JPH03229027A - Metal damper - Google Patents

Metal damper

Info

Publication number
JPH03229027A
JPH03229027A JP2531890A JP2531890A JPH03229027A JP H03229027 A JPH03229027 A JP H03229027A JP 2531890 A JP2531890 A JP 2531890A JP 2531890 A JP2531890 A JP 2531890A JP H03229027 A JPH03229027 A JP H03229027A
Authority
JP
Japan
Prior art keywords
metal damper
metal
damper
radius
bending moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2531890A
Other languages
Japanese (ja)
Inventor
Kan Ohashi
完 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2531890A priority Critical patent/JPH03229027A/en
Publication of JPH03229027A publication Critical patent/JPH03229027A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve earthquake resisting performance of a metal damper provided on a horizontally displacing position of a structure by shaping the metal damper such that the whole region subjected to bending moment by the horizontal displacement of the structure reaches the plastic region. CONSTITUTION:A metal damper 10 is an apparently rod-like member having the radius r1 in a position spaced l1 from the predetermined section and the radius r2 in a position spaced l2 from the neutral shaft. When the metal rod having the length 2l0 and both ends restrained from rotation is assumed to displace horizontally, the central point C of the metal damper 10 becomes a point of inflection to generate opposite symmetrical bending stress. When the metal rod is selected to have l1/l2=(r1/r2)<3>, it yields by the bending moment simultaneously over the range l1-l2. Thus, since a plasticizable region can be enlarged, large energy can be absorbed to improve the earthquake resisting performance of the metal damper, thereby that of the structure.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は免震構造物のダンパとして用いて好適な金属ダ
ンパに関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a metal damper suitable for use as a damper in a seismic isolation structure.

「従来の技術」 従来より免震構造物に用いられるダンパに鉛あるいは鋼
を用いた金属ダンパが提供されている。
"Prior Art" Metal dampers using lead or steel have been conventionally provided as dampers used in seismic isolation structures.

そのような金属ダンパの一例として、第2図に示すよう
なしのがあり、図中、符号1は構造物、符号3は金属ダ
ンパを示し、この金属ダンパ3の上端部および下端部に
はそれぞれ外観矩形の取付部材4か設けられ、この取付
部材4は複数個のボルト5、・によって構造物の所定位
置に固定されている。
An example of such a metal damper is the one shown in FIG. A mounting member 4 having a rectangular appearance is provided, and this mounting member 4 is fixed at a predetermined position on the structure by a plurality of bolts 5,.

そして、この金属ダンパ3は、構造物lが地震動の作用
を受けたときに塑性歪のエネルギにより、振動エネルギ
を減衰させる。
The metal damper 3 damps vibration energy using the energy of plastic strain when the structure 1 is subjected to earthquake motion.

さらに、一般にこの種の金属ダンパは、降伏比の大きい
材料を用いて塑性化領域を大きくし、エネルギ吸収を大
きくしている。
Furthermore, this type of metal damper generally uses a material with a high yield ratio to increase the plastic region and increase energy absorption.

「発明が解決しようとする課題」 しかしながら、降伏比には、材質的に限度があり、応力
の大きい所のみが塑性化するだけでエネルギ吸収効率が
悪い。
``Problem to be Solved by the Invention'' However, the yield ratio has a limit due to the nature of the material, and only areas with high stress become plastic, resulting in poor energy absorption efficiency.

また、第3図および第4図に示すように、前記従来の金
属ダンパ3の上下の端部を回転拘束しrコときに、この
金属ダンパ3が水平変位する場合は次のような問題が生
じる。ここで、第3図は、金属ダンパ3に水平変位が生
じた場合の状態を示す状態図、第4図は金属ダンパ3の
高さ位置とそこにかがる曲げモーメントとの関係を示す
図であって、縦軸は金属タンパ3の中点Cからの距離Q
、を、横軸はそこに生じる曲げモーメントMの大きさを
それぞれ示すものである。
Further, as shown in FIGS. 3 and 4, when the upper and lower ends of the conventional metal damper 3 are rotationally restrained, the following problem occurs when the metal damper 3 is horizontally displaced. arise. Here, FIG. 3 is a state diagram showing the state when horizontal displacement occurs in the metal damper 3, and FIG. 4 is a diagram showing the relationship between the height position of the metal damper 3 and the bending moment applied thereto. , the vertical axis is the distance Q from the midpoint C of the metal tamper 3
, and the horizontal axis indicates the magnitude of the bending moment M generated therein.

反曲点が金属ダンパ3の中央にあるとし、金属タンパ3
の長さを2Q、その金属の降伏比をYRとすると、降伏
域の範囲は、(+−YR)Xi!となる。従って、それ
以外の中間部は、弾性のままで残ることになる。
Assuming that the recursion point is at the center of the metal damper 3, the metal tamper 3
If the length of is 2Q and the yield ratio of the metal is YR, then the range of the yield region is (+-YR)Xi! becomes. Therefore, the other intermediate portion remains elastic.

そこで、本発明は、金属ダンパが曲げ応力を受けたとき
にその全域に亙ってほぼ同時に降伏点に達するような金
属ダンパを提供することを目的としている。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a metal damper that reaches its yield point almost simultaneously over the entire area when the metal damper is subjected to bending stress.

1課題を解決するための手段」 本発明の金属ダンパは、構造物の水平変位位置に設けら
れる金属ダンパてあって、構造物の水平変位によって曲
げモーメントを受けたときにその全域にわたってほぼ同
時に塑性域に達する形状に形成されていることを特徴と
している。具体的には、たとえば金属ダンパの断面形状
か、該金属タンパの所定断面からQlの位置における半
径を「1、中立軸からQ2の位置にわける半径をr2と
したときに、 r2−(ρ2/ρ)l/3Xr+な、、7)関係か成り
立つように形成されているものである。
The metal damper of the present invention is provided at a horizontally displaced position of a structure, and when a bending moment is applied due to the horizontal displacement of the structure, the metal damper undergoes plastic deformation almost simultaneously over the entire area. It is characterized by being formed in a shape that reaches the area. Specifically, for example, if the radius at the position Ql from the cross-sectional shape of the metal damper or a predetermined cross-section of the metal damper is 1, and the radius dividing the position Q2 from the neutral axis is r2, then r2-(ρ2/ ρ) l/3Xr+, 7) It is formed so that the relationship holds true.

「作用」 本発明の金属タンパはの所定断面からQlの位置におけ
ろ半径をr2、中立軸からQ、の位置における半径をr
2としたときに、水平変位すると金属ダンパの中点が反
曲点となり、逆対称の曲げ応力が生ずる。そして、この
とき金属ダンパは、ぐ、〜12tの範囲にわたって同時
に降伏する。
"Operation" The metal tamper of the present invention has a radius r2 at a position Ql from a predetermined cross section, and a radius r at a position Q from the neutral axis.
2, when the metal damper is horizontally displaced, the midpoint of the metal damper becomes a recursion point, and an antisymmetrical bending stress is generated. At this time, the metal damper simultaneously breaks down over a range of ~12t.

「実施例」 以下、本発明の金属ダンパの一実施例について、第1図
を参照して説明する。
"Embodiment" Hereinafter, an embodiment of the metal damper of the present invention will be described with reference to FIG.

本実施例の金属ダンパ10は、外観棒状の部材であって
、その断面形状が、該金属タンパ10の所定断面からQ
lの位置における半径をr9、中立軸からQ2の位置に
おける半径をr2としたときに、r 2−(Q 2 /
 Q + ) ” 3X r 1なる関係が成り立つよ
うに形成されている。
The metal damper 10 of this embodiment is a member with a rod-like appearance, and its cross-sectional shape is Q from a predetermined cross section of the metal damper 10.
When the radius at the position l is r9 and the radius at the position Q2 from the neutral axis is r2, r 2-(Q 2 /
Q + ) ” 3X r 1 is formed so that the relationship holds true.

長さ2Qoの両端か回転拘束された金属環か水平変位し
f二とする。
Both ends of the length 2Qo or the rotationally restrained metal ring are horizontally displaced to be f2.

金属ダンパlOの中点Cか反曲点となり、逆対称の曲げ
応力が生ずる。
The midpoint C of the metal damper lO becomes the recursion point, and an antisymmetrical bending stress is generated.

この金属の形状をρ、/ Q=−(r、/ r−)3の
ように選ぶと、Q、〜g、の範囲にわたって、曲げモー
メントにより同時に降伏する。
If the shape of this metal is chosen as ρ,/Q=−(r,/r−)3, it will simultaneously yield due to the bending moment over the range of Q, to g.

以下、このような作用について、計算式に基づいて検討
する。
Hereinafter, such an effect will be discussed based on a calculation formula.

中点Cを原点にとって、その下向きに長さQをとる。Take the midpoint C as the origin and take the length Q downward.

金属ダンパ10への強制変形で、金属ダンパlOの上端
部10aと下端部10bが水平変位すると、金属ダンパ
に曲げモーメントMが生じる。このときの金属ダンパに
生じる剪断力をQ (t)とすると、M = Q X 
Q  (t−Cl1+)金属ダンパlOの断面を円形と
して、断面係数をZとすると、 Z−πr3/32  (cz) e1点と37点の曲げ応力度σ1、σ、を求めて等値と
すると、 R,点ては、σI−(32Q / rr )X (C,
/ r、3)37点では、c 2−(32Q 、/ π
)X (+22/ r2’)となり、これらClおよび
σ2より、 Q1/Q、−(r1/r2)3・・・(I)なる関係か
成り立つ。
When the upper end 10a and lower end 10b of the metal damper 10 are horizontally displaced due to forced deformation of the metal damper 10, a bending moment M is generated in the metal damper. If the shearing force generated in the metal damper at this time is Q (t), then M = Q
Q (t-Cl1+) If the cross section of the metal damper lO is circular and the section modulus is Z, then Z-πr3/32 (cz) If the bending stress degrees σ1 and σ at points e1 and 37 are found and equalized, then , R, point is σI−(32Q/rr)X (C,
/ r, 3) At 37 points, c 2-(32Q , / π
)X (+22/r2'), and from these Cl and σ2, the following relationship holds:

本実施例の金属ダンパ10を使用する場合、般的には複
数本の金属ダンパ10が同一ベースプレート上に設けら
れて使用に供される。
When using the metal damper 10 of this embodiment, a plurality of metal dampers 10 are generally provided on the same base plate and used.

金属ダンパ10は、鋼でも鉛でも、降伏比(YR降伏強
度と破断強度の比)の大きい金属で、曲げ応力が剪断応
力より卓越するように細長くする。
The metal damper 10 is made of a metal with a high yield ratio (ratio of YR yield strength to breaking strength), whether steel or lead, and is elongated so that bending stress is greater than shear stress.

前記(1)式をr、について解くと、 r、=(ρ2/ρ+)”Xr+  ” ・(2)ここで
、例えば、前記0点(中点)から1.Oc肩の所の金属
ダンパの断面半径r1をり、Ocxに設定し、金属ダン
パ10の全長2Q、を20cxに設定した場合、0点か
らの位置Q2と、断面半径r2との関係は、次のように
なる。
When formula (1) is solved for r, r,=(ρ2/ρ+)"Xr+" (2) Here, for example, from the 0 point (midpoint) to 1. When the cross-sectional radius r1 of the metal damper at the Oc shoulder is set to Ocx, and the total length 2Q of the metal damper 10 is set to 20cx, the relationship between the position Q2 from the 0 point and the cross-sectional radius r2 is as follows. become that way.

底本式 2 %式% 本実施例の金属ダンパIOによれば、曲げモーメントか
かかった場合に、金属ダンパlOの全域にわたってほぼ
同時に降伏点に達するため、塑性化域を大きくすること
ができるのでエネルキ吸収をより大きくすることができ
る。そして、金属ダンパの免震性能、ひいては構造物の
免震性能を向上させるといった優れた効果を奏する。
According to the metal damper IO of this embodiment, when a bending moment is applied, the yield point is reached almost simultaneously over the entire area of the metal damper IO, so the plasticity region can be enlarged, and the energy can be reduced. Absorption can be increased. This has an excellent effect of improving the seismic isolation performance of the metal damper and, by extension, the seismic isolation performance of the structure.

「発明の効果」 本発明の金属グノバは、 構造物の水平変位位置に設け
られる金属ダンパてあって、構造物の水平変位によって
曲げモーメントを受けたときにその全域にわたってほぼ
同時に塑性域に達する形状に形成されているので、塑性
化域を大きくすることかできるので工不ルキ吸収をより
大きくすることがてきる。そして、金属ダンパの免震性
能、ひいては構造物の免震性能を向上させるといった優
れた効果を奏する。
"Effects of the Invention" The metal gnova of the present invention has a metal damper installed at a horizontally displaced position of a structure, and has a shape that reaches a plastic region almost simultaneously over the entire area when subjected to a bending moment due to horizontal displacement of the structure. Since the plasticity region is formed to be large, the plasticization region can be enlarged, and the absorption of mechanical stress can be further increased. This has an excellent effect of improving the seismic isolation performance of the metal damper and, by extension, the seismic isolation performance of the structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の金属ダンパの一実施例を示す側面図、
第2図ないし第4図は金属ダンパの一従来例を示す図で
あって、第2図は側面図、第3図は変位状態を示す状態
図、第4図は金属ダンパの高さ位置とそこにかかる曲げ
モーメントとの関係を示す図である。 l    構造物、 3、IO・・ ・ 金属ダンパ。
FIG. 1 is a side view showing an embodiment of the metal damper of the present invention;
Figures 2 to 4 are diagrams showing a conventional example of a metal damper, in which Figure 2 is a side view, Figure 3 is a state diagram showing a displacement state, and Figure 4 is a height position of the metal damper. It is a figure which shows the relationship with the bending moment applied there. l Structure, 3, IO... Metal damper.

Claims (1)

【特許請求の範囲】[Claims] 構造物の水平変位位置に設けられる金属ダンパであって
、構造物の水平変位によって曲げモーメントを受けたと
きに、その全域にわたってほぼ同時に塑性域に達する形
状に形成されていることを特徴とする金属ダンパ。
A metal damper provided at a horizontal displacement position of a structure, characterized in that the metal damper is formed in a shape that reaches a plastic region almost simultaneously over the entire area when receiving a bending moment due to horizontal displacement of the structure. damper.
JP2531890A 1990-02-05 1990-02-05 Metal damper Pending JPH03229027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2531890A JPH03229027A (en) 1990-02-05 1990-02-05 Metal damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2531890A JPH03229027A (en) 1990-02-05 1990-02-05 Metal damper

Publications (1)

Publication Number Publication Date
JPH03229027A true JPH03229027A (en) 1991-10-11

Family

ID=12162642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2531890A Pending JPH03229027A (en) 1990-02-05 1990-02-05 Metal damper

Country Status (1)

Country Link
JP (1) JPH03229027A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538228A (en) * 1991-03-28 1996-07-23 J.M. Voith Gmbh Tension bars for roll press for paper making machine
JP2016169782A (en) * 2015-03-12 2016-09-23 大和ハウス工業株式会社 Shear damper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538228A (en) * 1991-03-28 1996-07-23 J.M. Voith Gmbh Tension bars for roll press for paper making machine
JP2016169782A (en) * 2015-03-12 2016-09-23 大和ハウス工業株式会社 Shear damper

Similar Documents

Publication Publication Date Title
US4593502A (en) Energy absorbers
JP2004340301A (en) Seismic isolator
CN103867625B (en) Rope type self-reset shape memory alloy seismic isolation and seismic reduction support
AU620587B2 (en) Improvements in or relating to energy absorbers
JPS6117984B2 (en)
CN209397759U (en) A kind of building damper
JPH03229027A (en) Metal damper
JPH01268933A (en) Elastic and plastic damper
JPH0949209A (en) Vibration isolation method of bridge and construction of vibration isolation
JP2000104787A (en) Base isolation device
CN213709154U (en) Horizontal omnidirectional displacement amplification type SMA energy dissipation and shock absorption device
CN113818584B (en) Assembled energy dissipation cantilever structure based on particle damping
JPH02304106A (en) Energy dispersing mechanism for earthquake resisting structure
CN210766330U (en) Super-high pier large-span continuous rigid bridge structure
JPS61191769A (en) Earthquake damping apparatus of structure
JP2511319B2 (en) Steel rod damper device for seismic isolation and vibration control
JP3837666B2 (en) Damping dampers and structures for damping structures
CN219808522U (en) Friction pendulum vibration isolation support with sliding block with small friction force and large friction force deviating from center
JPS62242145A (en) Damper for earthquake proofing use
JP2601439Y2 (en) Brace equipment
CN214994630U (en) Steel construction side tubular column with antidetonation function
JPS622036A (en) Device for absorbing vibration energy
JPH1068247A (en) Base isolation structure for building
CN211736594U (en) X-shaped metal damper
CN215716213U (en) Shock attenuation steel construction stand