれ
たSoやSlを発見できなければS2をStと間違って
判断してしまうことになり、その結果、上記のような誤
差が生じることになる。仮にノイズに埋もれたSoやS
lを発見できたとしてもさらに以下のような問題がある
。 上記音波伝達媒体や伝播経路による受信波形の変化は、
受信波形の形状についても影響する。第7図で定義した
S。、 Stb St、S、・・・の各々の受信レベル
の比So : St : St : Ss :・・・が
変化し、例えば第7図でSo: S、= 1 : 10
であったものが第8図ではSo: SI= 1 : 1
になっている。これは、様々な位相の波形合成状態の変
化等により起こるが、このような場合、APC’t”)
AGcを使ってもS、をトリガ波とすることはできない
、つまり、So:S、=1:1であるため、S+レベル
を増幅しても同時に30レベルも増幅されるため、St
の波形はトリガされずS。がトリガされてしまうからで
ある。 本発明の目的は、受信波にノイズが混入したり、受信波
形の形状(レベル)が変っても、伝播時間測定のタイミ
ングを間違えることなく、正確な伝播時間測定を行なう
ことができる音波伝播時間測定法を提供することである
。 【課題を解決するための手段】 本発明の音波伝播時間測定方法は、 各々振幅が一定時間略一定で、周波数が相異なる2つ以
上の音波を同時に出し、周波数が最も大きい音波が正か
ら負、または負から正への予め定められた方向にゼロク
ロスする時点のうち、他の周波数の音波が正から負、ま
たは負から正への予め定められた方向にゼロクロスする
時点に最も近く、かつ時間的に最初に現われる時点を送
信側、受信側において検出し、これら時点をそれぞれ伝
播時間測定の開始、終了の基準時刻として音波の伝播時
間を測定する。 〔作 用〕 各々振幅が一定時間略一定で、周波数が相異なる2つ以
上の音波を用い、周波数が最も大きい音波が予め定めら
れた方向にゼロクロスする時点のうち、他の周波数の音
波が正から負、または負から正への予め定められた方向
にゼロクロスする時点に最も近く、かつ時間的に最初の
時点を伝播時間測定の開始、終了の基準時間とするので
、受信波にノイズが含まれていたり、受信波のレベルが
変化しても伝播時間のタイミングを誤認知するおそれが
なくなる。 〔実施例〕 次に、本発明の実施例について図面を参照して説明する
。 第1図は本発明の音波伝播時間測定方法が適用された超
音波流量計の一実施例のブロック図、第2図は第1図中
の発信基準値検知回路3の回路図、第3図は超音波送受
信波形図、第4図は送信波WlとW2を重畳して示す波
形図、第5図は第4図のA点近傍の拡大図である。 本実施例の超音波流量計は、第1送信波発信回路工と、
第2送信波発信回路2と、発信基準値検知回路3と、電
気・音響変換器4.5と、切替スイッチ6.7と、帯域
フィルタ8.9と、信号増幅器In、 11と、発信基
準波検知用受信回路12と、ノイズゲート回路13と、
伝播時間測定回路14と、線平均流速を求める不図示の
回路で構成されている。 第1送信波発信回路1.第2送信波発信回路2はそれぞ
れ周波数f+ 、  fa  (<f、)の超音波信号
Wl、 W2 (第4図)を送信する。ここで、Wlは
伝播時間測定用信号波、W2は伝播時間測定用信号波W
lの伝播時間測定基準点識別用信号波である。 電気・音響変換器4.5は電気信号と音響信号の相互変
換を行なう、切替スイッチ6は共通端子が第1送信波発
信回路l、第2送信波発信回路2に接続され、切替端子
が電気・音響変換器4.5に接続され、信号Wlとw2
を電気・音響変換器4または5に入力する。切替スイッ
チ7は共通端子が帯域フィルタ8と9に接続され、切替
端子が電気・音響変換器4.5に接続され、電気・音響
変換器4または5で電気信号に変換された信号波Wl、
 W2を含む信号をそれぞれ帯域フィルタ8.9に出力
する。帯域フィルタ8,9はそれぞれ信号波Wl。 W2を取り出し、それぞれ信号増幅器10.11に出力
する。信号増幅器10. IIはそれぞれ信号波Wl、
 W2を増幅する0発信基準検知回路3は、信号波w1
が正から負の方向へゼロクロスする時点A、B。 C,D、  ・・・のうち、信号波W2が正から負の方
向へゼロクロスする時点に最も近い時点A(第4図)を
検出する回路で、第5図に示すように、信号波Ill、
 W2の電位が接地電位よりも下がったとき正電位のパ
ルスを出力するコンパレータ21.22と、コンパレー
タ22の出力パルスによりパルス幅PWIのパルスを出
力する単安定マルチバイブレータ23と、コンパレータ
21の出力パルスと単安定マルチバイブレーク23の出
力パルスの論理積をとるアンドゲート24で構成され、
アンドゲート24の出力パルスは伝播時間測定回路14
に出力される。このように、単安定マルチバイブレータ
23を設けることにより、時点Aにおいてのみ発信基準
値検知回路3からパルスが出力され、時点Aが識別され
る。発信基準波検知用受信回路12も同様の構成で、信
号増幅器10. IIの出力から時点Aを検出する。こ
の時点は発信基準値検知回路3で検出される時点Aより
当然のことながら、少なくとも電気・音響変換器4と5
の間の伝播時間だけ遅れている。伝播時間測定回路14
は発信基準値検知回路3からパルスが出力されると、伝
播時間の測定を開始し、発信基準波検知用受信回路12
からパルスが出力されるまでの時間をカウントする。な
お、伝播時間測定回路14は時点Aと同じ状態の時点I
(第4図)を発信基準値検知回路3が検出してパルスを
出力するのを抑える制御信号を出力し、また切替スイッ
チ6.7を制御する。ノイズゲート回路13は、電気・
音響変換器4.5の一方から送信された超音波Wl、 
W2が他方の電気・音響変換器で受信され、時点Aを検
知するまでに、スレッショルドレベル以上のノイズが入
り、このノイズを信号波と誤認知して発信基準波検知用
受信回路12が誤ったパルスを出力するのを防止するた
めに、電気・音響変換器4.5間の距離等から前もって
予想されるおよその信号音波到達時刻までは発信基準波
検知用受信回路12の動作を停止させて伝播時間測定回
路14にパルスを送らないようにしている。このような
ノイズゲート回路13は、超音波流量計等においては、
ごく一般的に用いられる信号処理テクニックの一種であ
るが、ノイズゲートが解除された直後から受信波が入っ
てくるまでの間に、スレッショルドレベルを超えるレベ
ルのノイズが入ってきた場合、受信波として誤認知して
しまう危険は残る。 本発明では、そのようなノイズに
対しても誤認知することを防ぐことができる。さらに、
万一上記のようなノイズなWl、 W2のような周波数
成分が2つとも持っている場合、第3.第4.・・・の
識別信号波を出していれば、より確実に誤認知を防ぐこ
とができる。 本実施例では、2周波の送信波を各々共振周波数の異な
る圧電素子(電気・音響変換器)に加え、受信側も同様
に各々共振周波数の異なる圧電素子で受ける場合の構成
例を示したが、1種類の広帯域電気・音響交換器を用い
て、振幅変調や周波数変調等、信号波を変調することに
よっても構成が可能である。 なお、本実施例もダンブトウェーブを用いているが、パ
ルスの立上がり部分は使用していない点が従来のダンブ
トウェーブ使用のパルス法と異なっている。 本発明は、前述の超音波流量計に有効であるばかりでな
く、音波伝播時間測定を利用したあらゆる機器(例えば
超音波距離計、超音波厚み計、音速測定器、測探機、魚
群探知機、CTスキャン等)に有効である。 [発明の効果] 以上説明したように本発明は、振幅が同じで、周波数が
相異なる2つ以上の音波を用い、周波数が最も大きい音
波のゼロクロスする時点のうちの特定の時点を音波伝播
時間の開始、終了の基準時刻とすることにより、受信波
にノイズが含まれたり、受信波の波形(レベル)が変わ
っても、伝播時間測定のタイミングを誤認知するおそれ
がなくなるという効果がある。
Detailed Description of the Invention [Industrial Application Field] The present invention utilizes the propagation time of sound waves to calculate distance, fluid flow velocity,
This invention relates to a method for measuring sound wave time in a device for determining thickness, speed of sound, temperature, etc. [Prior art] Fig. 6 is a schematic configuration diagram of an ultrasonic flowmeter that calculates flow rate using the propagation time of sound waves, Fig. 7 is a timing diagram of ultrasonic transmission and reception, and Figs. 8 and 9 are reception diagrams. FIG. The ultrasonic flowmeter shown in FIG. 6 has an electric/acoustic transducer 32 installed on the wall of a tube 31 through which a fluid to be measured flows.
and 33, transmitting and receiving ultrasonic waves between the ultrasonic flowmeter converter 3
4, the propagation time of the sound wave is measured and the linear average flow velocity V of the fluid is determined. In this ultrasonic flowmeter, when an ultrasonic wave is emitted from the electric-acoustic transducer 32 to the electric-acoustic transducer 33, the propagation time is 11, and the propagation time is 11 when the ultrasonic wave is emitted from the electric-acoustic transducer 33 to the electric-acoustic transducer 32. The propagation time when emitting ultrasonic waves is t2
Then, the linear average flow velocity V of the fluid flowing inside the pipe is approximately expressed by the following equation (1). However, D: Inner diameter of the pipe 31 θ: Ultrasonic incident angle from the pipe 31 to the fluid to be measured C: Sound velocity in the fluid to be measured τ: Propagation time required in the measurement circuit other than the propagation time of the sound wave in the fluid to be measured The transmitted waveform shown in Figure 7 (1) is called a damp wave, and after the required number of waves of ultrasonic waves necessary for time measurement are transmitted, unnecessary transmitted waveforms are acoustically damped as soon as possible. There is. Therefore, the electrical-acoustic transducer 3
3, a received waveform as shown in FIG. 7(2) is obtained. [Problems to be Solved by the Invention] By the way, in FIG. 7, there is a method such as Japanese Patent Publication No. 44-31284 to obtain the timing of receiving sound waves. However, the received waveforms are not always at the same level or in the same shape, and for this reason various ideas have been made using AGC and APC. For example, Japanese Patent Application Laid-Open No. 61-59275. However, the transmission and reception using the normal one-frequency pulse method using a dumb wave as shown in Figure 7 has the following common drawbacks, resulting in measurement errors.In equation (1), is the electrical circuit delay l,
The propagation time of the sound wave transmission member other than the fluid to be measured is 2. After the trigger wave is recognized from the time when the signal sound wave first arrives,
The time it takes to cross Ov for the first time is 3 magnitude (the definition of the trigger wave is the same as in JP-A-61-59275). For 3, use the zero cross method of Japanese Patent Publication No. 44-31284 to calculate S in Figure 8 as the trigger wave. However, f is the frequency of the sound wave to be used as a signal, and 3 can be determined in advance in this way. In addition, since , l and 2 can be determined using various measuring instruments, (in equation 11) can be entered into the calculation formula as a constant in advance. However, as shown above, 3 can be obtained. This is when the SL used as the trigger wave is definitely SL.In other words, if the SL used as the trigger wave is actually S2,
3 is, an error occurs immediately after the settings are made, and this results in an error in the reading of the measuring device. However, in either case, there is a possibility of an error in judgment. In the case of an ultrasonic flowmeter, the received waveform as shown in FIG. 8 may become as shown in FIG. 9 depending on the piping to be measured, the fluid to be measured, the sound wave transmission medium such as a coupling agent, and the propagation path. At this time, if the equipment or the oscilloscope observer cannot find So or Sl buried in the noise, they will mistakenly judge S2 to be St, resulting in the above-mentioned error. So and S buried in noise
Even if l can be discovered, there are further problems as follows. Changes in the received waveform due to the above sound wave transmission medium and propagation path are as follows:
It also affects the shape of the received waveform. S defined in FIG. , Stb St, S, . . . The reception level ratio So: St: St: Ss: . . . changes, for example, in FIG. 7, So: S, = 1: 10.
In Figure 8, So: SI= 1: 1
It has become. This occurs due to changes in the waveform synthesis state of various phases, etc., but in such cases, APC't'')
Even if AGc is used, S cannot be used as a trigger wave. In other words, since So:S = 1:1, even if the S+ level is amplified, 30 levels will be amplified at the same time, so St
The waveform of S is not triggered. This is because it will be triggered. An object of the present invention is to provide a sound wave propagation time that can accurately measure the propagation time without making a mistake in the timing of the propagation time measurement even if noise is mixed into the received wave or the shape (level) of the received waveform changes. The objective is to provide a measurement method. [Means for Solving the Problems] The sound wave propagation time measurement method of the present invention simultaneously emits two or more sound waves, each having a substantially constant amplitude for a certain period of time and different frequencies, so that the sound waves with the highest frequency range from positive to negative. , or zero-crossing in a predetermined direction from negative to positive, which is closest to the time when a sound wave of another frequency zero-crosses in a predetermined direction from positive to negative or from negative to positive, and the time The time point at which the sound wave first appears is detected on the transmitting side and the receiving side, and the propagation time of the sound wave is measured using these times as reference times for starting and ending the propagation time measurement, respectively. [Operation] Two or more sound waves each having a substantially constant amplitude for a certain period of time and different frequencies are used, and when the sound wave with the highest frequency crosses zero in a predetermined direction, the sound waves with other frequencies are positive. Since the reference time for the start and end of propagation time measurement is the closest and first point in time to the zero-crossing point in a predetermined direction from negative to negative or from negative to positive, the received wave contains noise. Even if the received wave level changes, there is no risk of misperceiving the timing of the propagation time. [Example] Next, an example of the present invention will be described with reference to the drawings. Fig. 1 is a block diagram of an embodiment of an ultrasonic flowmeter to which the sound wave propagation time measurement method of the present invention is applied, Fig. 2 is a circuit diagram of the transmission reference value detection circuit 3 in Fig. 1, and Fig. 3 4 is an ultrasonic transmission/reception waveform diagram, FIG. 4 is a waveform diagram showing transmitted waves Wl and W2 superimposed, and FIG. 5 is an enlarged view of the vicinity of point A in FIG. 4. The ultrasonic flowmeter of this embodiment includes a first transmission wave transmitting circuit,
Second transmission wave transmission circuit 2, transmission reference value detection circuit 3, electric/acoustic converter 4.5, selector switch 6.7, bandpass filter 8.9, signal amplifier In, 11, and transmission standard. A wave detection receiving circuit 12, a noise gate circuit 13,
It consists of a propagation time measuring circuit 14 and a circuit (not shown) for determining the linear average flow velocity. First transmission wave transmitting circuit 1. The second transmission wave transmitting circuit 2 transmits ultrasonic signals Wl and W2 (FIG. 4) having frequencies f+ and fa (<f,), respectively. Here, Wl is a signal wave for propagation time measurement, and W2 is a signal wave for propagation time measurement W.
This is a signal wave for identifying a reference point for measuring the propagation time of l. The electric/acoustic converter 4.5 mutually converts electric signals and acoustic signals.The changeover switch 6 has a common terminal connected to the first transmission wave transmission circuit 1 and the second transmission wave transmission circuit 2, and a switching terminal connected to the electric signal and the second transmission wave transmission circuit 2. - Connected to acoustic transducer 4.5, signals Wl and w2
is input to the electric/acoustic transducer 4 or 5. The changeover switch 7 has a common terminal connected to the bandpass filters 8 and 9, a switching terminal connected to the electric/acoustic converter 4.5, and a signal wave Wl converted into an electric signal by the electric/acoustic converter 4 or 5.
The signals containing W2 are each output to bandpass filters 8.9. Bandpass filters 8 and 9 each receive a signal wave Wl. W2 is taken out and output to signal amplifiers 10 and 11, respectively. Signal amplifier 10. II are the signal waves Wl and
The 0 oscillation reference detection circuit 3 that amplifies the signal wave w1
Points A and B when zero crosses from positive to negative. C, D, . . ., the circuit detects the point A (Fig. 4) closest to the point in time when the signal wave W2 zero-crosses from positive to negative direction, and as shown in Fig. 5, the signal wave Ill ,
Comparators 21 and 22 that output a positive potential pulse when the potential of W2 falls below the ground potential, a monostable multivibrator 23 that outputs a pulse with a pulse width PWI based on the output pulse of the comparator 22, and the output pulse of the comparator 21. and an AND gate 24 which takes the AND of the output pulses of the monostable multi-bi break 23,
The output pulse of the AND gate 24 is the propagation time measurement circuit 14.
is output to. In this manner, by providing the monostable multivibrator 23, a pulse is output from the transmission reference value detection circuit 3 only at time A, and time A is identified. The transmission reference wave detection receiving circuit 12 has a similar configuration, and includes a signal amplifier 10. Detect time A from the output of II. Naturally, this time point is greater than the time point A detected by the transmission reference value detection circuit 3.
delayed by the propagation time between Propagation time measurement circuit 14
When a pulse is output from the transmission reference value detection circuit 3, it starts measuring the propagation time, and the reception circuit 12 for detecting the transmission reference wave starts measuring the propagation time.
Count the time from when the pulse is output. Note that the propagation time measurement circuit 14 is in the same state as time A at time I.
(FIG. 4) is detected by the transmission reference value detection circuit 3, and outputs a control signal to suppress the output of the pulse, and also controls the changeover switch 6.7. The noise gate circuit 13
Ultrasonic wave Wl transmitted from one side of the acoustic transducer 4.5,
W2 is received by the other electric/acoustic transducer, and by the time point A is detected, noise exceeding the threshold level has entered, and the receiving circuit 12 for detecting the outgoing reference wave has mistakenly recognized this noise as a signal wave. In order to prevent the output of pulses, the operation of the receiving circuit 12 for detecting the transmitted reference wave is stopped until the approximate arrival time of the signal sound wave, which is predicted in advance from the distance between the electric/acoustic transducers 4 and 5. Pulses are not sent to the propagation time measurement circuit 14. Such a noise gate circuit 13 is used in an ultrasonic flowmeter, etc.
This is a type of signal processing technique that is very commonly used, but if noise at a level that exceeds the threshold level comes in between the time the noise gate is released and the time the received wave comes in, the received wave is There remains a risk of misunderstanding. According to the present invention, it is possible to prevent erroneous recognition of such noise. moreover,
In the unlikely event that there are two frequency components such as noise Wl and W2 as described above, the third. 4th. If an identification signal wave of ... is emitted, misrecognition can be more reliably prevented. In this example, a configuration example is shown in which two frequency transmission waves are applied to piezoelectric elements (electrical/acoustic transducers) each having a different resonant frequency, and the reception side is similarly received by a piezoelectric element having a different resonant frequency. , it is also possible to construct the system by modulating the signal wave using amplitude modulation, frequency modulation, etc. using one type of broadband electrical/acoustic exchanger. This embodiment also uses a dumb wave, but differs from the conventional pulse method using a dumb wave in that the rising portion of the pulse is not used. The present invention is not only effective for the above-mentioned ultrasonic flowmeter, but also for all devices that utilize sound wave propagation time measurement (for example, ultrasonic distance meters, ultrasonic thickness meters, sound speed meters, sound probes, fish finders). , CT scan, etc.). [Effects of the Invention] As explained above, the present invention uses two or more sound waves with the same amplitude and different frequencies, and sets a specific time point among the zero-crossing points of the sound wave with the highest frequency as the sound wave propagation time. By using the reference time for the start and end of the measurement, there is no possibility of misperceiving the timing of the propagation time measurement even if the received wave contains noise or the waveform (level) of the received wave changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の音波伝播時間測定方法が適用された超
音波流量計の一実施例のブロック図、第2図は第1図中
の発信基準値検知回路3の回路図、第3図は超音波送受
信波形図、第4図は送信波WlとW2を重畳して示す波
形図、第5図は第4図のA点近傍の拡大図、第6図は音
波の伝播時間を利用して流量を求める超音波流量計の概
略構成図、第7図は音波の送受信のタイミング図、第8
図、第9図は受信波形図である。 1・・・第1送信波発信回路、 2・・・第2送信波発信回路、 3・・・発信基準値検知回路、 4.5・・・電気・音響変換器、 6.7・・・切替スイッチ、 8.9・・・帯域フィルタ、 In、 11・・・信号増幅器、 12・・・発信基準波検知用受信回路、13・・・ノイ
ズゲート回路、 14・・・伝播時間測定回路、 21、22・・・コンパレータ、 23・・・単安定マルチバイブレータ、24・・・アン
ドゲート。
Fig. 1 is a block diagram of an embodiment of an ultrasonic flowmeter to which the sound wave propagation time measurement method of the present invention is applied, Fig. 2 is a circuit diagram of the transmission reference value detection circuit 3 in Fig. 1, and Fig. 3 is an ultrasonic transmission/reception waveform diagram, Fig. 4 is a waveform diagram showing transmitted waves Wl and W2 superimposed, Fig. 5 is an enlarged view of the vicinity of point A in Fig. 4, and Fig. 6 is an ultrasonic waveform diagram using the propagation time of the sound wave. A schematic configuration diagram of an ultrasonic flow meter that calculates the flow rate using
9 are received waveform diagrams. DESCRIPTION OF SYMBOLS 1... First transmission wave transmission circuit, 2... Second transmission wave transmission circuit, 3... Transmission reference value detection circuit, 4.5... Electrical/acoustic transducer, 6.7... Changeover switch, 8.9... Bandwidth filter, In, 11... Signal amplifier, 12... Receiving circuit for detecting outgoing reference wave, 13... Noise gate circuit, 14... Propagation time measurement circuit, 21, 22... Comparator, 23... Monostable multivibrator, 24... AND gate.

Claims (1)

【特許請求の範囲】 1、音波の伝播時間を利用して、目的とする計測を行な
う装置において、 各々振幅が一定時間略一定で、周波数が相異なる2つ以
上の音波を同時に出し、周波数が最も大きい音波が正か
ら負、または負から正への予め定められた方向にゼロク
ロスする時点のうち、他の周波数の音波が正から負、ま
たは負から正への予め定められた方向にゼロクロスする
時点に最も近く、かつ時間的に最初に現われる時点を送
信側、受信側において検出し、これら時点をそれぞれ伝
播時間測定の開始、終了の基準時刻として音波の伝播時
間を測定する音波伝播時間測定方法。
[Claims] 1. A device that performs targeted measurement using the propagation time of sound waves, which simultaneously emits two or more sound waves, each with substantially constant amplitude for a certain period of time and different frequencies; At the point in time when the largest sound wave crosses zero in a predetermined direction from positive to negative or negative to positive, the sound waves of other frequencies zero cross in a predetermined direction from positive to negative or from negative to positive. A sound wave propagation time measurement method in which the time point that is closest to the time point and appears first in time is detected on the transmitting side and the receiving side, and the propagation time of the sound wave is measured using these time points as reference times for starting and ending the propagation time measurement, respectively. .
JP2027120A 1990-02-08 1990-02-08 Sound wave propagation time measurement method Expired - Lifetime JP2608961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2027120A JP2608961B2 (en) 1990-02-08 1990-02-08 Sound wave propagation time measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2027120A JP2608961B2 (en) 1990-02-08 1990-02-08 Sound wave propagation time measurement method

Publications (2)

Publication Number Publication Date
JPH03233395A true JPH03233395A (en) 1991-10-17
JP2608961B2 JP2608961B2 (en) 1997-05-14

Family

ID=12212202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2027120A Expired - Lifetime JP2608961B2 (en) 1990-02-08 1990-02-08 Sound wave propagation time measurement method

Country Status (1)

Country Link
JP (1) JP2608961B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186328A (en) * 1992-12-21 1994-07-08 Fujitsu Ltd Ultrasonic range-finding device
JPH1090082A (en) * 1996-09-20 1998-04-10 Toshiba Corp Temperature measuring apparatus
WO2006112475A1 (en) * 2005-04-19 2006-10-26 Inter-University Research Institute Corporation Research Organization Of Information And Systems Time reference point information transmitting system and receiver
JP2011007539A (en) * 2009-06-24 2011-01-13 Tokyo Keiso Co Ltd Ultrasonic flowmeter
WO2012157261A1 (en) * 2011-05-16 2012-11-22 パナソニック株式会社 Ultrasonic flow meter
JP2018169294A (en) * 2017-03-30 2018-11-01 株式会社東京精密 Ultrasonic measuring device and ultrasonic measuring method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186328A (en) * 1992-12-21 1994-07-08 Fujitsu Ltd Ultrasonic range-finding device
JPH1090082A (en) * 1996-09-20 1998-04-10 Toshiba Corp Temperature measuring apparatus
WO2006112475A1 (en) * 2005-04-19 2006-10-26 Inter-University Research Institute Corporation Research Organization Of Information And Systems Time reference point information transmitting system and receiver
GB2441667A (en) * 2005-04-19 2008-03-12 Kek High Energy Accelerator Time reference point information transmitting system and receiver
JPWO2006112475A1 (en) * 2005-04-19 2008-12-11 大学共同利用機関法人情報・システム研究機構 Time reference point information transmission system and receiver
GB2441667B (en) * 2005-04-19 2011-01-12 Kek High Energy Accelerator Time reference point information transmitting system and receiver
US7881669B2 (en) 2005-04-19 2011-02-01 Inter-University Research Institute Corporation/Research Organization Of Information And Systems Time reference point information transmitting system and receiver
JP4621924B2 (en) * 2005-04-19 2011-02-02 大学共同利用機関法人情報・システム研究機構 Time reference point information transmission system and receiver
JP2011007539A (en) * 2009-06-24 2011-01-13 Tokyo Keiso Co Ltd Ultrasonic flowmeter
WO2012157261A1 (en) * 2011-05-16 2012-11-22 パナソニック株式会社 Ultrasonic flow meter
JP2018169294A (en) * 2017-03-30 2018-11-01 株式会社東京精密 Ultrasonic measuring device and ultrasonic measuring method
JP2021113833A (en) * 2017-03-30 2021-08-05 株式会社東京精密 Ultrasonic measuring device and ultrasonic measuring method

Also Published As

Publication number Publication date
JP2608961B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
US4480485A (en) Acoustic flowmeter with envelope midpoint tracking
JP3028723B2 (en) Ultrasonic fluid flow meter
JP3016511B1 (en) Ultrasonic flow velocity measuring method and device
US4606015A (en) Method and apparatus for detecting position of object with ultrasonic wave
JP2007538240A (en) Detection of ultrasonic signal reception point by pulse waveform detection
US20220291026A1 (en) Propagation time measurement device
JP2608961B2 (en) Sound wave propagation time measurement method
WO2014006881A1 (en) Flow quantity measuring apparatus
JP6973423B2 (en) Flow measuring device
US20230243682A1 (en) Ultrasonic flow measurement
JP2005181268A (en) Ultrasonic flowmeter
CN112903043A (en) Multichannel ultrasonic flowmeter system
JPH1048009A (en) Ultrasound temperature current meter
JP4797515B2 (en) Ultrasonic flow measuring device
JP3624743B2 (en) Ultrasonic flow meter
JPH11304559A (en) Flow rate measuring apparatus
JP4236479B2 (en) Ultrasonic transceiver
JP3368305B2 (en) Ultrasonic flow meter
JP2009270882A (en) Ultrasonic flowmeter
JPH0117090B2 (en)
JPS5852487Y2 (en) Flow rate measurement device using correlation technology
JPS61100616A (en) Apparatus for measuring flow amount
JP3973920B2 (en) Clamp-on type ultrasonic flowmeter
JPS6123920A (en) Flow velocity and flow rate measuring device
JPH02147920A (en) Measurement of sound velocity in paper